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Abstract
Various methods are available for choosing statistical models. It is difficult to know which model
selection criterion is the best for specific data. This paper discusses a method for choosing the
model selection criterion based on the characteristics of the data and models. As an example,
we examined the choice between AIC and likelihood cross-validation as the model selection
criterion with the exponential distribution and Weibull distribution as candidate models. First,
we examined the characteristics of AIC and likelihood cross-validation using data generated from
an exponential distribution or Weibull distribution; AIC and likelihood cross-validation show
substantially different natures. Next, from the results of the numerical simulations, we propose
an intuitive method for deciding whether to use AIC or likelihood cross-validation.

Keywords: AIC; cross-validation; expected log-likelihood; future data; exponential distribution; maxi-
mum likelihood estimator; Weibull distribution.
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1 Introduction
Model selection using AIC (Akaike’s Information Criterion) ([1],[2], Chapter 3 in [3],Chapter 2 and
Chapter 7 in [4], Chapter 2 in [5]) coincides asymptotically with selection using cross-validation
([6],[7],[8],[9],[10],[11]); a more recent and sophisticated study on this matter is [12]. However, this
is an asymptotic result and is based on several assumptions; when dealing with practical data
analysis, it is often not clear whether using AIC is the same as using cross-validation. Even if AIC
functions in a similar manner to cross-validation, this does not necessarily mean that AIC gives a
good approximation for the expected log-likelihood (Section 5.3 of [13]). To clarify this, we used
numerical simulation to examine the characteristics of the two criteria and to construct a way of
selecting which one is most in line with the nature of the data and the conditions governing the
model selection. Use of real life data example may enhance the persuasiveness of comparison of
statistics such as AIC and cross-validation. However, if we use real data without knowing the values
of parameters, it is not easy to enable fair and square comparison of statistics.

In using numerical simulation to clarify the characteristics of AIC and cross-validation, whether to
choose the exponential distribution or the Weibull distribution as the target distribution poses a
problem. We used the results of our numerical simulations to propose a method of choosing the
model selection criterion based on the nature of the data.

2 Outline of AIC and Likelihood Cross-validation
The equation for AIC is based on (page 55 in [3]):

EG(x)

[
nEG(z)

[
logf(Z|θ̂(X))

]]
= EG(x)

[
logf(X|θ̂(X))

]
− b(G). (2.1)

Outline of AIC and likelihood cross-validation

where x(= (x1, x2, . . . , xn)
t) (available data, i.e., data at hand, a nonrandom variable) is one set of

data consisting of n observations that are generated from the true model (G(x)). x are realizations
of X(= (X1,X2, . . . , Xn)

t). The random variable Z (future data) is an independent copy of X1(not
one set of data) that will be generated from the true model (G(x)) in the future. EG(x) stands
for the expectation with respect to

∏n
α=1 G(xα) = G(x) (a joint distribution) that generates the

available data and future data. EG(z) is the expectation with respect to G(z) (true model, i.e.,
true probability distribution). θ̂(X) is the parameter estimator given by the maximum likelihood
method using X as data. Then EG(z)

[
logf(Z|θ̂(X))

]
is the expectation of the log-likelihood of the

parameter estimator in the light of future data; the parameter estimator is given by the maximum
likelihood method in the light of the available data. b(G) is called “the bias of log-likelihood as
an estimator of the expected log-likelihood” in (page 55 in [3]). Hence, the left-hand side of Eq.
(2.1) is given by calculating the expectation of the log-likelihood of the available data in the light
of future data and obtaining the expectation of the result; the former expectation is taken with
respect to future data, and the latter expectation is taken with respect to available data. If a
larger value is yielded by this computation, we draw the conclusion that the maximum likelihood
method gives a better model, and therefore we should construct a model that makes this value larger.

logf(X|θ̂(X)) is the log-likelihood in the light of one set of available data consisting of n observations.
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logf(X|θ̂(X)) is written formally (page 55 in [3]) as

logf(X|θ̂(X)) =

n∑
α=1

logf(xα|θ̂(X)). (2.2)

That is, the left-hand side of this equation is the sum of the values of the log-likelihood of θ̂(X) in
the light of one set of available data consisting of n observations.

If the values of the left-hand side of Eq. (2.1) for various models are estimated with high accuracy,
an approximation to the right-hand side of Eq. (2.1) can be obtained. Then, a model which makes
this value large is considered to give a large log-likelihood in the light of future data. However, the
value given by the left-hand side of Eq. (2.1) cannot be obtained unless we have an infinite number
of future data. Hence, we need to estimate the approximate value of the right-hand side of Eq.
(2.1). It should be noted that logf(x|θ̂(x)) (i.e., realization of the value given by the right-hand
side of Eq. (2.2)) is yielded by the available data (one set of data consisting of n observations)
using the maximum likelihood method. Moreover, EG(x)

[
logf(X|θ̂(X))

]
is approximately identical

to logf(x|θ̂(x)). Therefore, if the value of b(G) is estimated with high accuracy, an accurate
approximation to the left-hand side of Eq. (2.1) can be obtained. Therefore, if our purpose is to
select an efficient model, we should aim to estimate the value of b(G).

AIC adopts the equation
b(G) = p. (2.3)

where p is the number of parameters contained in a model. Since Eq. (2.3) is derived by an
analytical approximation procedure, usually we cannot estimate the accuracy of the approximation
in our practical data analysis, so it is necessary to carry out a numerical simulation.

The approximation below is adopted in likelihood cross-validation (e.g., Eq. (3.43) on page 53 in
[14],[15]).

nEG(z)

[
logf(Z|θ̂(X))

]
≈

n∑
j=1

logf(xj |θ̂(xn(−j))). (2.4)

where logf(xj |θ̂(xn(−j))) is the log-likelihood of the estimator in the light of xj ; the maximum
likelihood method derives these estimates using data which is given by deleting xj from x. This
calculation is iterated by using each value of j = 1, 2, . . . , n. Then, the resultant values are added
to give an approximation to the left-hand side of Eq. (2.1). This is the procedure for likelihood
cross-validation.

3 AIC and Likelihood Cross-validation in Exponential
and Weibull Distributions

The probability density function of the exponential distribution is:

fE(x) = λexp(−λx). (3.1)

where λ is a parameter. Then, the log-likelihood in the light of available data ((x1, x2, . . . , xn)
t)

can be written as
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Fig. 1. Probability density function of the Weibull distribution; solid line: β = 1.0,
dashed line: β = 1.2, dotted line: β = 1.4, dot-dashed line: β = 1.6, long-dashed line:

β = 1.8; η = 3 for all distributions

l({xi}|λ) = nlog(λ)− λ

n∑
i=1

xi. (3.2)

Hence, the maximum likelihood estimator is:

λ̂ =
n∑n

i=1 xi
. (3.3)

The probability density function of the Weibull distribution is as follows.

fW (x) =
β

η

(
x

η

)β−1

exp

(
−
(
x

η

)β
)
. (3.4)

where β and η are parameters. Fig. 1. shows the probability density function of the Weibull
distribution when η = 3 and β = 1.0, 1.2, 1, 4, 1.6, 1.8. When β = 1, we have

fW (x) =
1

η
exp

(
−x

η

)
. (3.5)

Comparison of this equation with Eq. (3.1) indicates that the equation is the probability density
function of the exponential distribution. Hence, the exponential distribution is a specific case of
the Weibull distribution.

The log-likelihood of Eq. (3.4) in the light of the data xi is as follows.

log(fW (xi)) = log(β)− log(η) + (β − 1)log(xi)− (β − 1)log(η)−
(
xi

η

)β

= log(β)− βlog(η) + (β − 1)log(xi)−
(
xi

η

)β

. (3.6)

Therefore, the log-likelihood in the light of the available data ((x1, x2, . . . , xn)
t) can be written as

l({xi}|η, β) = nlog(β)− nβlog(η) + (β − 1)

n∑
i=1

log(xi)−
1

ηβ

n∑
i=1

xβ
i . (3.7)
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Taking the derivative of Eq. (3.7) with respect to η and setting it equal to 0 yields

∂l({xi}|η, β)
∂η

= −nβ

η
+

β

ηβ+1

n∑
i=1

xβ
i = 0. (3.8)

Hence, we have the equation

η =

(
1

n

n∑
i=1

xβ
i

) 1
β

. (3.9)

That is,

log(η) =
1

β
log
(
1

n

n∑
i=1

xβ
i

)
. (3.10)

However, differentiating Eq. (3.7) with respect to β and setting it equal to 0 gives

∂l({xi}|η, β)
∂β

=
n

β
− nlog(η) +

n∑
i=1

log(xi) +
log(η)
ηβ

n∑
i=1

xβ
i − 1

ηβ

n∑
i=1

log(xi)x
β
i = 0. (3.11)

Substituting Eq. (3.9) and Eq. (3.10) into Eq. (3.11) yields

∂l({xi}|η, β)
∂β

=
n

β
− n

1

β
log
(
1

n

n∑
i=1

xβ
i

)
+

n∑
i=1

log(xi)

+

1
β
log
(

1
n

∑n
i=1 x

β
i

)
1
n

∑n
i=1 x

β
i

n∑
i=1

xβ
i − 1(

1
n

∑n
i=1 x

β
i

) n∑
i=1

log(xi)x
β
i

=
n

β
+

n∑
i=1

log(xi)−
1(

1
n

∑n
i=1 x

β
i

) n∑
i=1

log(xi)x
β
i = 0. (3.12)

This equation contains β but not η. Hence, by solving an equation with one variable, we obtain the
estimate for β (= β̂). An estimate of η (= η̂) can be derived by substituting the resultant β̂ into
Eq. (3.8).

4 True b(G), b(G) Given by AIC, and b(G) Given by Likeli-
hood Cross-validation

The b(G) given by AIC and the b(G) given by likelihood cross-validation were compared with the
real b(G). To achieve this, the value of the left-hand side of Eq. (2.1) when the data are sampled
from a Weibull distribution was estimated using three methods: (1) use of real future data; (2) use
of AIC; (3) use of likelihood cross-validation. Numerical simulations were carried out to compare
these three estimates.

First, when we suppose that future data are at hand, an approximation to the value of the left-hand
side of Eq. (2.1) can be calculated. It is approximated as follows.

EG(x)

[
nEG(z)

[
logfW (Z|θ̂(X))

]]
≈ 1

S

S∑
s=1

n
1

M

M∑
m=1

logfW (x∗
m|η̂(xs), β̂(xs)). (4.1)

where the available data are one of {xs} (s = 1, 2, 3 . . . , S). {x∗
m} (m = 1, 2, 3, . . . ,M) are

future data that are sampled from the same distribution as the available data, although they are
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independent of the available data. logfW (x∗
m|η̂(xs), β̂(xs)) is the log-likelihood given by substituting

x∗
m into the probability density function containing η̂ and β̂; η̂ and β̂ are obtained by the maximum

likelihood method using xs. That is, the log-likelihood of the probability density function containing
η̂ and β̂ is calculated in the light of x∗

m. When fitting an exponential distribution, fW (·) is replaced
with fE(·).

If AIC is used, Eq. (4.1) is replaced with the equation

EG(x)

[
nEG(z)

[
logfW (Z|θ̂(X))

]]
≈ 1

S

S∑
s=1

(
logfW (xs|η̂(xs), β̂(xs))− 2

)
. (4.2)

where the approximation below is used.

EG(x)

[
logf(X|θ̂(X))

]
≈ 1

S

S∑
s=1

logfW (xs|η̂(xs), β̂(xs)). (4.3)
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Fig. 2. Value of the left-hand side of Eq. (2.1); this value is provided by numerical
simulation with the setting n = 30, η = 3, β = 1. The graph at top left shows the values

of the right-hand side of Eq. (4.1) when fitting an exponential distribution. The
graph at top right shows the values of the right-hand side of Eq. (4.1) when fitting a
Weibull distribution. The graph on the middle left shows the values of the right-hand
side of Eq. (4.2) when fitting an exponential distribution. The graph on the middle

right shows the values of the right-hand side of Eq. (4.2) when fitting a Weibull
distribution. The graph at bottom right shows the values of the right-hand side of
Eq. (4.4) when fitting an exponential distribution. The graph at bottom left shows
the values of the right-hand side of Eq. (4.4) when fitting a Weibull distribution.
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logfW (xs|η̂(xs), β̂(xs)) is the log-likelihood given by substituting xs (available data) into the proba-
bility density function with η̂ and β̂; η̂ and β̂ are obtained by the maximum likelihood method using
xs. That is, the log-likelihood of the probability density function with η̂ and β̂ is obtained in the
light of xs. (−2) in the right-hand side is due to the fact that the Weibull distribution contains
two parameters. If fitting an exponential distribution, fW (·) is replaced with fE(·) and (−2) in the
right-hand side is altered to (−1).

When likelihood cross-validation is used, Eq. (4.1) is replaced with

EG(x)

[
nEG(z)

[
logfW (Z|θ̂(X))

]]
≈ 1

S

S∑
s=1

( n∑
j=1

logf(xsj |η̂(xs(−j), β̂(xs(−j)))
)
. (4.4)

where xsj is the j-th element of xs. The maximum likelihood method using xs(−j) leads to
η̂(xs(−j)) (the estimator of η). The maximum likelihood method using xs(−j) provides β̂(xs(−j))
(the estimator of bη).

Fig. 2. shows the distributions of the approximated values of nEG(z)

[
logfW (Z|θ̂(X))

]
when

numerical simulations were carried out with the setting n = 30, η = 3, β = 1, S = 5, 000,
and M = 1, 000. That is, one set of data (n = 30) was generated as available data to estimate
parameters, and the log-likelihood in the light of future data was calculated using three methods:
(1) the log-likelihood of the estimated parameters in the light of future data calculated using
real future data consisting of 1, 000 data (Eq. (4.1)); (2) use of AIC (Eq. (4.2)); (3) use of
likelihood cross-validation (Eq. (4.4)). This graphs show the distributions of the estimates given by
5, 000 simulations using different pseudo random numbers as seeds. The R command "optimize()"
implemented in R version 3.4.0 was used to derive β̂ by fitting a Weibull distribution (Eq. (3.12)).
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Fig. 3. Distributions of the real and approximated values of nEG(z)

[
logfW (Z|θ̂(X))

]
.

"⃝" represents real values. "△" represents the estimates given by AIC. "+"
represents the estimates given by likelihood cross-validation. The graph on the left

shows the values given by fitting an exponential distribution. The graph on the right
shows the values given by fitting a Weibull distribution.

Fig. 3. (left) shows the mean of the distributions of the real and approximated values of-
nEG(z)

[
logfE(Z|θ̂(X))

]
. The value of β is set to one of β = {1, 1.2, 1.4, 1.6, 1.8, 2}. The other

settings are the same as those used in Fig. 2. Thus this graph shows a comparison of the real values
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with the approximated values using AIC (i.e., AIC·(−0.5)), and with the approximated values using
likelihood cross-validation when fitting an exponential distribution. This graph indicates that the
mean of the expected log-likelihood given by AIC gradually moves away from the mean of the
true value of the expected log-likelihood. This phenomenon shows that AIC·(−0.5) functions less
efficiently as an approximation for the expected log-likelihood when the value of β gets further away
from 1 (i.e., the distribution becomes less like an exponential distribution.); when the value of β is
1, the generated data form an exponential distribution.

Fig. 3. (right) shows the results of fitting a Weibull distribution with the same conditions as in Fig.
3 (left). This graph indicates that nearly identical estimates are obtained by the three methods:
(1) the true mean of the expected log-likelihood; (2) the mean of the expected log-likelihood given
by AIC; (3) the mean of the expected log-likelihood given by likelihood cross-validation.

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

β

b(
G

)

Fig. 4. Estimates of b(G). Data are generated using one of β = {1, 1.2, 1.4, 1.6, 1.8, 2} to
fit an exponential distribution or a Weibull distribution.

Next, the true value of b(G) (Eq. (2.1)) is estimated using Eq. (4.1) and Eq. (4.2) as follows.

b(G) = EG(x)

[
logf(X|θ̂(X))

]
− EG(x)

[
nEG(z)

[
logf(Z|θ̂(X))

]]
≈ 1

S

S∑
s=1

logfW (xs|η̂(xs), β̂(xs))−
1

S

S∑
s=1

n

M

M∑
m=1

logfW (x∗
m|η̂(xs), β̂(xs)). (4.5)

When an exponential distribution is employed, fW (·) is replaced with fE(·). Fig. 4 shows the
estimates of b(G) when the data are generated using one of β = {1, 1.2, 1.4, 1.6, 1.8, 2} to fit an
exponential distribution or a Weibull distribution. When AIC is used, we suppose b(G) = 1 for
fitting an exponential distribution whatever the value of β may be. However, we suppose b(G) = 2
for fitting a Weibull distribution whatever the value of β may be. Therefore, the results of the
numerical simulation indicate that the b(G) given by AIC is a little less than the true value of
b(G) when the realizations of a Weibull distribution are fitted to Weibull distribution. That is, the
b(G) = 2 given by AIC is slightly biased.

In contrast, when realizations of Weibull distribution with the setting β = 1 are fitted to an
exponential distribution, the b(G) = 1 given by AIC is very close to the real value because the
Weibull distribution is identical to the exponential distribution when we set β = 1. However, as
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the value of β gets gradually larger than 1, the real value of b(G) becomes less than 1. That
is, the b(G) = 1 given by AIC becomes more biased. Some existing literature emphasizes that
AIC works appropriately as an approximation for the expected log-likelihood even if the applicant
model does not contain the data-generating model as a special case (page 369 in [4]). However, the
results shown in Fig. 4. indicate that if we cannot assume, even approximately, that the applicant
model (i.e., exponential distribution in this example) is identical to the data-generating model
(Weibull distribution, which is somewhat different from the exponential distribution) or contains
it as a special case, AIC·(−0.5) may not be regarded as a good approximation for the expected
log-likelihood.

A similar situation occurs when a linear equation is fitted to the data generated from a linear
equation with normal noise using the least squares method. That is, when a constant (special case
of a linear equation) is fitted using least squares to the data generated from a linear equation with
normal noise, b(G) is not 1 but a value close to 0 (page 233 in [13]). That is, in these two examples,
when the applicant model is substantially different from the data-generated model, the b(G) given
by AIC is larger than the true value. Therefore, the expected log-likelihood given by AIC is smaller
than the true value of the expected log-likelihood. This tendency leads to an excusable mistake,
because when the data-generated model is considerably different from the applicant model, that
model is not selected by AIC. This theoretical consideration implies that this phenomenon may
often occur in our real data analysis without knowing that it is the case. We do not know, however,
whether this relationship always holds. Moreover, if all of the applicant models are considerably
different from the true model, the values of AIC·(−0.5) are not good approximations for the expected
log-likelihood. Hence, we are not sure that model comparison using AIC is appropriate. Since we
do not know whether the applicant model contains a model that is very close to the true model, it
is very difficult to decide whether model comparison using AIC leads to desirable results.

5 Selection Between AIC and Likelihood Cross-validation
The results of the numerical simulations showed that the characteristics of AIC and likelihood
cross-validation were somewhat different. That is, although the value of b(G) (Eq. (2.2)) has
zero variance, it could be biased to a certain extent. However, b(G) estimated by likelihood cross-
validation has little if any bias. Therefore, we need to consider whether we should use AIC or
likelihood cross-validation as the criterion.

We propose an intuitive method to choose between AIC (i.e., AIC·(−0.5)) and likelihood cross-
validation to approximate the value of the expected log-likelihood. Our method estimates the
confidence interval of the expected log-likelihood given by likelihood cross-validation using a boots-
traps method. Then, if the resulting confidence interval does not contain the expected log-likelihood
estimated using AIC, we conclude that the expected log-likelihood estimated using AIC is not
correct, and we adopt the expected log-likelihood given by likelihood cross-validation. However, if
the resultant confidence interval contains the expected log-likelihood estimated using AIC, we do
not reject the assumption that the expected log-likelihood estimated using AIC is correct, and we
adopt it as an approximation for the expected log-likelihood.

Formally, this algorithm is written as:
(1) Obtain B bootstrap data ({x(b)} (x(b) = (x

(b)
1 , x

(b)
2 , . . . , x

(b)
n )t, b = 1, 2, . . . , B)) by sampling n

observations at random with replacement from x(= (x1, x2, . . . , xn)
t) (available data) B times.

(2) Calculate the expected log-likelihood (ELL(b)) given by {x(b)} using the equation below, which
is obtained from Eq. (4.4).

ELL(b) =

n∑
j=1

logf(x(b)
j |η̂(x(b)

(−j)), β̂(x
(b)

(−j))). (5.1)
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where x
(b)

(−j) is obtained by deleting the j-th data from x(b).
(3) Sort {ELL(b)} as ELL(1) ≤ ELL(2) ≤ · · · ≤ ELL(B).
(4) For example, when B = 1, 000 is set, we assume that the interval between ELL(25) and
ELL(976) represents the confidence interval of the expected log-likelihood estimated by likelihood
cross-validation.

(5) If the expected log-likelihood estimated by AIC is located in the confidence interval derived in (4),
we accept that the validity of the expected log-likelihood estimated by AIC is not rejected. Hence,
we adopt the expected log-likelihood estimated by AIC. However, if the expected log-likelihood
estimated by AIC is not positioned in the confidence interval derived in (4), we conclude that the
validity of the expected log-likelihood estimated by AIC is rejected. Hence, we adopt the expected
log-likelihood estimated by likelihood cross-validation.
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Fig. 5. Distribution of b(G)(25)(top-left graph) and b(G)(976)(top right) when β = 1.6
fits an exponential distribution. Distribution of b(G)(25)(bottom left) and

b(G)(976)(bottom right) when β = 1.6 is set fits a Weibull distribution.

Numerical simulations were carried out 100 times using the above method, varying the initial value
of the pseudo random numbers. One of the values of β = 1, 1.2, 1, 4, 1.6, 1.8, 2 was used. Fig
5 illustrates the distributions of b(G)(25) and b(G)(976) with the setting β = 1.6. b(G)(25) and
b(G)(976) are defined as follows using Eq. (4.2).

b(G)(25) =
1

S

S∑
s=1

logfW (xs|η̂(xs), β̂(xs))− ELL(25). (5.2)

b(G)(976) =
1

S

S∑
s=1

logfW (xs|η̂(xs), β̂(xs))− ELL(976). (5.3)
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Fig. 6. Values of er(Eq. (5.4)). "⃝" indicates the values of er when the data fit an
exponential distribution and b(G) is obtained using likelihood cross-validation. "△’"

indicates the values of er when the data fit a Weibull distribution and b(G) is
obtained using likelihood cross-validation. "+" indicates the values of er when the

data fit an exponential distribution and b(G) is obtained using AIC. "×" indicates the
values of er when the data fits a Weibull distribution and b(G) is obtained using AIC.

These four symbols are used in the left-hand graph. "3" indicates the values of er
when the data fits an exponential distribution and b(G) is obtained using the

suggested method. "▽" indicates the values of er when the data fits a Weibull
distribution and b(G) is obtained using the suggested method. These two symbols are

used in the right-hand graph.

We compared the value of b(G) estimated by the above method, which used AIC, and the value
estimated by likelihood cross-validation by calculating the value defined below.

er =

100∑
k=1

(b(G)k − b̃(G))2. (5.4)

where b̃(G) represents the true value of b(G), given by Eq. (4.1). b(G)k is the estimate derived
using the above method; either AIC or likelihood cross-validation. Fig. 6. shows the values of er
with the same settings as in the previous numerical simulation. These two graphs indicate that this
method considerably reduces the value of er for both the exponential distribution and the Weibull
distribution regardless of whether β = 1, 1.2, 1, 4, 1.6, 1.8, 2. Although this is a rather intuitive
method without a clear background, the result of this numerical simulation implies the possibility
of choice from among conventional model selection methods.

6 Conclusion
In this paper, we have discussed a method that allows us to choose between AIC and likelihood-
cross validation in dealing with the model selection problem of whether the data fit a Weibull
distribution or an exponential distribution. The results of the numerical simulation demonstrate
that the characteristics of the two criteria are substantially different when the number of data is
small. In light of this, we should consider the characteristics of the data and the applicable models
when deciding which of the two methods to use. We propose an intuitive method based on the
concept of confidence intervals to choose between the two methods.

Regarding the use of AIC, the available literature tells that "Akaike (1974) [2] stated that if the true
distribution that generated the data exists near the specified parametric model, the bias associated
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with the log-likelihood of the model based on the maximum likelihood method can be approximated
by the number of parameters." (page 61 in [3]) However, this point is seldom paid attention to in
actual data analysis, and if we were fully aware of this point in our model selection procedure we
would seldom adopt AIC as the model selection criterion. This is because if AIC cannot be used
unless all of applicable models are sure to be "near the specified parametric model," we need to know
the quantitative definition of "near the specified parametric model.". Moreover, in most situations
of data analysis, we do not know the exact appearance of "the true distribution." Therefore AIC
is usually used without being conscious of the conditions for using it as an approximation for the
expected log-likelihood.

The simple numerical simulations carried out here, however, indicates that AIC·(−0.5) is somewhat
biased as an approximation for the expected log-likelihood. In this respect, likelihood cross-
validation is preferable to AIC. Hence, we suppose that if we use AIC·(−0.5) unconditionally as an
approximation for the expected log-likelihood, we may derive inappropriate results as a quantitative
estimate to show the validity of the model. It should be noted, however, that even if AIC·(−0.5)
is not regarded as an approximation for the expected log-likelihood, AIC performs well as a model
selection criterion in some situations (page 242 in [13]).

In the age when it was difficult to examine the characteristics of estimators using numerical
simulation because of relatively poor computer power, we had to investigate the characteristics
of estimators with the assumption that the number of data to obtain asymptotic results is very
large. In the current age of powerful computers, we can examine the characteristics of estimators
from various perspectives by simulating the actual data analysis almost perfectly. This kind of
research is unveiling the various aspects of estimators, most of which have not been shown by
asymptotic studies. We should adopt this approach, taking advantage of both analytical methods
and numerical simulations, to consider the conditions under which each model selection method
works appropriately.
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