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Abstract

Multi-derivative linear multi-step methods with continuous coefficients was derived through the
block method approach using power series as basis function. Discrete scheme systems involving
the multi-derivative linear methods were developed and their basic properties examined. The
resulting schemes were used to solve general third order boundary value problems in ordinary
differential equations without reducing it to first order. Numerical results were compared with
the existing methods to show the accuracy and efficiency of the method. Results obtained show
that our methods performed better than the existing methods.
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1 Introduction

Boundary value problems (BVPs) on third order differential equations have attracted a lot of
attention in the literature in recent time. These kind of BVPs have many uses in the field
of engineering and science, such as control theory, and biological sciences. In the recent time,
tremendous attention has been shifted to developing methods for the solution of y

′′′
= f(x, y, y′, y′′)

subject to boundary conditions (see Awoyemi[1], Jator[2], Jator[3] ). For instance, three-point
fuzzy boundary value problems discussed in (Prakash[4]); laminar boundary layer and sandwich
beam problems in (Sahi et al.[5]); numerical method for third order non linear BVP in engineering
(Ikram[6]) are used in solving third order BVPs. Many of the methods above were solved by first
reducing a higher order ordinary differential equation (ODE) to a lower order ODEs which takes a
lot of human effort and computer time See Awoyemi[1].
This paper considers general third-order boundary value problems on the interval ∆ ∈ [a, b]

y
′′′

= f(x, y, y′, y′′) (1.1)

subject to any of the boundary condition:
y(a) = y0, y′(a) = δ0, y(b) = yN
y(a) = y0, y′(a) = δ0, y′(b) = yM
y(a) = y0, y′(b) = yM , y(c) = γ 1

2
; where c = (a+b

2
)

where y0, δ0, δ1, δ2, yN , yM are constants and f is a continuous function that satisfies a lipschitz
condition with respect to initial conditions as given by Sahi et al.[5].

The basic and auxiliary methods are obtained from the same continuous scheme and are of the
same order, hence, possible errors which are due to auxiliary methods of lower order are avoided as
the integration proceeds on the entire interval. The paper is organized as follows. Section 2 deals
with how we derive an approximation R(x) for y(x) which is used to obtain the main and other
multi-derivative linear multi-step methods (MDLMMs). Section 2 discussed how the methods were
derived, while section 3 is deal with the analysis convergence of the method, computational aspects
and an algorithm equipped with an automatic error estimate based on the double mesh principle.
Numerical results are given in Section 4 to show speed and accuracy advantages. Summary and
conclusion are in Section 5.

2 Construction of MDLMMs

The construction of the scheme (MDLMMs) is done here. Thus, on the interval [xn, xn+k], the
exact solution y(x) and its derivatives are assumed to be locally represented by:

Rk(x) =

k−1∑
j=0

αj(x)yn+j + h3
k∑

j=0

βj(x)fn+j + h4
k∑

j=0

ωj(x)gn+j + h5
k∑

j=0

µj(x)γn+j , (2.1)


R

′
k(x) =

d
dx

(R(x))

R
′′
k (x) =

d2

dx2 (R(x))
(2.2)

where αj(x), βj(x), ωj(x), µj(x) are continuous coefficients, and m ≥ 0 is an integer. We
assume that yn+j = Rk(xn + jh) is the numerical approximation to the analytical solution
y(xn+j), fn+j = R′′′

k(xn+jh) , gn+j = Riv
k (xn+jh) and γn+j = Rv

k(xn+jh).
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The continuous method (2) and its derivatives (3) are piecewise continuous on [a, b] and defined
for all xϵ[a, b]. That is, Rk(x), R

′′′
k (x), Riv

k (x), Rv
k(x) are defined such that Rk(x) = y(x)+O(h12)),

R′
k(x) = d

dx
(y(x) + O(h12)), R′′

k(x) = d2

dx2 (y(x) + O(h12)), xϵ(xn, xn+3). The polynomials

R0(x), R3(x), ..., RN−3(x), R
′′′
0 (x), R′′′

3 (x), ..., R
′′′
N−3(x), R

iv
0 (x), Riv

3 (x), ..., Riv
N−3(x), R

v
0(x), R

v
3(x),

..., Rv
N−3(x) then define piecewise polynomials R(x), R′(x), and R′′(x) which are also continuous

on [a, b]. Hence, (2) and (3) have the ability to provide a continuous solution on [a, b] with a uniform
accuracy comparable to that obtained at the grid points and can also be used to produce additional
discrete methods (see Sahi et al.[5]). The following theorem as stated in (Sahi et al.[5]) facilitates
the MDLMMs construction in (2) and (3). Thus

Rk(xn+j) = yn+j , j = 0, 1, 2. (2.3)

R
′′′
k (xn+j) = fn+j , Riv

k (xn+j) = gn+j , Rv
k(xn+i) = γn+j j = 0, ..., 3. (2.4)

the continuous representations (2) and (3) are equivalent to the following:

Rk(x) = V T (S−1)TH(x) (2.5)


R

′
k(x) =

d
dx

(V T (S−1)TH(x))

R
′′
k (x) =

d2

dx2 (V T (S−1)TH(x))
(2.6)

where S is a matrix given as,

S =



H0(xn) H1(xn) · · · H14(xn)
H0(xn+1) H1(xn+1) · · · H14(xn+1)
H0(xn+2) H1(xn+2) · · · H14(xn+2)

H
′′′
0 (xn) H

′′′
1 (xn) · · · H

′′′
14(xn)

H
′′′
0 (xn+1) H

′′′
1 (xn+1) · · · H

′′′
14(xn+1)

H
′′′
0 (xn+2) H

′′′
1 (xn+2) · · · H

′′′
14(xn+2)

H
′′′
0 (xn+3) H

′′′
1 (xn+3) · · · H

′′′
14(xn+3)

Hiv
0 (xn) Hiv

1 (xn) · · · Hiv
14(xn)

Hiv
0 (xn+1) Hiv

0 (xn+1) · · · Hiv
14(xn+1)

Hiv
0 (xn+2) Hiv

0 (xn+2) · · · Hiv
14(xn+2)

Hiv
0 (xn+3) Hiv

0 (xn+3) · · · Hiv
14(xn+3)

Hv
0 (xn) Hv

1 (xn) · · · Hv
14(xn)

Hv
0 (xn+1) Hv

0 (xn+1) · · · Hv
14(xn+1)

Hv
0 (xn+2) Hv

0 (xn+2) · · · Hv
14(xn+2)

Hv
0 (xn+3) Hv

0 (xn+3) · · · Hv
14(xn+3)


Hj(xn+j) = xj

n+j ,

V = [yn, yn+1, yn+2, fn, fn+1, fn+2, fn+3, gn, gn+1, gn+2, gn+3, γn, γn+1, γn+2, γn+3]
T

J = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14]
T

It should be noted that T denotes the transpose and Pj(x) = xj , j = 0, ..., 14 are basis functions
(See Sahi et al.[5]) for the proof. It is noted that the continuous methods (2) and (3) which are
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equivalent to the forms (6) and (7) are used to produce the main and additional methods which
are combined and simultaneously applied to provide all approximations on the entire interval for
boundary value problems of the form

y
′′′

= f(x, y, y′, y′′)

The continuous methods (2) and (3) are obtained by solving a system of 15 equations resulting from
conditions (4) and (5) given in theorem mentioned above.

The coefficients of MDLMMs. To simplify the coefficients of (2), we introduce q =
x−xn+2

h
;

(see Sahi et al. [5]

Evaluating (2) at xn+j , j = 3, the main method is obtained by:

y3 − y0 + 3 y1 − 3 y2 =

+h3
(

7201
14784

f2 +
7201
14784

f1 +
191

14784
f3 +

191
14784

f0
)

+h4
(

1613
36960

g1 +
107

41580
g0 − 107

41580
g3 − 1613

36960
g2
)

+h5
(

233
18480

γ2 +
17

110880
γ0 +

233
18480

γ1 +
17

110880
γ3
)

(2.7)

The additional methods were obtained by evaluating (3) at xn+j , j = 0, 1, 2, 3.



hy′
0 +

1
2
y2 − 2 y1 +

3
2
y0 =

+h3
(

55519
864864

f0 +
31963
104832

f1 +
1811

494208
f3 − 11365

288288
f2
)

+h4
(
− 74509

5765760
g1 +

4057
262080

g2 − 57697
51891840

g3 +
298601

25945920
g0
)

+h5
(
− 11443

2882880
γ2 +

1637
17297280

γ3 +
521

786240
γ0 +

17393
1153152

γ1
)

hy′
1 +

1
2
y0 − 1

2
y2 =

+h3
(
− 295

72072
f2 − 25525

164736
f1 − 13439

31135104
f3 − 14005

1945944
f0
)

+h4
(
− 151

120120
g1 − 25787

17297280
g0 +

2153
5765760

g2 +
3473

25945920
g3
)

+h5
(

323
1153152

γ2 − 2383
576576

γ1 − 4793
51891840

γ0 − 151
12972960

γ3
)

hy′
2 − 1

2
y0 + 2 y1 − 3

2
y2 =

+h3
(

25541
288288

f2 +
276119
1153152

f1 − 2087
2830464

f3 +
6703

1111968
f0
)

+h4
(

123661
5765760

g1 +
4273

3706560
g0 +

107
524160

g3 − 941
45760

g2
)

+h5
(

569
262080

γ2 +
37963

5765760
γ1 − 163

10378368
γ3 +

241
3706560

γ0
)

hy′
3 − 3

2
y0 + 4 y1 − 5

2
y2 =

+h3
(
597055
576576

f2 +
797057
1153152

f1 +
289117
3459456

f3 +
39859

1729728
f0
)

+h4
(

72047
1441440

g1 +
258001

51891840
g0 − 398753

25945920
g3 − 302933

5765760
g2
)

+h5
(

17819
524160

γ2 +
43079

2882880
γ1 +

193
216216

γ3 +
1123

3459456
γ0
)
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

hy′′
0 − y2 + 2 y1 − y0 =

+h3
(
− 4735777

12972960
f0 − 1478063

1921920
f1 − 651467

51891840
f3 +

23489
160160

f2
)

+h4
(

186509
5765760

g1 − 160499
2882880

g2 +
65867

17297280
g3 − 29069

576576
g0
)

+h5
(

39763
2882880

γ2 − 1121
3459456

γ3 − 22723
8648640

γ0 − 262709
5765760

γ1
)

hy′′
1 − y2 + 2 y1 − yn =

+h3
(
− 98447

1921920
f2 +

31771
960960

f1 +
171317

77837760
f3 +

354953
22239360

f0
)

+h4
(
− 114557

2882880
g1 +

178049
51891840

g0 − 5683
8648640

g3 +
18925

1153152
g2
)

+h5
(
− 17363

5765760
γ2 +

1377
320320

γ1 +
1427

25945920
γ3 +

1637
7413120

γ0
)

hy′′
2 − y0 + 2 y1 − y2 =

+h3
(
218147
480480

f2 +
344859
640640

f1 − 473441
155675520

f3 +
417149

38918880
f0
)

+h4
(

346253
5765760

g1 +
16573

8648640
g0 +

6359
7413120

g3 − 240371
2882880

g2
)

+h5
(

1597
192192

γ2 +
90059

5765760
γ1 − 3503

51891840
γ3 +

2551
25945920

γ0
)

h2y′′
3 − y0 + 2 y1 − y2 =

+h3
(
804731
640640

f2 +
46733
137280

f1 +
9806759
25945920

f3 +
1321877
51891840

f0
)

+h4
(
− 991

82368
g1 +

36793
5765760

g0 − 458291
8648640

g3 − 65119
5765760

g2
)

+h5
(

9583
164736

γ2 − 683
576576

γ1 +
24049

8648640
γ3 +

8257
17297280

γ0
)

(2.8)

3 Analysis of Convergence

The local truncation errors for the main methods of the (MDLMMs) is given by:

τi = − 1597

28768836096000
y14h14 (xi + θi)+O (h)15 , hτ ′

i = − 4079

13277924352000
y14h14 (xi + θi)h

14+O (h)15

h2τ ′′
i = − 11881

14384418048000
y14h14 (xi + θi) +O (h)15

i = 3, · · · , N, |θi| ≤ 1

While that of the additional methods is given by:

τ1 = − 251

1120863744000
y14h14(ξ) +O (h)15 , hτ ′

1 =
5557

172613016576000
y14h14(ξ) +O (h)15

hτ ′
2 =

383

86306508288000
y14h14(ξ) +O (h)15

τ2 =
31

40236134400
y14h14(ξ) +O (h)15 , h2τ ′′

1 = − 1577

14384418048000
y14h14(ξ) +O (h)15

h2τ ′′
2 = − 173

3196537344000
y14h14(ξ) +O (h)15

x1 ≤ ξ ≤ x2

5



Areo and Abejide; JAMCS, 28(3): 1-10, 2018; Article no.JAMCS.42045

Convergence: Here, we show that the MDLMMs converged by compactly writing the main
methods and additional methods in matrix form by introducing the following notations. Let D
be a 3M × 3M matrix defined by

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33


In like manner, let U be a 3M × 3M matrices given as

U =

 U11 U12 U13

U21 U22 U23

U31 U32 U33


And;

C = (hy′
0 −

3

2
y0 −

55519

864864
h3f0 −

298604

25945920
h4g0 −

521

786240
h5γ0, h

2y′′
0 − 2 y0 +

4735777

12972960
h3f0

+
29069

576576
h4g0 −

521

786240
h5γ0, 0, . . . 0,

1

2
y0 +

14005

1945944
h3f0 +

25787

17297280
h4g0 +

4793

51891840
h5γ0,−y0 −

1780049

22239360
h3f0

− 178049

51891840
h4g0 −

1637

7413120
h5γ0, 0, . . . 0,

− 1

2
y0 −

6703

1111967
h3f0 −

4273

3706560
h4g0 −

241

3706560
h5γ0,−y0 −

417149

38918880
h3f0

− 16573

8648640
h4g0 −

2551

25945920
h5γ0, 0, . . . 0,

− 3

2
y0 −

39859

1729728
h3f0 −

258001

51891840
h4g0 −

1123

34594520
h5γ0,−y0 −

1321877

51891840
h3f0

− 36793

5765760
h4g0 −

8257

17297280
h5γ0)

We define the following vectors:

Y =
(
y(x1), . . . , y(xN ), hy′(x1), . . . , hy

′(xN ), h2y′′(x1), . . . , h
2y′′(xN )

)T
,

Y =
(
y1, . . . , yN , hy′

1, . . . , hy
′
N , h2y′′

1 , . . . , h
2y′′

N

)T
,

F =
(
f1, . . . , fN , hg1, . . . , hgN , h2k1, . . . , h

2kN , h3z1, . . . , h
3zN

)T
Remark: The variables ki and zi are introduced to augment the zero coefficients of matrix W

L(h) = (τ1, . . . , τN , hτ ′
1 . . . , hτ

′
N , h2τ ′′

1 , . . . , τ
′′
N )T ,

where L(h) is the local truncation error.

E = Y − Y = (e1, . . . , eN , he′1 . . . , he
′
N , h2e′′1 , . . . , e

′′
N )T .

In the spirit of Jator [2] and Sahi et al.[5], we state the following necessary Theorem to justify the
Order and Convergence of the Methods.

Accordingly, in agreement with Theorem 3.1 in (Sahi et al.[5]), the multi-derivative linear multi-
step Methods (MDLMMs) are Twelfth-Order Convergent Method. Thus, ∥E∥ = O(h12) (See Sahi
et al.[5]) for the proof.

Then, suppose ∥E∥ is a norm of maximum error i.e. ∥E∥ = maxi|τi|, and E = (Q + M)−1L(h),
using the proof in Sahi et al.[5], it follows that ∥E∥ = O(h12). Thus, MDLMMs is Twelfth-Order.

6
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3.1 Computation

Here, a single matrix equation was formed from the main and additional methods of the multi-
derivative linear multi-step methods which is used to solve (1.4) directly without reducing its order.
We use a Mathematica 8.0 code, enhanced by the feature NSolve[ ] and FindRoot[ ] for linear and
nonlinear problems. Mathematica 8.0 can symbolically compute derivatives and so the Jacobian
matrix which involve the multi-derivatives are automatically generated. It then show how the
multi-derivative linear multi-step methods (MDLMMs) is applied on the partition ΓN , where

ΓN := {a = x0 < x1 < . . . < xN = b, xn = x0 + nh}, h = (b− a)/N

the discretization of problem (1.4) using the MDLMMs leads to 3N equations variables which
are simultaneously solved while adjusting for the boundary conditions to yield the approximations
(yn, y

′
n, y

′′
n)

T , n = 1, 2, 3, . . . , N .

4 Numerical Examples

Example 4.1: Consider the linear third order BVP that was solved by Sahi et al.[5].

y
′′′

− xy = (x3 − 2x2 − 5x− 3)ex, y(0) = y(1), y′(0) = 1, 0 ≤ x ≤ 1

Exact : y(x) = x(1− x)ex

Table 1. Error for Example 4.1. Taking h = 7

steps(N) MDLMMs Err Sahi et al. Err[5] Exact Solution

7 4.7335× 10−20 4.12× 10−12 0.433664
14 8.5718× 10−24 1.56× 10−14 0.433664
28 1.9430× 10−27 6.08× 10−17 0.429912
56 0.10× 10−31 2.37× 10−19 0.240755
112 0.10× 10−31 9.27× 10−22 0.106482

Remark: MDLMMs are compared with Fourth Derivative methods discussed in Sahi et al.[5] which
solve the same problem for h = 7. It is observed that, the maximum errors 4.7335×10−20 obtained
with MDLMMs is smaller than 4.12× 10−12 of Sahi et al.[5]. Consequently, MDLMMs performed
better in solution.

Example 4.2: We also consider another problem solved by Sahi et al.[5] (A nonlinear third order
boundary-layer problem). We will consider the Falkner-Skan Equation (α = 1)

y
′′′

+ αyy
′′
+ β(1− (y

′
)2) = 0, y(0) = y(0), y′(0) = 0, y′(∞) = 1

There is no theoretical solution here.

Remark: Having considered different values of β (positive, zero and negative). The results as
shown in the Table 4.2 shows that MDLMMs results are more efficient. The Number of steps
needed in MDLMMs was only 7 to get the required values at the truncated boundary, whereas 10
steps was needed in Sahi et al.[5] and 21 in Brugano et al.[7]. Consequently, MDLMMs performed
better in solution.
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Table 2. Results for (Example 4.2) for different values of β

MDLMMs Sahi et al.[5] BT[7]

η∞ β y
′′
(0) y

′′
(0) y

′′
(0)

0.93 40 7.3144 7.314787 7.3149
0.95 30 6.33798 6.338219 6.33826
1.13 20 5.188058 5.180731 5.18076
1.49 10 3.6752 3.675257 3.67527
2.57 2 1.68732 1.687317 1.68732
2.88 1 1.23295 1.232951 1.23295
3.29 0.5 0.928234 0.928234 0.928234
4.01 0 0.471107 0.47110 0.471107
4.27 −0.1 0.321832 0.321838 0.321838
4.49 −0.15 0.22022 0.220244 0.220245
4.71 −.18 0.134875 0.134948 0.134948
5.00 −0.1988 0.0396817 0.039868 0.039859

Example 4.3: Here, we consider the following linear third-order differential equation solved by
Awoyemi[1] using A P-stable linear multi-step method and Bhrawy et al.[8] using Jacobi-Gauss
Collocation method.

y
′′′
(q)− 2y′′(q)− 3y′(q) + 10y(q) = 34qe−2q − 16e−2q − 10q2 + 6q + 34, qϵ[0, b]

Suject to the initial conditions : y(0) = 3, y′(0) = 0, y′′(0) = 0;

with the Exact solution : y(q) = q2e−2q − q2 + 3

Table 3. Error for Example 4.3. Taking h = 10

steps(N) MDLMMs Err Bhrawy et al. Err [8] Exact Solution

10 1.3163× 10−16 1.18× 10−6 2.13534
20 2.3652× 10−20 3.92× 10−16 2.13534
30 1.4397× 10−22 3.73× 10−16 2.13534

Remark: Again as expected, error obtained with MDLMMs is smaller than that of Bhrawy et
al.[8].Hence this methods show better accuracy compared with the existing method [8].

Example 4.4: We take another problem on non-linear third order BVP on: 0 ≤ x ≤ 1, solved by
Sahi et al.[5]

y
′′′

= −2e−3y + 4(1 + x)−3; y(0) = 0, y′(0) = 1, y(1) = ln2;

with exact solution given as : y(x) = ln(1 + x)

8
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Table 4. Error (Err), Exact Solution and rate of convergence (RoC) for
Example 4.4. Taking h = 7

steps(N) MDLMMs Err Sahi et al. Err[5] Exact Solution RoC

7 6.51175× 10−13 5.24× 10−9 0.451985
14 1.68332× 10−16 2.39× 10−11 0.403465 11.918
28 3.1584× 10−20 9.50× 10−14 0.428996 12.380
56 6.0750× 10−24 3.62× 10−16 0.428996 12.344
112 1.2827× 10−26 2.27× 10−17 0.533775 12.209

Remark: MDLMMs is compared with Fourth Derivative methods discussed in Sahi et al.[5] which
solve the same problem for h = 7. It is observed that, the maximum errors obtained with 3-CMDMs
is smaller than that of Sahi et al.[5]. Hence, MDLMMs performed better.

5 Summary and Conclusion

A multi-derivative linear multi-step methods (MDLMMs) from which discrete Multi-derivative
methods (MDMs) were obtained and applied for the solution of (1) subject to boundary conditions
as stated without reducing to a lower order system was derived. Numerical results show the efficiency
and accuracy advantages of the method over existing ones in the literature. The results are displayed
in Tables 1-4. Thus, it is clear from the results given in the Tables that, the proposed multi-derivative
linear multi-step Methods (MDLMMs) are very accurate compared with various existing methods.
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