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Abstract

In this paper, the authors prove that the double inequalities

α1T (a, b) + (1− α1)H(a, b) < T [A(a, b), G(a, b)] < β1T (a, b) + (1− β1)H(a, b),

α2T (a, b) + (1− α2)G(a, b) < T [A(a, b), G(a, b)] < β2T (a, b) + (1− β2)G(a, b)

hold for all a, b > 0 with a ̸= b if and only if α1 ≤ 1/2,β1 ≥ 3/5,α2 ≤ 1/3 and β2 ≥
1/2.Here T (a, b),T [A(a, b), G(a, b)],H(a, b) and G(a, b) are the Toader, Toader-type, harmonic
and geometric means of a and b , respectively.

Keywords: Toader mean; toader-type mean; harmonic mean; geometric mean; the complete elliptic
integral.
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1 Introduction

For p ∈ R and a, b > 0 with a ̸= b , the pth power mean Mp (a, b), harmonic mean H (a, b), geometric
mean G (a, b), arithmetic mean A (a, b), quadratic mean Q (a, b), centroidal mean E (a, b), contra-
harmonic mean C (a, b), and Toader mean T (a, b)[1] are defined respectively by

Mp (a, b) = [(ap + bp) /2]1/p (p ̸= 0) ,M0 (a, b) =
√
ab,

H (a, b) =
2ab

a+ b
,G (a, b) =

√
ab, (1.1)

A (a, b) =
a+ b

2
, Q (a, b) =

√
a2 + b2

2
,

E (a, b) =
2
(
a2 + ab+ b2

)
3 (a+ b)

, C (a, b) =
a2 + b2

a+ b
, (1.2)

T (a, b) =
2

π

∫ π/2

0

√
a2cos2t+ b2sin2tdt =


2a
π
ε

(√
1− (b/a)2

)
, a > b,

2b
π
ε

(√
1− (a/b)2

)
, a < b.

(1.3)

where ε (r) =
∫ π/2

0

(
1− r2sin2t

)1/2
dt, r ∈ (0, 1) is the complete elliptic integral of the second kind.

The pth power mean Mp (a, b) is strictly increasing with respect to p ∈ R for fixed a, b > 0 with
a ̸= b, symmetric and homogeneous of degree 1. Then it is well known that the inequalities[2],[3]

H (a, b) = M−1 (a, b) < G (a, b) = M0 (a, b) < A (a, b) = M1 (a, b)

< T (a, b) < E (a, b) < Q (a, b) = M2 (a, b) < C (a, b) (1.4)

hold for all a, b > 0 with a ̸= b.

The Toader mean T (a, b) is well known in mathematical literature for many years, it satisfies

T (a, b) = RE

(
a2, b2

)
and

T (1, r) =
2

π
ε
(√

1− r2
)

for all a, b > 0 with a ̸= b,where

RE (a, b) =
1

π

∫ +∞

0

[a (t+ b) + b (t+ a)] t

(t+ a)3/2(t+ b)3/2
dt

stands for the symmetric complete elliptic integral of the second kind (see [4],[5],[6]), therefore it
cannot be expressed in terms of the elementary transcendental functions.

We need to note a simple fact: if R1 (a, b),R2 (a, b),R (a, b) are means of distinct positive numbers a
and b with R1 (a, b) < R2 (a, b), then R [R1 (a, b) , R2 (a, b)] is also a mean and satisfies inequalities

R1 (a, b) < R [R1 (a, b) , R2 (a, b)] < R2 (a, b) .

Applying the fact, we can obtian

G (a, b) = M0(a, b) < T [A(a, b), G(a, b)] < A(a, b) = M1(a, b) (1.5)
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hold for all a, b > 0 with a ̸= b.

Recently, the Toader mean has been the subject of intensive research. In particular, many remarkable
inequalities for Toader mean and its generating can be found in the literature [7],[8],[9],[10],[11],[12],[13].

In [14], Vuorinen conjectured that

M3/2 (a, b) < T (a, b)

for all a, b > 0 with a ̸= b. This conjecture was proved by Qiu and Shen [15], and Barnard et al.
[16], respectively. Alzer and Qiu [17] presented the best possible upper power mean bound for the
Toader mean as follows:

T (a, b) < Mlog 2/ log(π/2) (a, b)

for all a, b > 0 with a ̸= b.

Neuman [4], Kazi and Neuman [5] proved that the inequalities

(a+ b)
√
ab− ab

AGM (a, b)
< T (a, b) <

4 (a+ b)
√
ab+ (a− b)2

8AGM (a, b)
,

T (a, b) <
1

4

[√(
2 +

√
2
)
a2 +

(
2−

√
2
)
b2 +

√(
2 +

√
2
)
b2 +

(
2−

√
2
)
a2

]
,

hold for all a, b > 0 with a ̸= b, where AGM (a, b) is the arithmetic-geometric mean of a and b.

In [18],[2],[19],[20],[21] the authors proved that the double inequalities

α1Q (a, b) + (1− α1)A (a, b) < T (a, b) < β1Q (a, b) + (1− β1)A (a, b) ,

α2E (a, b) + (1− α2)A (a, b) < T (a, b) < β2E (a, b) + (1− β2)A (a, b) ,

α3C (a, b) + (1− α3)A (a, b) < T (a, b) < β3C (a, b) + (1− β3)A (a, b) ,

α4C (a, b) + (1− α4)H (a, b) < T (a, b) < β4C (a, b) + (1− β4)H (a, b) ,

α5[C (a, b)−H (a, b)] +A (a, b) < T (a, b) < β5[C (a, b)−H (a, b)] +A (a, b) ,

α6Q (a, b) + (1− α6)H (a, b) < T (a, b) < β6Q (a, b) + (1− β6)H (a, b)

hold for all a, b > 0 with a ̸= b if and only if α1 ≤ 1/2, β1 ≥ (4− π) /
[(√

2− 1
)
π
]
, α2 ≤ 3/4,

β2 ≥ 12/π − 3, α3 ≤ 1/4, β3 ≥ 4/π − 1, α4 ≤ 5/8, β4 ≥ 2/π, α5 ≤ 1/8, β5 ≥ 2/π − 1/2, α6 ≤
5/6, β6 ≥ 2

√
2/π.

From inequalities (1.4) and (1.5) we clearly see that

H (a, b) < G (a, b) < T [A (a, b) , G (a, b)] < A (a, b) < T (a, b) (1.6)

hold for all a, b > 0 with a ̸= b.

The main purpose of this paper is to present the best possible parameters α1, α2, β1, β2 ∈ R such
that the double inequalities

α1T (a, b) + (1− α1)H(a, b) < T [A(a, b), G(a, b)] < β1T (a, b) + (1− β1)H(a, b),

α2T (a, b) + (1− α2)G(a, b) < T [A(a, b), G(a, b)] < β2T (a, b) + (1− β2)G(a, b)

hold for all a, b > 0 with a ̸= b.
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2 Basic Knowledge and Lemmas

In order to prove our main results we need some basic knowledge and Lemma, which we present in
this section.

For r ∈ (0, 1),the complete elliptic integrals of the first and second kinds are defined by [22]

κ(r) =

∫ π/2

0

(
1− r2 sin2 t

)−1/2
dt

and

ε(r) =

∫ π/2

0

(
1− r2 sin2 t

)1/2
dt.

respectively. We clearly see that

κ
(
0+

)
= ε

(
0+

)
= π/2, κ

(
1−

)
= +∞, ε

(
1−

)
= 1,

here κ(r) and ε(r) satisfy the formulas (see[21], Appendix E, p. 474-475)

dκ(r)

dr
=

ε(r)−
(
1− r2

)
κ(r)

r (1− r2)
,

dε(r)

dr
=

ε(r)− κ(r)

r
,

d [κ(r)− ε(r)]

dr
=

rε(r)

1− r2
, ε

(
2
√
r

1 + r

)
=

2ε(r)−
(
1− r2

)
κ(r)

1 + r
.

Lemma 2.1. (1) [22, Theorem 3.21(1)] The function r 7→
[
ε (r)−

(
1− r2

)
κ (r)

]
/r2 is strictly

increasing from (0, 1) onto (π/4, 1).

(2) [22, Exercise 3.43(11)] The function r 7→ [κ (r)− ε (r)] /r2 is strictly increasing from (0, 1) onto
(π/4,+∞).

Lemma 2.2. (1) The function r 7→
√
1− r2 [κ (r)− ε (r)] /r2 is strictly decreasing from (0, 1) onto

(0, π/4).

(2) The function r 7→
√
1− r2

[
ε (r)−

(
1− r2

)
κ (r)

]
/r2 is strictly decreasing from (0, 1) onto

(0, π/4).

Proof. For part (1), Let

φ1 (r) =

√
1− r2 [κ (r)− ε (r)]

r2
. (2.1)

Then simple computations lead to

φ1

(
0+

)
= π/4, φ1

(
1−

)
= 0, (2.2)

φ′
1 (r) =

ϕ1 (r)

r3
√
1− r2

. (2.3)

where

ϕ1 (r) = 2ε (r)−
(
2− r2

)
κ (r) ,

ϕ1

(
0+

)
= 0, (2.4)

ϕ′
1 (r) = − r4

1− r2

[
ε (r)−

(
1− r2

)
κ (r)

r2

]
. (2.5)

It follows from Lemma 2.1(1) and (2.4)-(2.5) lead to

ϕ′
1 (r) < 0, (2.6)

4



Xu et al.; ARJOM, 10(3): 1-11, 2018; Article no.ARJOM.43093

for all r ∈ (0, 1). Hence ϕ1 (r) is strictly increasing on (0, 1) directly from (2.6).

Therefore, part (1) follows from (2.2) and (2.3) together with the monotonicity of ϕ1 (r).

For part (2), Let

φ2 (r) =

√
1− r2

[
ε (r)−

(
1− r2

)
κ (r)

]
r2

. (2.7)

Then simple computations lead to

φ2

(
0+

)
= π/4, φ2

(
1−

)
= 0, (2.8)

φ′
2 (r) =

1

r
√
1− r2

[
ε (r)− 2

ε (r)−
(
1− r2

)
κ (r)

r2

]
. (2.9)

From (2.9) and Lemma 2.1(1) together with the monotonicity of ε (r) we get

φ′
2 (r) <

1

r
√
1− r2

[π
2
− 2× π

4

]
= 0 (2.10)

for r ∈ (0, 1).

Therefore, part (2) follows easily from (2.8) and (2.10).

Lemma 2.3. Let p ∈ (0, 1),r ∈ (0, 1) and

f (r) = p
ε (r)−

(
1− r2

)
κ (r)

r2
+

κ (r)− ε (r)

r2
− π (1− p) . (2.11)

Then the following statements are true:

(1) p = 3/5, then f (r) > 0 for all r ∈ (0, 1).

(2) p = 1/2, then there exists r1 ∈ (0, 1) such that f (r) < 0 for r ∈ (0, r1) and f (r) > 0 for
r ∈ (r1, 1) .

Proof. For part (1), if p = 3/5, then (2.11) becomes

f (r) =
3

5

ε (r)−
(
1− r2

)
κ (r)

r2
+

κ (r)− ε (r)

r2
− 2

5
π. (2.12)

It follows from Lemma 2.1(1)-(2) and (2.12) that

f (r) >
3

5
× π

4
+

π

4
− 2

5
π = 0

for all r ∈ (0, 1).

For part (2),if p = 1/2 , then Lemma 2.1(1)-(2) and (2.12) lead to

f
(
0+

)
= −π

8
, f

(
1−

)
= +∞ (2.13)

and f (r) is strictly increasing on (0, 1).

Therefore, part (2) follows from (2.13) and the monotonicity of f (r).

Lemma 2.4. Let p ∈ (0, 1),r ∈ (0, 1) and

g (r) = p

√
1− r2

[
ε (r)−

(
1− r2

)
κ (r)

]
r2

+

√
1− r2 [κ (r)− ε (r)]

r2
− 1

2
π (1− p) . (2.14)

Then the following statements are true:

5
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(1) p = 1/3, then g (r) < 0 for all r ∈ (0, 1).

(2) p = 1/2, then there exists r2 ∈ (0, 1) such that g (r) > 0 for r ∈ (0, r2) and g (r) < 0 for
r ∈ (r2, 1).

Proof. For part (1), if p = 1/3, then (2.14) becomes

g (r) =
1

3

√
1− r2

[
ε (r)−

(
1− r2

)
κ (r)

]
r2

+

√
1− r2 [κ (r)− ε (r)]

r2
− π

3
. (2.15)

It follows from Lemma 2.2(1)-(2) and (2.15) that

g (r) <
1

3
× π

4
+

π

4
− π

3
= 0

for all r ∈ (0, 1).

For part (2),if p = 1/2 , then Lemma 2.2(1)-(2) and (2.14) lead to

g
(
0+

)
=

π

8
, g

(
1−

)
= −π

4
(2.16)

and g (r) is strictly decreasing on (0, 1).

Therefore, part (2) follows from (2.16) and the monotonicity of g (r).

3 Main Results

Theorem 3.1. The double inequality

α1T (a, b) + (1− α1)H(a, b) < T [A(a, b), G(a, b)] < β1T (a, b) + (1− β1)H(a, b)

holds for all a, b > 0 with a ̸= b if and only if α1 ≤ 1/2 and β1 ≥ 3/5.

Proof. Since H (a, b),G(a, b),A (a, b) and T (a, b) are symmetric and homogenous of degree 1 and
G(a, b) < T [A(a, b), G(a, b)] < A(a, b). Without loss of generality, we assume that a > b > 0. Let
r = (a− b) / (a+ b) ∈ (0, 1) and p ∈ (0, 1).Then from (1.1) and (1.3) leads to

T (a, b) =
2

π
A(a, b)

[
2ε (r)−

(
1− r2

)
κ (r)

]
, (3.1)

H (a, b) = A (a, b)
(
1− r2

)
, T [A(a, b), G(a, b)] =

2

π
A (a, b) ε (r) . (3.2)

It follows from (3.1)-(3.2) lead to

T [A(a, b), G(a, b)]−H(a, b)

T (a, b)−H(a, b)
=

2
π
ε (r)−

(
1− r2

)
2
π
[2ε (r)− (1− r2)κ (r)]− (1− r2)

, (3.3)

pT (a, b) + (1− p)H(a, b)− T [A(a, b), G(a, b)] = A(a, b)F (r) , (3.4)

where

F (r) =
2

π
p
[
2ε (r)−

(
1− r2

)
κ (r)

]
+ (1− p)

(
1− r2

)
− 2

π
ε (r) ,

F
(
0+

)
= 0, (3.5)

F
(
1−

)
=

2

π
(2p− 1) , (3.6)

F ′ (r) =
2

π
r

[
p
ε (r)−

(
1− r2

)
κ (r)

r2
+
κ (r)− ε (r)

r2
− π (1− p)

]
=

2

π
rf (r) (3.7)

6
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where f (r) is defined by (2.11).

We divide the proof into two cases.

Case 1 p = 1/2. Then (3.6) becomes

F
(
1−

)
= 0, (3.8)

It follows from Lemma 2.4(2) and (3.7) that there exists r1 ∈ (0, 1) such that F (r) is strictly
decreasing on (0, r1] and strictly increasing on [r1, 1). Therefore,

T [A(a, b), G(a, b)] >
1

2
T (a, b) +

1

2
H(a, b) (3.9)

follows from (3.4)-(3.5) and (3.8) together with the piecewise monotonicity of F (r).

Case 2 p = 3/5.Then Lemma 2.4(1) and (3.7) lead to the conclusion that F (r) is strictly increasing
on (0, 1). Therefore,

T [A(a, b), G(a, b)] <
3

5
T (a, b) +

2

5
H(a, b) (3.10)

follows from (3.4)-(3.5) and the monotonicity of F (r).

Note that

lim
r→0+

2
π
ε (r)−

(
1− r2

)
2
π
[2ε (r)− (1− r2)κ (r)]− (1− r2)

=
3

5
, (3.11)

lim
r→1−

2
π
ε (r)−

(
1− r2

)
2
π
[2ε (r)− (1− r2)κ (r)]− (1− r2)

=
1

2
. (3.12)

Therefore, Theorem 3.1 follows from (3.9) and (3.10) together with the following statements.

• If p > 1/2,then (3.3) and (3.12) imply that there exists 0 < δ1 < 1, such that

T [A(a, b), G(a, b)] < pT (a, b) + (1− p)H(a, b)

for all a > b > 0 with (a− b) / (a+ b) ∈ (0, δ1).

• If p < 3/5,then (3.3) and(3.11) imply that there exists 0 < δ2 < 1, such that

T [A(a, b), G(a, b)] > pT (a, b) + (1− p)H(a, b)

for all a > b > 0 with (a− b) / (a+ b) ∈ (1− δ2, 1).

Theorem 3.2. The double inequality

α2T (a, b) + (1− α2)G(a, b) < T [A(a, b), G(a, b)] < β2T (a, b) + (1− β2)G(a, b)

holds for all a, b > 0 with a ̸= b if and only if α2 ≤ 1/3 and β2 ≥ 1/2.

Proof. Without loss of generality, we assume that a > b > 0. Let r = (a− b) / (a+ b) ∈ (0, 1).Then
from (3.1), (3.2) and G (a, b) = A (a, b)

√
1− r2 we get

T [A(a, b), G(a, b)]−G(a, b)

T (a, b)−G(a, b)
=

2
π
ε (r)−

√
1− r2

2
π
[2ε (r)− (1− r2)κ (r)]−

√
1− r2

, (3.13)

pT (a, b) + (1− p)G(a, b)− T [A(a, b), G(a, b)] = A (a, b)G (r) (3.14)

7



Xu et al.; ARJOM, 10(3): 1-11, 2018; Article no.ARJOM.43093

where

G (r) = p
2

π

[
2ε (r)−

(
1− r2

)
κ (r)

]
+ (1− p)

√
1− r2 − 2

π
ε (r) ,

G
(
0+

)
= 0, (3.15)

G
(
1−

)
=

2

π
(2p− 1) , (3.16)

G′ (r) =
2r

π
√
1− r2

[
p

√
1− r2

[
ε (r)−

(
1− r2

)
κ (r)

]
r2

+

√
1− r2 [κ (r)− ε (r)]

r2
− 1

2
π (1− p)

]

=
2r

π
√
1− r2

g (r) (3.17)

where g (r) is defined by (2.14).

We divide the proof into two cases.

Case 1 p = 1/3. Then Lemma 2.5(1) and (3.17) lead to the conclusion that G (r) is strictly
decreasing on (0, 1). Therefore,

T [A(a, b), G(a, b)] >
1

3
T (a, b) +

2

3
G(a, b), (3.18)

follows from (3.14)-(3.15) and the monotonicity of G (r).

Case 2 p = 1/2.Then (3.16) becomes
G
(
1−

)
= 0, (3.19)

It follows from Lemma 2.5(2) and (3.17) that there exists r2 ∈ (0, 1) such that G (r) is strictly
increasing on (0, r2] and strictly decreasing on [r2, 1). Therefore,

T [A(a, b), G(a, b)] <
1

2
T (a, b) +

1

2
G(a, b) (3.20)

follows from (3.14)-(3.15) and (3.19) together with the piecewise monotonicity of G (r).

As an application, Corollary 3.3 follows immediately from Theorems 3.1-3.2 and Lemma 2.1(1). We
establish new inequalities for the complete elliptic integral of the second kind.

Corollary 3.3. Let IA(x) be the characteristic function and defined by

IA ≡ IA(x) =

{
1
0

, x ∈ A
, x /∈ A.

Let
L1(r) =

π

4

(
2− r2

)
, L2(r) =

π

8

(
4
√

1− r2 + r2
)
,

U1(r) =
1

2

[
3r2 + π

(
1− r2

)]
, U2(r) =

1

2

[
π
√

1− r2 + 2r2
]

The double inequality

L1(r) · I{r> 2
3

√
2}+L2(r) · I{r≤ 2

3

√
2} < ε (r) < U1(r) · I

{r≤

√
π2−2π

π−1
}
+U2(r) · I

{r>

√
π2−2π

π−1
}

(3.21)

holds for all r ∈ (0, 1).

Remark 3.1. Recently, the complete elliptic integrals have attracted the attention of many reseachers.
In [23], Barnard et al. established that

ε(r) ≤ π

2

(
2− r2

2

) 1
2

(3.22)
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Fig 1. Comparisons of L(r) with

Lw(r),and U(r) with Ub(r).

Fig 2. Comparisons of L(r) with Lg(r),and

U(r) with Ug(r).

In [24], Wang et al. established that

ε(r) >
π

2

(
1− r2

) 1
4 (3.23)

for all r ∈ (0, 1).

Guo and Qi [25] proved that

π

2
− 1

2
ln

[
(1 + r)1−r

(1− r)1+r

]
< ε(r) <

π − 1

2
+

1− r2

4r
ln

(
1 + r

1− r

)
(3.24)

for all r ∈ (0, 1).

Let

L(r) = L1(r) · I{r> 2
3

√
2}+L2(r) · I{r≤ 2

3

√
2},

U(r) = U1(r) · I
{r≤

√
π2−2π

π−1
}
+U2(r) · I

{r>

√
π2−2π

π−1
}
,

Lw(r) =
π

2

(
1− r2

) 1
4 ,

Ub(r) =
π

2

(
2− r2

2

) 1
2

,

Lg(r) =
π

2
− 1

2
ln

[
(1 + r)1−r

(1− r)1+r

]
,

Ug(r) =
π − 1

2
+

1− r2

4r
ln

(
1 + r

1− r

)
.

Fig. 1 and Fig. 2 show that the bounds in (3.21) for ε (r) are better than that in (3.22)-(3.24) for
some r ∈ (0, 1), respectively.
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4 Conclusion

We study Optimal Convex Combination Bounds for Toader Mean in terms of harmonic mean and
geometric mean. We establish new inequalities for the complete elliptic integral of the second
kind.Further research in this field can be carried out.
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