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Abstract 
 

In this paper we discuss a new epidemic model for the dynamics of infectious disease in the presence of 
vaccine and therapeutic treatment is proposed and analyzed theoretically as well as numerically. The 
disease is transmitted from infected individuals and contaminated water to susceptible and vaccinated 
individuals, the proposed model includes a linear functional response. 
 

 
Keywords: Disease transmission; epidemiological model; on-trivial equilibrium; disease-free equilibrium; 

stability analysis. 
 

1 Introduction 
  
In the last three decades, epidemic models have been widely studied (see, [1,2,3,4,5,6]). Two of the main 
aspects of modelling on infectious disease are: 
 

1. The functional form of the force of infection, namely the function describing the mechanism of 
disease transmission. 

2. The description of intervention policy to contrast the disease spread (vaccination, treatment, health 
campaign, etc.). 
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Many authors have proposed more realistic models that assume a non-linear incidence rate [7,8,9,10]. 
Diseases are caused in many ways, it is transmitted by contact with infected person, by drinking 
contaminated water or by eating food that has been contaminated by the faeces of an infected person. 
Recently there have been many mathematical modelling focused on modelling and simulating the nature of 
the cholera dynamics [11,12,13,14]. Once such an effective vaccine has been developed, epidemiological 
question such as what proportion of the susceptible population must be immunized in order to eradicate the 
disease must be addressed. Recently the vaccination model has proposed by many authors [14,15]. The aim 
of this paper is to design a new model for multiple transmission ways of infectious disease that incorporates 
a preventive vaccine (Given to susceptible individuals) and a therapeutic drug regimen (administered to 
infected individuals). The dynamical behavior of the proposed model has been investigated analytically as 
well as numerically.  
 

2 The Mathematical Model 
 
Consider an epidemiological model consists of susceptible individuals(t), vaccinated individuals                      
V(t), infected individuals I(t) and contaminated water W(t), where  S(t) represents the numbers of 
susceptible  individuals, V(t) represents the number of vaccinated individuals, I(t) represents number of 
infected individuals and W(t) pathogen concentration in the contaminated water, under the following 
assumptions: 
 

1. The disease is transmitted from infected individuals to susceptible individuals by contact rate 
���

�������
 

and it is transmitted from infected individuals to vaccinated individuals by contact rate 
���

�������
. These 

transmission functions display saturation effect accounting for the fact that the number of contacts an 
individual reaches some maximal value due to the spatial or social distribution of the population and it 
is considered by Diekmann and Kretzschmar [16]. It is transmitted from contaminated water to 

susceptible individuals according to the non-linear incidence rate of the form 
��� (�)

��� (�)
 and vaccinated 

individuals by 
��� (�)

��� (�)
, however, the infected individuals do not grow. 

2. A preventive vaccine is given the susceptible individuals with vaccination coverage�. 

3. A therapeutic drug regimen administered to infected individuals with therapeutic coverage � 

4. The concentration of pathogens in the contrasted water is increased by contacting the infected 
individuals with contact rate �. Furthermore, assume � is the natural death of the populations, d is the 
death rate of pathogens in water and �  is the recruitment of susceptible individuals. Thus, the 
dynamical of such a model can be represented in the following set of equations. 
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��

��
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Where �,�,� ,� ∈ ��  and �(0)≥ 0,�(0)≥ 0,and � (0)≥ 0 

 
Here, all the parameters are positive. In addition, since the right side of each equation in the system(1) is a 
continuous function and has continuous partial derivatives on the state space��

� . Therefor, they can be 
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considered as Lipischizian function on ��
� , so that  the solution of the system (1) with initiate in the non-

negative octant are existed and unique, and from the system (1) we obtain  
 
�(�����)

��
= � − �(� + � + �) ,        

 

 ⟹   lim�→ ∞ ���(� + � + �)=
�

�
 

 

⟹
��

��
≤
��

�
− ��  

 

⟹   lim
�→ ∞

��� � ≤
��

��
 

 
Therefore, all the solutions of the system (1) which initiate in ��

�  are bounded uniformly. 
 

3 The Existence of Equilibrium Points 
 
 The system (1) has at most two non-negative equilibrium pointᴿ 
 

i. The disease-free equilibrium is  �� = �
�

���
+

��

�(���)
,0,0�  

ii. The non-trivial equilibrium is   �� = (�,� �,� �,� ��),  where   
 

�� =
�

�
�̅,� =̅ ��(�̅) �� = ��(�̅)    with 

��(�̅)=
�

���
�− �� + ���

� + 4�����,  

��(�̅)=
�

���
�− �� + ���

� + 4�����,  

 �� =
����̅

����
+̅ � + �, 

 �� =
����̅

����
+̅ �,  

�� =
�

�
(��(1 + ��̅)+ ���̅)− � − ��̅,  

�� =
�

�
(��(1 + ��̅)+ ���̅)− ���(�̅),  

�� =
�

�
(� + ��̅)(1 + ��̅), 

 �� =
�

�
��(�̅)(1 + ��̅)  

 

And  �̅ is a root of the following function 
 

  �(�)=
�

����
�����(�)+ ����(�)�+

����(�)

�����(�)���
+

���� (�)

�����(�)���
− � − � 

 

Now, �(�):�0,
�

�
�→ � is a continuous function, and consider the following condition 

 
�(0)> 0 (or �(0)< 0) and �(�)< 0 (or �(�)> 0)                                                                           (2) 
 

 
��(�)

��
< 0      for all  �∈ �0,

�

�
�                                                                                                                          (3)    

 

Then by using intermediate value theorem �(�) has a unique positive root namely, �̅∈ [0,�] and hence the 
non triavl equilibrium �� = (�,� �,� �,� ��) exists uniquely in the �����

�  if and only if the conditions (2,3) are 
holds. 
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4 Disease Free Equilibrium  
 
In this section, the local stability conditions for both free equilibrium and non-trivial disease are determined. 
  
Define the basic reproduction number as follows 
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�

�
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Theorem (1).  If �� < 1, then the disease free equilibrium is locally asymptotically stable. 
 
Proof  
 

The Jacobean of linearized system (1) at  �� = �
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Then the characteristic equation of �� can be written as: 

either  

 

(−� − � − �)(− � − �)(�� + ��� + ��)= 0 
 

  or 
 

�� = − � − �  ���   �� = − �  or  (�� + ��� + ��)= 0 

 

Where �� and �� represent the eigenvalues of �� in the S-direction and V-direction respectively. So  
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Clearly,  �� < 0   ��� �� < 0. If the basic reproduction number   �� < 1, then 

   �� > 0  and  �� > 0. 
 
Thus the eigenvalues of �� in the I-direction, and W-direction have negative real parts. Therefore, the disease 
free equilibrium is locally asymptotically stable. 
 

Theorem (2). 
 
Suppose that the non-trivial equilibrium point exists. Then it is locally asymptotical stable if the following 
conditions hold. 
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Proof:  The Jacobean of linearized system (1) at  �� = (�,� �,� �,� ��) 
 

�� = ����� ,    i, j=1,2,3,4  where, 
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��� = ��� = 0, ��� = �  and ��� = −� 
 
Now, from the theorem of Gerschgorin, the eigenvalues are in the following circles 

 
|�− ���|= |���|+ |���| 
|�− ���|= |���|+ |���|+ |���| 
|�− ���|= |���|+ |���|+ |���|  
|�− ���|= |���|+ |���|+ |���| 

 
If all the given conditions hold then  
 

|���|< |���|+ |���| 
|���|< |���|+ |���|+ |���| 
|���|< |���|+ |���|+ |���|  
|���|< |���|+ |���|+ |���| 

 
This means that all the eigenvalues are negative, and hence the non-trivial equilibrium is locally 
asymptotical stable.  
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5 Numerical Simulation 
 
In this section, the dynamics of the system (1) is investigated numerically to confirm the analytical result and 
discuss the role of the vaccination coverage � and therapeutic coverage � on the dynamical behavior of the 
system (1) for the following set of hypothetical, biologically feasible, set of parameters. The system (1) is 
solved numerically starting at different initial points as illustrated in (Fig. 1a, 1b). 
 

� = 2,� = 0.3,� = 3,� = 4,�� = 0.9,�� = 0.5,�� = 0.2,�� = 0.1,� = 0.5,� = 0.1  
 
� = 0.1,� = 0.5 
 

 
(a) 

 
(b) 

 
Fig. 1a, 1b. The solution of the system (1) approaches asymptotical the non-trivial equilibrium 

(�.����,�.����,�.����,�.���� ) for the data given by eq (4) starting from two different initial 
points (�,��,��) ��� (�,�,�.�,�.�) 

 
However, for the above set of data with � = 0.5,� = 0.9 then  �� < 1    and system (1) approaches 
asymptotically to the disease free equilibrium (1.6666,4.999,0,0) as shown in Fig. 2. 
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Fig. 2. System (1) approaches asymptotically to the disease free equilibrium  
(1.6666, 4.999, 0, 0)  Starting from the initial point(�,��,�,�) 

 

6 Discussion and Conclusion 
 
In this paper, a mathematical model for spreading disease through two ways of infectious disease that 
incorporates a preventive vaccine (Given to susceptible individuals) and a therapeutic drug regimen 
(administered to infected individuals). The uniqueness and bounded of solution of the model are discussed. 
The existence of all possible equilibrium is investigated. In addition the stability of the proposed model is 
performed. Moreover, in order to confirm our analyses results and specify which combination of parameters 
control the dynamical behavior of the system.  Finally, numerical simulations are used for a biologically 
feasible set of hypothetical parameters. We have shown that if we increase the values of � ��� � then the 
disease will be dying out. 
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