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Abstract

In this paper, we establish some new Turán type inequalities related to the remainder of
q-analogue of exponential functions. Our results are shown to be a generalization which were
obtained by K. Mehrez in 2015.
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1 Introduction

The difference In(x) = ex −
n∑

k=0

xk

k!
for real x and positive integers n have been studied by many

mathematicians. In 1943, P. K. Menon [1] proved the intriguing inequality

In−1(x)In+1(x) >
1

2
(In(x))

2, (1.1)

which is valid for all positive integers n and for all x > 0. Later, H. Alzer [2] established the
sharpened inequality

In−1(x) · In+1(x) >
n+ 1

n+ 2
(In(x))

2, (1.2)

for all n ∈ N and x > 0, and with the best possible constant n+1
n+2

.

Recently, S. M. Sitnik formulated some conjectures on monotonicity of ratios for exponential
series remainders. They are equivalent to conjectures on monotonicity of a ratio of Kummer
hypergeometric function, see [3] and [4]. Afterwards, K. Mehrez and S. M. Sitnik proved their
conjectures in [5].

In 2015, L. Yin and W. -Y. Cui [6] showed a generalization of Alzer inequality related to exponential
function, and generalized it for the remainder of Maclaurin series. The main purpose of this note
is to find the greatest value Cn,p, such that

In−p(q, z)In+p(q, z) > Cn,p(In(q, z))
2 (1.3)

is valid for every positive z and n, p ∈ N. K. Mehrez [7] deduced some sharp Turán type inequalities
for the remainder of q-exponential functions in 2015. Actually, the Turán type inequalities have a
more extensive literature and recently the results have been applied in problems arising from many
fields such as information theory, economic theory and biophysics. For more about this subject the
readers refer to [8, 9, 10, 11, 12, 13, 14, 15, 1, 3, 16, 17] and the references therein.

2 Basic Symbols and Lemmas

In this note, we fix q ∈ (0, 1). For the definitions, notations and properties of the q-shifted factorial
and the q-analogue of exponential functions, the readers may refer to [7]. Let a ∈ R, the q-shifted
factorial is defined by

(a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1− aqk), (a; q)∞ =

∞∏
k=0

(1− aqk).

To simplify the writing, the following compact notation is used frequency

(a1, a2, · · ·, ap; q) = (a1; q)n(a2; q)n · · · (ap; q)n, n = 0, 1, 2, · · ·.

Then note that for q → 1 the expression (qa;q)n
(1−q)n

tends to (a)n = a(a+ 1) · · · (a+ n− 1).

For q ∈ (0, 1), the q-analogue of exponential functions are given by follows

E(q, z) =

∞∑
n=0

zn

(q, q)n
=

1

(z; q)∞
, |z| < 1.

and

E(q; z) =
∞∑

n=0

q
n(n−1)

2
zn

(q, q)n
=

1

(z; q)∞
=

∞∏
k=0

(1− zqk), z ∈ C.
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We denote by In(q; z) and In(q; z) the differences

In(q; z) = E(q, z)−
n∑

k=0

zk

(q, q)k
, 0 < z < 1,

and

In(q; z) = E(q; z)−
n∑

k=0

q
k(k−1)

2
zk

(q, q)k
, z > 0.

Lemma 2.1 ([5]). Let {an} and {bn}, (n = 0, 1, 2, · · · ) be real numbers such that bn > 0 and
{an

bn
}n≥0 is increasing(decreasing), then {a0+a1+···+an

b0+b1+···+bn
} is increasing(decreasing).

Lemma 2.2 ([5]). Let {an} and {bn}, (n = 0, 1, 2, · · · ) be real numbers and let the power series

A(x) =
∞∑

n=0

anx
n and B(x) =

∞∑
n=0

bnx
n be convergent if |x| < r. If bn > 0, (n = 0, 1, 2, · · · ) and

the sequence {an
bn

}n≥0 is (strictly)increasing(decreasing), then the function A(x)
B(x)

is also (strictly)

increasing(decreasing) on [0, r).

3 Main Results

Theorem 3.1. For every n, p ∈ N, q ∈ (0, 1) and 0 < z < 1. The function

E(n, p, q, z) =
In−p(q; z)In+p(q; z)

I2n(q; z)
(3.1)

is strictly increasing on (0,∞). As a result, we have the following Turán type inequalities

In−p(q; z)In+p(q; z)

I2n(q; z)
>

(1− qn−p+2) · · · (1− qn+1)

(1− qn+2) · · · (1− qn+p+1)
(3.2)

where the constant (1−qn−p+2)···(1−qn+1)

(1−qn+2)···(1−qn+p+1)
is best possible.

Proof.

E(n, p, q, z) =
In−p(q; z)In+p(q; z)

I2n(q; z)
=

∞∑
k=n−p+1

zk

(q,q)k

∞∑
k=n+p+1

zk

(q,q)k(
∞∑

k=n+1

zk

(q,q)k

)2

=

∞∑
k=0

k∑
j=0

z2n+2+k

(q,q)n+p+1+k−j(q,q)n−p+1+j

∞∑
k=0

k∑
j=0

z2n+2+k

(q,q)n+1+k−j(q,q)n+1+j

=

∞∑
k=0

Hp,q,kz
2n+2+k

∞∑
k=0

Gp,q,kz2n+2+k

(3.3)

where Hp,q,k =
k∑

j=0

1
(q,q)n+p+1+k−j(q,q)n−p+1+j

, Gp,q,k =
k∑

j=0

1
(q,q)n+1+k−j(q,q)n+1+j

.

Define sequences {An,p,q,j},{Bn,p,q,j} and {Cn,p,q,j} by

An,p,q,j =
1

(q, q)n+p+1+k−j(q, q)n−p+1+j
,

Bn,p,q,j =
1

(q, q)n+1+k−j(q, q)n+1+j
,
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and

Cn,p,q,j =
An,p,q,j

Bn,p,q,j
=

(q, q)n+1+k−j(q, q)n+1+j

(q, q)n+p+1+k−j(q, q)n−p+1+j
.

Simple computation yields

Cn,p,q,j+1

Cn,p,q,j
=

(q, q)n+1+k−j−1(q, q)n+1+j+1(q, q)n+p+1+k−j(q, q)n−p+1+j

(q, q)n+p+1+k−j−1(q, q)n−p+2+j(q, q)n+1+k−j(q, q)n+1+j

=
(1− qn+2+j)(1− qn+p+k−j+1)

(1− qn+2−p+j)(1− qn+1+k−j)
> 1. (3.4)

This implies that the sequence Cn,p,q,j is strictly increasing to j. By using Lemma 2.1 and Lemma
2.2, we easily obtain the function E(n, p, q, z) is strictly increasing on (0,∞).

Finally, from limit identity

lim
z→0+

In−p(q; z)In+p(q; z)

I2n(q; z)
=

(q, q)2n+1

(q, q)n+p+1(q, q)n−p+1
=

(1− qn−p+2) · · · (1− qn+1)

(1− qn+2) · · · (1− qn+p+1)
, (3.5)

we complete the proof.

Corollary 3.1. Taking p = 1, we have the following Turán type inequality

In−1(q; z)In+1(q; z)

I2n(q; z)
>

1− qn+1

1− qn+2
(3.6)

where the constant 1−qn+1

1−qn+2 can not be replaced by a greater number.

Remark 3.1. These results have been shown by K. Mehrez in [7]. Here an alternative proof is
provided based on a different method.

Theorem 3.2. For every n, p ∈ N, q ∈ (0, 1) and z > 0. The function

E(n, p, q, z) = In−p(q; z)In+p(q; z)

I2
n(q; z)

is strictly increasing on (0,∞). As a result, we have the following Turán type inequalities

In−p(q; z)In+p(q; z)

I2
n(q; z)

>
(1− qn−p+2) · · · (1− qn+1)qp

2

(1− qn+2) · · · (1− qn+p+1)
(3.7)

where the constant (1−qn−p+2)···(1−qn+1)qp
2

(1−qn+2)···(1−qn+p+1)
is best possible.

Proof. Direct computation results in

E(n, p, q, z) = In−p(q; z)In+p(q; z)

I2
n(q; z)

=

∞∑
k=n−p+1

q
k(k+1)

2 zk

(q,q)k

∞∑
k=n+p+1

q
k(k+1)

2 zk

(q,q)k(
∞∑

k=n+1

q
k(k+1)

2 zk

(q,q)k

)2

=

∞∑
k=0

k∑
j=0

q
(n+p+1+k−j)(n+p+2+k−j)

2 q
(n−p+1+j)(n−p+2+j)

2 z2n+2+k

(q,q)n+p+1+k−j(q,q)n−p+1+j

∞∑
k=0

k∑
j=0

q
(n+1+k−j)(n+2+k−j)

2 q
(n+1+j)(n+2+j)

2 z2n+2+k

(q,q)n+1+k−j(q,q)n+1+j
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=

∞∑
k=0

Hp,q,kz
2n+2+k

∞∑
k=0

Gp,q,kz2n+2+k

, (3.8)

where

Hp,q,k =

k∑
j=0

q
(n+p+1+k−j)(n+p+2+k−j)

2 q
(n−p+1+j)(n−p+2+j)

2 z2n+2+k

(q, q)n+p+1+k−j(q, q)n−p+1+j
,

Gp,q,k =
k∑

j=0

q
(n+1+k−j)(n+2+k−j)

2 q
(n+1+j)(n+2+j)

2 z2n+2+k

(q, q)n+1+k−j(q, q)n+1+j
,

Define sequences {An,p,q,j}, {Bn,p,q,j} and {Cn,p,q,j} by

An,p,q,j =
q

(n+p+1+k−j)(n+p+2+k−j)
2 q

(n−p+1+j)(n−p+2+j)
2 z2n+2+k

(q, q)n+p+1+k−j(q, q)n−p+1+j
,

Bn,p,q,j =
q

(n+1+k−j)(n+2+k−j)
2 q

(n+1+j)(n+2+j)
2 z2n+2+k

(q, q)n+1+k−j(q, q)n+1+j
,

and

Cn,p,q,j =
An,p,q,j

Bn,p,q,j
.

By easy computation, we have

Cn,p,q,j+1

Cn,p,q,j
=

(1− qn+2+j)(1− qn+p+k−j+1)

(1− qn+2−p+j)(1− qn+1+k−j)q2
> 1. (3.9)

So, the sequence Cn,p,q,j is strictly increasing to j. By using Lemma 2.1 and Lemma 2.2, we get
that the function E(n, p, q, z) is strictly increasing on (0,∞).

Finally, from limit identity

lim
z→0+

In−p(q; z)In+p(q; z)

I2
n(q; z)

=
q

(n+p+1)(n+p+2)
2 q

(n−p+1)(n−p+2)
2 (q, q)2n+1

q(n+1)(n+2)(q, q)n+p+1(q, q)n−p+1

=
(1− qn−p+2) · · · (1− qn+1)qp

2

(1− qn+2) · · · (1− qn+p+1)
, (3.10)

the proof is complete.

Corollary 3.2. Taking p = 1, we have the following Turán type inequalities

In−1(q; z)In+1(q; z)

I2
n(q; z)

>
q − qn+2

1− qn+2
(3.11)

where the constant q−qn+2

1−qn+2 can not be replaced by a greater number.

4 Conclusion

In this paper, we mainly establish two monotonic results related to the remainder of q-analogue
of exponential functions, and some new Turán type inequalities such as theorem 3.1 and 3.2 were
obtained. Our results are shown to be a generalization which were obtained by K. Mehrez in 2015.
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