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Abstract

A linear differential equation with polynomial coefficients, which is expressed by

Lu(t) = Yk Sme akvmtmi—iu(t) = 0 for t > 0, is studied, where ak,, are constants.
In the present study, the lefthand side of the equation is rewritten as Lu(t) := ﬁ””:foo Dlu(t),

where Diu(t) = Zicwzmax{o,l} ak,k,ltkfl;—iu(tL and each of D}u(t) is called a block of classified
terms in Lu(t). The solution is presented by taking advantage of the expression of the differential
equation in terms of blocks of classified terms. When the differential equations is of the second
order, six differential equations with two blocks of classified terms are chosen, such that their
solutions are ordinarily expressed by the hypergeometric series, or the confluent hypergeometric
series, or other two related series, except for some special values of coefficients. It is shown that
all the other differential equations with two blocks of classified terms are reduced to one of these
six by a change of variable.
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1 Introduction

In (Morita and Sato [1, 2, 3]) the solutions of Laplace’s differential equation and of fractional
differential equation of that type were discussed, where the differential equations are expressed by

(ast + b2) - o DF u(t) + (art + br) - 0 DFu(t) + (aot + bo)u(t) = f(t), >0, (1)

for o =1 and ¢ = 1/2. Here a;, by € R for | € Zg 3} are constants, and onu(t) are the Riemann-
Liouville fractional derivatives [1], and their analytic continuations [2, 3]. Here R and Z are the
sets of all real numbers and all integers, respectively, and Z, ) = {n € Z|a < n < b} for a,b € Z
satisfying a < b. We also use C which is the set of all complex numbers, and Zsq, = {n € Z|n > a}
Zeo={n€Zn<a}foracZ and Ry, = {x € Rlz > a} for a € R.

In the present paper, we study the differential equations of order I, € Zso, with coefficients of
polynomials, which are of the form:

lyg o0 k la k
m d o 2 3 d _
SO armt St = > (ano+any-t+ans tP+ags -t 4---)- SEu® =0, t>0, (2)
k=0 m=0 k=0
where ay,m for k € Zy,;,) and m € Z~_; are constants. We assume that a finite number of the
constants are nonzero.

In (Morita and Sato [2, 3, 4]), the solutions of special cases of Equation (1) or (2) were studied
with the aid of distribution theory and the AC-Laplace transform, that is the Laplace transform
supplemented by its analytic continuation. In the study, the following condition was adopted.
Definition of the AC-Laplace transform and the formulas are given in 5.1, and used in Section 5.2.

Condition 1.1. u(t) and f(¢) in (1) are expressed as a linear combination of g, (t) = F(ly)t”*1 for
t>0and v € S, where S is a set of v € Rs._y\Z<«1 for some M € Z~_1.

As a consequence, u(t) is expressed as follows:
1 v—1
t) = e T
u(t) = 3w g 3)

where u,—1 € C are constants. Because of this condition, obtained solutions are expressed by a
power series of ¢t multiplied by a power ¢t*:

u(t) =t imt’“, (4)
k=0

where a € C\Z<o, pr € C and po # 0.

A basic method of solving Equation (2) is to assume the solution in the form (4) with o ¢ Z<o. The
solution is obtained by determining the coefficients py recursively; See e.g. Section 10.3 in Whittaker
and Watson [5]. We present a formulation of this method, where we use (z); and (z), for z € C,
k € Z~_1, which denote (z), = H’“l (z+m) if k € Zso, and (z)o = 1, as usual, and

m=0
k—1

(2)x = [[(z=m) = (=D)*(=2)k, k € Zso, (5)

m=0
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and (z), = 1.

We reassemble the terms of Equation (2) as

la
> Diu(t) =0, t>0, (6)

l=—o0
where
l k—1 dk
Diu(t) = Z k-1t —u(t), (7)
k=max{0,l}

and call Diu(t) a block of classified terms. In fact, we confirm that the lefthand side of (2) is
expressed as the lefthand side of (6) by writing m = k — [ in (2), as follows:

l. & .
Z Z et 1" ﬁ Z Z Ak k—1 'tk_lekU(t) (8)

k=0l=—o00 l=—o00 k=max{0,l}

When I, = 2, Equation (6) is expressed as

Diu(t) + Diu(t) + D{u(t) + Dy "u(t) + Dy *u(t) +--- =0, t>0, 9)
where
d? d? d d?
2 1 0 2
Di = azodtQ, Dy = a2t prol + az, 0T Dy = az2t” - p7o] + a1t pr + ao,0,
1 3 d? d 9 4 d?
D; " =az3st” - p7e] + a1 2t i +aoat, D;” =asat” - p75] + a1 3t > + ap,2t
(10)
When D! is operated on t* for a € C\Z, we have
= Ay(a)t* !, (11)
where
lo
Ae) = > akpi- (). (12)
k=max{0,l}

For D! given in (10), the A;(c) satisfying (11) are given by
As(a)=az,0- (@), Ai(a)=az1-(a); +a00, Ao(a) =az2-(a); +ar1a+ao,
A_i(e)=az3 - (a)y +ar2a0+ a0, A_2(a)=azs-(a); +ar3a+ao2, . (13)

Theorem 1.1. Let A;(a) be given by (12), and k = max{k € Z1,}j|ar,k—1 # 0}. Then A;(a) is a
polynomial of degree k. If k > 0, there exist roots of Ai(a) =0. Let ky € Z>o be the total number
of distinct roots of A;(a) = 0, which are ay for k € Zjg x,]. Then A;(«) is expressed as

kg
Al(a) = aj Ha—ak , (14)

where my, € Zso for k € Zy ) satisfy Ekil my = k. Then we have k solutions of
Dhu(t) =0, (15)
which are given by t**  and also
t*% log, t,--- ,t** (log, t)™* ", (16)
if mgp > 2, for k € Zp . If k = 0, there exists no solution of (15).
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Remark 1.1. Equation (15) is often called Euler’s differential equation, which is reduced to a
differential equation with constant coefficients, that is Hﬁil(% —ag)™ky(x) = 0, by the change of
variable from ¢ to z = log, t.

When we discuss a differential equation of order [, we adopt the following condition.

Condition 1.2. We consider such a differential equation of order [, that is not regarded as a
differential equation of u'(¢), so that Y oo_; |ai,,m| # 0 and > oo |ao,m| # 0.

When only one nonzero block of classified terms exists in Equation (9), the following proposition
follows from Theorem 1.1.

Proposition 1.1. Let A;(a) forl € Z<3 be given by (13), and a = a1 be a root of Aj(a) = 0. Then
u(t) = t°* is a solution of Diu(t) = 0. If there exists another root oo, we have another solution
u(t) =t*2. If not, but if L =1 and a2,1 # 0, or 1 =0 and az2 # 0, we have another solution given
by u(t) = t“* log, t.

We now consider Equation (9) for the case in which there exist two or more nonzero blocks of
classified terms and Condition 1.2 is satisfied. Let the first two nonzero blocks be Diu(t) and
D!™™ny(t), and the last nonzero block be D™= (t), so that | € Z<s and m,, m, € Zso satisfy
mn < my. Then (9) is expressed as

(D} + i DY ™Yu(t) = 0. (17)

m=many

Remark 1.2. By (10) for I, = 2, we see that Equation (17) for [ = —1,—2,... are equivalent to
the one for [ = 0, and the differential equation for [ = 1 is equivalent to the one for [ = 0 when
ao,0 = 0. We note that the differential equation for | = 2 is equivalent to a special one for [ = 0.
Hence we study only the differential equation for [ = 0 in Section 2.2.

In Section 2, we seek those solutions of (17), that take the form of (4). In Section 2.1, we consider
Diu(t) + Dy 'u(t) =0, (18)

which is (17) for my, = m, = 1, where the solutions in the form of (4) are given by the generalized
hypergeometric function. In Section 2.2 and the following sections, discussion is restricted to the
case of I, = 2. In Section 2.2, we consider Equation (18) for I, = 2 and [ = 0. There are six types
of differential equation, whose solutions are expressed by

@O (g, = 3 e (19

NgE

oFi(a,byc;2) =

— k(o) Pt k!

oo (CL - oo 1 .
Filaiciz)=Y Fiez) =Y . 2
1Fi (a6 2) P k!(c)kz > oFiGe2) prd k!(c)kz (20)

The first series in (19) and (20) are the hypergeometric and the confluent hypergeometric series,
respectively.

In Section 3, we consider
Diu(t) + D™ u(t) =0, m € Zs, (21)

which is Equations (17) for m,, = m; = m > 1. There every differential equation under consideration
is shown to be reduced to a differential equation of the form of (18) by a change of variable.

In Section 3.1, remarks are given on the parabolic cylinder function.
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In some exceptional cases, the solution involving a logarithmic function appears. Comments are
given on a method of obtaining a solution for such a case, in Section 4.

In Morita and Sato [3, 4], a part of results given in Section 2.2 are obtained by applying the
AC-Laplace transform. In Section 5, an argument is given to show how the remaining results are
obtained by the adopted method Morita and Sato [3, 4], where some preliminary formulas of the
AC-Laplace transform are presented in Section 5.1 before the argument.

2 Basic Method of Solving Equation (17)

In this section, we seek the solution u(t) of Equation (17), assuming that the solution is expressed
by (4). In Section 4, remarks are given on solutions involving a logarithmic function.

When u(t) is given by (4), we have
Diu(t) = t*7' Y Ai(a+ K)pit”, (22)
k=0

by using (11).
Substituting (4) in (17) and using (22), we obtain
Alla+Ek)pr =0, k€ Zpm, -1

Ao+ k)pr + Z Al—m(a+k—m)pk—m =0, k=2Z>m,-1, (23)

m=mn
where we put pr = 0 for k € Zo.

Definition 2.1. Let « satisfy A;(a) =0, po # 0, pr for k € Z>m, —1 satisfy (23), and pr = 0 for
k € Zp jm,,—1], if My € Z>1. Then we denote u(t) given by (4), by ¢a(t).

We note that since po # 0, A;(«) = 0 is required, and hence adopt the following condition.
Condition 2.1. There exists a satisfying A;(a) = 0.

Lemma 2.1. If Aj(«) is a polynomial of o of degree 0 or 1, we have no or one solution, accordingly,
of the form (4). When ly, = 2, ifl =1, a21 = 0 and a1,0 # 0, or 1l =0, a22 = 0 and a1,1 # 0,
then we have only one solution ¢o(t), the point t = 0 is called an irregular point of the differential
equation, in Section 10.8 of Whittaker and Watson [5].

Lemma 2.2. Whenl, =2, ifl=2, orl =1 and as;1 # 0, orl =0 and a2,2 # 0, the point t =0
is called a regular point of the differential equation, in Section 10.8 of Whittaker and Watson [5].
Then we have two solutions of (17), among which those in the form (4) are as follows:

1. If Ai(a) = 0 has two distinct roots, we call them o and a3, so that Re ai > Re a3. Then
one of the solutions is ¢uz(t). If al — a3 ¢ Z, the second one is ¢as (1)

2. If Ai(a) = 0 has only one root, which we call a1. Then we have a solution dq, (t).

Remark 2.1. Lemmas 2.1 and 2.2 show that « in the solutions of the form (4) are determined by
the first nonzero block of classified terms in (6) or (9). In many studies and in the following part
of the present paper, solutions are given for Equation (9) with two nonzero blocks. When we solve
a differential equation with more than two nonzero blocks in (9), knowledge of the solutions of the
differential equation which consists of the first two of the nonzero blocks is helpful.

When Equation (9) consists of two nonzero blocks of classified terms, and hence it is expressed as
(17) with my, = mg, the recursion formula (23) is simple. Many differential equations which appear
in mathematical physics are of this type.
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2.1 Solution of equation (18)
We now study the solutions of Equation (18), which is (17) for m, = m, = 1.

We assume that D! and Difl in (18) are differential operators of order ¢+ 1 € Z~o and p € Z~_1,
respectively, and hence A;(a) and A;—1(«) defined by (11) are polynomials of degree ¢ + 1 and p,
respectively. We express these as

+
s

q
1 (aian)7

n

Al(a)

Il
-

E‘E

Ai1(a)=v | | (e = Br), D E Zso, (24)

Il
-

n

and A;_1(a) = v if p =0, where p € R, v € R, o,y € C for n € Zp 441}, are constants, and g, € C
for n € Z1 ) are constants if p € Zxo.

We show that one or more of the solutions are expressed by the generalized hypergeometric series
given by

pFylar, - ,ap;sci, -+ ,cq52 Zk'nq zk, if p€ Z>o and q € Z>o, (25)
=

oFq(Ger, - ,cq52 Z 'Hq zk, if p=0and q € Z>o, (26)

pFo(ar, -+ ,ap;;2) Z sem= 1 (am ) k, if p € Zso and ¢ = 0. (27)

k=

Theorem 2.1. Let D! and Difl in (18) be differential operators of order g+1 € Z~o and p € Z>_1,
respectively, and A;(a) and A;_1(c) defined by (11) be expressed as (24). If n € Zpy q41) is such
that there exists no m € Zpy 441) for which a;m — an € Z>o, then a solution of (18) is given by

tpFy(ar, - ,ap;ci, -+, cq; _ﬁt)v if p€Z>o and q € Z>o,
¢an(t): tanqu(;clv'“ ,Cq;*ﬁt), ifp:Oandq€Z>o, (28)
taonO(ah'" 70’1);;_%15)7 lprZ>0 a'ndq:O’

where am = an — Bm for m € Zp1,p), and cm for m € Z1,q) are given by ¢m = am — an +1 ifm<n
and Cm = Qm+1 — Qin + 1lifm >n.

Proof. Substituting (4) in (18) and using (22), we obtain A;(a) = 0, and
Al(a—Fk)pk—FAl,l(a-l—k— 1)pk71:(), (29)

for k = Zso, in place of (23). We then obtain the solution (28) of (18), by choosing o = «, and
determining p by (29).

Corollary 2.1. If an for n € Zjy q41) are distinct with each other, and satisfy o, — am & Z for
every pair n,m € Zp 411, then we have g + 1 solutions of (18), which are given by (28).

2.2 Solution of equation (18) for I, =2 and [ =0

From now on, we restrict the discussion to the case of I, = 2.

We introduce notation , D! which represents D! when the coefficient of ¢ is nonzero and those
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of t™ for m > n are all zero. The differential equations belonging to Equation (18) for I = 0 are
classified into

2 DYu(t) + oDy 'u(t) =0, n=3,2,1, (30)
1]:7?u(t) + 3b;1u(t) =0. (31)
We call Equation (30) for n = 3,2 and 1 as (30-3), (30-2) and (30-1), respectively.

We use a, b and ¢, which satisfy a1,1 = a2,2(1 + a + b) and ao,0 = az2,2 - ab when a2 # 0, and
a0,0 = a1,1 - ¢ when az2 = 0 and a1,1 # 0. Using these in (10), we obtain

0 2 2 d
2D; =ag ot — +c). (32)

dt? dt

When ag,0 =0, we put b = 0 and ¢ = 0 in (32). We use a, b and ¢, which satisfy a1,2 = ag,g(l—i—d—&—l;)
and ag,1 = a2,3 - ab when as,;3 # 0, and ap,1 = a1,2 - ¢ when a2,3 = 0 and a1,2 # 0. Using these in
(10), we obtain

d ~
+(1+a+b)t: - +ab], DY = ay(t-

d? = d 5 = _ -
-@+(1+a+b)t~—+ab], 2Dt =arp -t — +¢),

1I~);1:a0,1 - t. (33)

3Dt_1 =a2,3 - t[tQ

When ag1 = 0, we put b = 0 and & = 0 in the first two equations of (33). We do not consider
the case when ap,1 = 0 for the third equation in it, since we consider only the differential equation
satisfying Conditions 1.2 and 2.1.

We note that the point ¢ = 0 is a regular point of Equation (30), and it is an irregular point of
Equation (31); see Section 10.3 in Whittaker and Watson [5].

Equation (30-3) for ag,0 = 0 is the hypergeometric differential equation, whose solutions are the
hypergeometric functions. Equation (30-2) for ap,o = 0 is Kummer’s differential equation, whose
solutions are the confluent hypergeometric functions. Laguerre’s differential equation is a special one
of Kummer’s differential equation; see Chapter VI in Magnus and Oberhettinger [6], and Chapter
13 in Abramowitz and Stegun [7].

We write the relations corresponding to (11) for oD} as follows:
WDt = Ap ()t (34)
Then with the aid of (13), we obtain
Aso(a)=azz(a+a)(a+b), Aiola)=a1(a+c), (35)
Az _1(a)=azs(a+a)(a+b), As_i(a)=ai2(a+¢), A _1(a)=ao,:. (36)

We give the solutions of the differential equations given in (30)~(31) by applying Theorem 2.1 and
Corollary 2.1. The parameters which are used in the solution, are listed in Table 1. They are
obtained by comparing (35) and (36) with (24).
Theorem 2.2. We have the following solutions of Equations (30)~(31).
(1). Ifag,0 #0, ap,1 # 0 and a—b ¢ Z, we have the pairs of solutions of (30-3), (30-2) and (30-1),
respectively, given by

as,3

Ga(t)=t" - oF1(a+o,b+ ;1 +a+b+20; —a—t), o= —a,—b, (37)
2,2
bo(t)=t* 1 FI(E+a;1+a+b+2a; —Zl’2t), o= —a,—b, (38)
2,2
ba(t) =t 0P G1+a+b+2a—2Ly), a=—a,—b. (39)

a2
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Table 1. The parameters, which determine the solutions in the form of (28), for
Equations (30)~(31). x indicates that no equation is considered for ao;; = 0 for (30-1).

ao,0 = 0 ao,o 75 0 ao,1 = 0 ao,1 ;é 0
differential equation | u ¢ o1 a2 o1 a2 v p P P2 B B
(30-3) a2 1 0 —-a —-a —-b a3 2 0 —-a -a -b

(30—2) az,2 1 0 —a —a —b ai,2 1 0 —5

(30-1) az 2 1 0 —a —a -b ao,1 0 X X
(31) ai, 0 0 —C a3 2 0 —a —a —b
(i1). If ao,0 # 0 and ao,1 # 0, we have only one solution of (31) given by
Ge(t)=t" - 2Fo(@a—c,b—c;;— 22,3 t). (40)

ai1
This function is a polynomial when @ — ¢ € Z-1 or b—c € Z«y. If such is not the case, the
solution is an infinite series which has zero radius of convergence.
(iii). If ap,0 = 0, ao,1 # 0 and —a ¢ Z, we have the pairs of solutions of (30-3), (30-2) and (30-1),
respectively, given by

a23 az.3

¢o(t) =2F1(a,b;1+ a;——=1), ¢-a(t) =t™" - 2Fi(@—a,b—a;1 —a;——=t);  (41)
az,2 az,2
Go(t) =1 F1(& 14 a; = 220), ga(t) =1 Fi(E— a1 — a;— 2 ¢); (42)
az,2 az,2
Go(t) =0F1 (1 +a—22t), Ga(t) =t 0Fi(;1 — a3 — L), (43)
az 2 az,2
which are (37)~(39) for b = 0.
(iv). When ao,0 = 0 and ag,1 # 0, we have only one solution of (31) given by
Bo(t) = 2Fo (@, by s — =21, (44)

a1
which is (40) for ¢ = 0.
(v). If ao,0 # 0, ap,y = 0 and a — b ¢ Z, we have the pairs of solutions of (30-3) and (30-2),
respectively, given by (37) for b = 0, and by (38) for ¢ = 0.
(vi). If ao,0 # 0 and a1 = 0, we have only one solution of (31) given by (40) for b = 0.

For Equation (30), a1 and ao are given in Table 1. Remarks are given on the cases of a; — a2 € Z,
in Section 4.

2.3 Remarks on the solutions of equations (30)~(31)

Remark 2.2. Equation (31) is equal to Equation (30-3) for as,2 = 0. Accepting that b in (37) and
a in (41) denote Z;;, we note that (i) the solution ¢_q(¢) given in (37) and (41), of (30-3), tend
to ¢_a(t) in (40), and to ¢o(t) in (44), respectively, as az2 — 0, and (ii) the second factor on the
righthand side of the equation for ¢_;(¢) in (37) and the righthand side of the equation for ¢ (t) in

(41) diverge, as az,2 — 0.

Remark 2.3. Equation (30-2) is equal to Equation (30-3) for az,3 = 0 and a1,2 # 0. Accepting
that b denotes 222 we note that @ approaches ¢, and the solutions given in (37) and (41) of (30-3)

az,;3’

tend to the correéponding ones in (38) and (42), respectively, as az,;3 — 0.
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Remark 2.4. Equation (30-1) is equal to Equation (30-2) for ai,2 = 0. Considering that ¢ denotes

20.1 " we note that the solutions given in (38) and (42) of (30-2) tend to the corresponding ones in

a2’

(39) and (43), respectively, as ai,2 — 0.

3 Reduction of Equation (21) for [, = 2 and m > 1 to
Differential Equation of the Form of (18)

In Section 2.2, the differential equations belonging to Equation (18) for I = 0, which is Equation
(17) for I = 0 and mn = m, = 1, are classified as in Equations (30)~(31), and the solutions in the
form of (4) are given for these equations. In the present section, we study the differential equations
belonging to Equation (21) for I = 0 and m € Zx1, which are classified as in
oD{u(t) +t™ ' Dy u(t) =0, n=3,21, (45)
1Du(t) +t™ " - 3Dy Mu(t) =0. (46)
Examples of (45) for m = 2 are Legendre’s, Chebyshev’s, Hermite’s and Bessel’s differential

equations for n = 3, n = 3, n = 2 and n = 1, respectively; see Chapters IV and V in Magnus
and Oberhettinger [6], p. 80 in Magnus and Oberhettinger [6] and Watson [8] respectively.

An example of (45) for m = 3 and n = 1 is Airy’s differential equation; see Section 10.4 in
Abramowitz and Stegun [7].

We show that the following lemmas hold valid.
Lemma 3.1. Equations (45)~(46) for m = Zs1 are reduced to the corresponding equations in

2DYy(x) + n Dy y(z) =0, n=3,21, (47)
1DJy(x) + 3Dy 'y(x) =0, (48)

by the change of variable from t to x = t™, when we put u(t) = y(z).

Lemma 3.2. Let 2DY and 3D; " in (45) and (46) be expressed as DY and D; ', respectively, in
(10), (md &272, 5,171, &2’3 and &1,2 denote

- 2 -
G22=m"-az22, ai,1=m(m—1) -a22+m- a1,

&273 :m2 +a2,3, &172 = m(m — 1) +a2,3 +m - ai,2. (49)

Then 2]32 in (47) is expressed by DY in (10) with a2,2, ai1,1 and t replaced by az,2, ai1,1 and x,
respectively, and 1D in (48) is given by this 2D for azz = 0. 3D; " in (47) and (48) is expressed
as D;l in (10) with as,3, a1,2 andt replaced by az,3, a1,2 and x, respectively, and gf);l and 1D;1 are
giwen by this 3Dt for az s =0, and for as;3 = 0 and a1,2 = 0, respectively. In these replacements,
ao,0 and ai,1 are not changed.

Proof. We change the variable t to x = t™ for m € Z~1, and put u(t) = y(z). Then

d _
au(t) =mt™ .
Theorem 3.1. Let a2,2, 1,1, G2,3 and @1,2 be given as in (49). The solutions of (47) and (48) are
obtained from the corresponding solutions ¢, (t) given in Theorem 2.2 of (30) and (31), by replacing
a2,2, G1,1, G2,3, a1,2 and t, by ds 2, d1,1, 42,3, a1,2 and x, respectively. We then obtain the solutions
of (45) and (46) by putting u(t) = ¢a (t™).

4oy L) = mm— 12 Ly +m2emr . o (s0)
dz '\ et T dz? a2\

Lemmas 3.1 and 3.2 are applied to Hermite’s and Bessel’s differential equation, respectively, in
Morita and Sato [4].
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3.1 Parabolic cylinder function

The parabolic cylinder functions are the solutions of the following differential equation:

d? 1.5
ﬁu(t) F Zt u(t) — au(t) =0, (51)
see Chapter VI, Section 4 in [6] and Chapter 19 in [7]. This takes the form:

(ODt2 +0DY + 2Df2)u(t) =0. (52)

If we put ¢* = 2 and u(t) = y(x), then by using (50), we obtain the equation for y(z) as follows:

dzy’ + 2y F iwy —ay =0, (53)
which takes the form
(1Dz + 0Dg +1D; " )y(z) = 0. (54)

When the upper sign is adopted in (51), we introduce z(x) by y(z) = eF*2(x). We then see that
the function z(x) satisfies

1
Aoz’ + 22 F 22 F yraz= 0, (55)

which takes the form of (47).

4 Analytic Continuation of Solution

‘We now consider the problem of solving Bessel’s differential equation, whose complementary solutions
are the Bessel function J,(t) and the Bessel function of the second kind Y;,(¢) for n € Zs_1. Ju(t)
takes the form (4), and Y5 (¢) does not take the form (4). The argument adopted in obtaining Y;, (¢)
in Section 3.581 of Watson [§], is as follows.

We assume that we do not know the solution to(t) of a differential equation with coefficients {¢;},
but we know the solution 1)5(t) for the differential equation with coefficients {¢; +dd;} for § € C. If
the solution is an analytic function of §, and if the limit 1o (¢) = lims—o s (t) exists, it is a solution.
In the present section, we consider Equation (18). We assume the following condition.

Condition 4.1. One of the following three conditions: (i) { = 2, (ii) [ = 1 and a2,1 # 0, and (iii)
I =0 and a2,2 # 0, is satisfied.

This is the condition that A;(a) given by (13) is a quadratic function of a.

Definition 4.1. Let A;(a) be a quadratic function of a. If A;(«) = 0 has two distinct roots, we
call them «j and a3, so that Re ] > Re a5. If it has only one root, we denote it aj as well as a5.

Proposition 4.1. Let Equation (18) satisfy Condition 4.1, and Definition 4.1 be adopted. Then
we have two solutions of the equation, one of which is bax (t). The second one is given as follows.
(). If Ai(a) = 0 has two distinct roots, and of — o3 ¢ Z>_1, then the second one is oz ().
(ii). If Ai(a) = 0 has two distinct roots, and af — a5 =n € Z>_1, then the second one is a3 (1),
or takes of the form

Pay (t)logt + dos (1), (56)

according to as gas (t) is expressed as ) multiplied by a polynomial of degree less than n,
or not.

10
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(iii). If Ai(a) =0 has only one root, then the second solution is of the form (56).
$az (t) in (56) takes the form (4) with oo = o3.

[e1

This proposition is a consequence of Theorem 2.1, excluding the cases when the solution in the form
(56) appears.

Remark 4.1. Solutions of the form (56) are found for the confluent hypergeometric function and
the hypergeometric function, in Sections 13.1.6 and 15.5.16~21, respectively, of Abramowitz and
Stegun [7].

5 Solution of Equation (18) for [, = 2 by Means of the
AC-Laplace Transform

5.1 Preliminary formulas of the AC-Laplace transform
Definition 5.1. Let f(a,t) be such a function of t € Ry and a € Doy C C, that

(i). f(a,t) is analytic as a function of a in the domain Dy for fixed ¢ € R,

(ii). the Laplace transform f(a,s) defined by

Fas) = Llf(a, )] = /Ow Fla, e"dt, (57)

exists if a € D1 C Dy and is analytic as a function of a in the domain Dy,

(iii). f(a,s) defined by (57) is analytic as a function of a in the domain Dy.

Then we call the analytic continuation as a function of a of f (a, s) to the domain Dy, the AC-Laplace
transform of f(a,t) and denote it as f(a,s) = Lu[f(a,t] for a € Dy.

In Section 5.2, we study Equation (30) by using the AC-Laplace transform of u(t) expressed by
(3). We first note that the Laplace transform of g, (t) = t;(—;)
v € C satisfying Re v > 0. We call the analytic continuation of this £[g.(¢)] as a function of v to
v € C\Z<1 the AC-Laplace transform, that is given by §.(s) :== Lu[g.(t)] = s7" for v € C\Z«;.

is given by L[g,(t)] = s~V for

As in [3, 4], we assume that u(t) satisfies Condition 1.1 and is expressed as (3). Then its AC-Laplace
transform 4(s) is expressed as

a(s) = Z up—18 7. (58)

vesS

The derivative of g, (t) of order | € Z~¢ is calculated by

d' | g(®), v—-1€C\Z«,
a9 = { 0, v—leZa. (59)
The AC-Laplace transform of % gu(t) is given by
d' 1 1
Lul—7ge()] =" = (s")o, (60)

dt

where

k
l—vy _ ) s, k=l-velZs_,
("o { 0, 1-v¢gZs 1

11
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‘We note here the formulas:

v—1 tu
t~gy(t)—t-r(y) _V'F(y-s-l) = vgu11(t), (62)
d _, e
3.5 =S Y= vLu[guii(t)]. (63)
By using these, we confirm that
Laltgn () = ()" L (64
HIE gy o ds™ ’

By applying these formulas, we obtain

Lemma 5.1. Let m € Zso, | € Zso, u(t) be expressed by (3) and u(s) := Lu[u(t)]. Then

md"

Lult™u(t)] = (~1) dsimu(s), (65)
1
Lal D u(®) = s4(s) - (a5, (%)
1 m i
Lalt™ a0 = (-0 s as)] — (<1 S (s a(s)o (67)

where
-1
(s'a(s))o = Zul_k_lsk. (68)
k=0

In particular,

(st(s))o = uo, (s°0(s))o = wos +u1, (s*0(s))o = uos® + u1s + ua. (69)

5.2 Solutions of equation (30) for agy =0

Equation (30-2) for ag,0 = 0 is given by Equation (5) in Morita and Sato [4], with ¢, a and b replaced

by 1+ a, ¢ and fZ;—’i, respectively. In [4], the AC-Laplace transform of Equation (5) in [4] is given
by (50) in [4]. The corresponding AC-Laplace transform of (30-2) for ag,0 = 0, is given by
—%[(52 + ZI’Q s)a(s)] + [(1+a)s + 621’2}11(8) = —auo. (70)

’ ’

The differential equation is of the first order, and its complementary solution is dgfa(s) which is
the AC-Laplace transform of ¢_,(t) given in (42). By applying the inverse AC-Laplace transform
to the obtained ¢_,(s), we obtain the solution ¢_(t) of (30-2). In Morita and Sato [3] the other
solution is given by obtaining a particular solution of the differential equation for 4(s), QBQ(S), which
is the Laplace transform of ¢o(t) given in (42). In Morita and Sato [4] after obtaining ¢_4(t), ¢o(t)
is obtained by using the forthcoming Lemma 5.4 for (30-2).

Equation (30-3) for ag,0 = 0 is given by Equation (10) in Morita and Sato [4], if ¢, @ and b, ¢ and

% are replaced by 1+ a, a, b, B3t and [3%%, respectively, where 3 = 7322 Corresponding to

Equation (60) in [4], the AC-Laplace transform of (30-3) for ag,0 = 0 is given by

D 1(52 4 B+ b+ 1)s)i(s)] + [(1 + a)s + Baabli(s) = —auo. (71)

5
53@[3 i(s)] — s

Corresponding to Equations (11) and (12), we have (41).

12
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Remark 5.1. In obtaining the complementary solution of (71) by the method given in Morita and
Sato [4], we use Equation (64) in [4], where A(A — 1) should be replaced by A(A + 1).

Equation (30-1) for ao,0 = 0 is given by putting a1,2 = 0 and a1,2 - € = ao,1 in (30-2) for ap,0 = 0,
and hence the AC-Laplace transform of (30-1) for ag,0 = 0 is obtained from (70) as
ao,1

— 1A + (1 + a)s + 22 a(s) = —auo, (72)

The complementary solution of this equation is

NgE

=|%
w
=

a(s) = Csiteefe T = ot (73)
k=0

where 81 = — %' By the inverse AC-Laplace transform, we obtain ¢_,(t) given in (43), by choosing

C =TI(1-a). After obtaining ¢_4(t), ¢o(t) is obtained by using the forthcoming Lemma 5.4, for
(30-1).

5.3 Solutions of equations (30)~(31) for ag # 0

In Morita and Sato [3, 4], we obtain the solutions (41) and (42) of the differential equation (30-3)
and (30-2) for ap,0 = 0 by the method of AC-Laplace transform. The solution (43) of the differential
equation (30-1) for ag,0 = 0 is shown to be obtained by that method at the end of last section. We
now present a method by which the solutions (37)~ (39) for ao,0 # 0 are obtained with the aid of
solutions (41)~ (43) for ap,0 = 0.

In Section 2.2, we gave the solutions of Equations (30)~(31). We now study related equations,
which are

2DYy(t) + Dy ty(t) =
1Diy(t) + 3Dy M y(t)

) n= 37 2’]" (74)

0
0, (75)

where
2

d - d
St (+20+a+d)t - +(a+a)(a+b), DY =aia(t-— +a+e),

2D = az,aft* di di
(76)

.- d? _ 5, d _ - - d .
3Dt1:a2,3t[t2-ﬁ+(1+2a+a+b)t~£+(a+a)(a+b)]7 2Dt1:a1,2t(t-a+a+c),

1Dt_1 = a0,1t. (77)
We call Equation (74) for n = 3,2 and 1 as (74-3), (74-2) and (74-1), respectively.

WDY and ,D; ! given in (76) and (77) are so constructed from ,DY and ,D; ' given in (32) and
(33) that the following equations hold:

WPty ()] = ¢ - nDYy(t), WDy ' [t"y(8)] =t - w Dy y(1). (78)
Let u(t) be the solution of (30-3) for ag,0 # 0, and u(t) = ¢t~ *y(t). Then y(t) satisfies (74-3) for
o = —a, and then this equation is Equation (30-3) for b = 0, with a, b, a and u(t) replaced by a — a,

b—a, b— a and y(t), respectively. Then y(t) is given by (41) with the same replacement. Thus we
obtain the solution of (30-3) for ag,0 7# 0 by using the solution (41) for ag,0 = 0.

The following two lemmas are consequences of this type of arguments.

13
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Lemma 5.2. Let us(a,b,q; —W—’zt), us (¢, a; —a;—‘zt) and ui(a; —ao'; t) be solutions of (30-3), (30-

as a az,
2) and (30-1), respectively, for the case of ao,0 = 0 and ao # 0. Then if « = —a or a = —b,
t*us(a+ a,a +b,2a +a+b; — az‘z 1), t*uz(E+ o, 2a + a + b; — 224) and t%uy (20 + a + b; —222¢),

az a2 2 a2 2

respectively, are solutions of (30-?;), (30-2) and (30-1) for ag,0 # 0 and ao,1 # 0.

Lemma 5.3. Let the solution of (31) for ap,o0 = 0 and ao,1 # 0 be given by uo(a, b, 733? t). Then
the solution of (31) for ao,o # 0 and ap # 0 is given by t~°uo(d — ¢, b — ¢, — 222¢).

ag,1

Remark 5.2. After (37) is obtained, (40) is obtained from it by Remark 2.2, and (44) is obtained
by putting @ = 0 in (40), or from (41) by Remark 2.2. When (44) is known before (40), the latter
is obtained from the former with the aid of Lemma 5.3.

By putting b = 0 and o = —a in Lemma 5.2, we obtain the following lemma.

az;s )
b

Lemma 5.4. Let the condition in Lemma 5.2 be satisfied. Then t~“ug(a — a,lN) —a,—a;— >

t %uz(a — a, —a;—Z;—’zt) and tf‘lul(—a;—zg—’;t) are also solutions of the respective differential
equation for ap,o = 0 and ap,1 # 0.

In Morita and Sato [4], after obtaining ¢—_(t) given in (42), ¢o(t) in (42) is obtained by using this
lemma for Equation (30-2) for ag,0 = 0.

6 Conclusion

In the present paper, we express the linear differential equation with polynomial coefficients in
terms of blocks of classified terms, which are defined by (7), and by using (10) for the equations of
the second order. The equation with only one block is Euler’s differential equation, whose solution
is given in Theorem 1.1. Equation (18) expresses the equations with two adjacent blocks. Except
for special values of the coefficients, the solutions of these equations are obtained in the form of the
generalized hypergeometric series as stated in Theorem 2.1. For Equation (18) of the second order,
detailed study is presented in Section 2.2. In Section 3, for the differential equation of the second
order, with two blocks which are not adjacent with each other, the solution is shown to be obtained
from the solution of an equation with two adjacent blocks by a change of variable. In Section 4,
comments are given on the solutions involving logt.
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