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ABSTRACT 
 

Archimedes used the perimeter of inscribed and circumscribed regular polygons to obtain lower 
and upper bounds of π. Starting with two regular hexagons he doubled their sides from 6 to 12, 24, 
48, and 96. Using the perimeters of 96 side regular polygons, Archimedes showed that 
3+10/71<π<3+1/7 and his method can be realized as a recurrence formula called the Borchardt-
Pfaff-Schwab algorithm. Heinrich Dörrie modified this algorithm to produce better approximations to 
π than these based on Archimedes’ scheme. Lower bounds generated by his modified algorithm 
are the same as from the method discovered earlier by cardinal Nicolaus Cusanus (XV century), 
and again re-discovered two hundred years later by Willebrord Snell (XVII century). Knowledge of 
Taylor series of the functions used in these methods allows to develop new algorithms. Realizing 
Richardson’s extrapolation, it is possible to increase the accuracy of the constructed methods by 
eliminating some terms in their series. Two new methods are presented. An approximation of 
squaring the circle with high accuracy is proposed. 
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1. INTRODUCTION 
 
The first known rigours mathematical calculation 
of π was done by Archimedes. Archimedes’ book 
”On the Measurements of a Circle”, [1], written in 
the 3rd century B.C., contains three propositions. 
Proposition 3 represents the numerical 
computing of the number π. Archimedes used an 
algorithmic scheme based on doubling the 
number of sides in inscribed and circumscribed 
regular polygons. He started with the regular 
hexagons (N = 6) and doubled the number of 
their sides until N = 96. Archimedes obtained a 
series of two approximations, lower and upper, 
for length of the circumference of the circle with 
diameter equals to one (d = 1), thus 
consequently to the number π. Archimedes was 
able to determine the following bounds for the 
number π: 3 +

��

��
< � < 3 +

�

�
. 

 

It was often suggested to combine these values 
to improve the approximation by taking their 
arithmetic average. This is correct, but it is 
possible to realize a better combination (see 
Table 1) than an arithmetical mean of these two 
bounds. Archimedes’ estimations can be 
improved using only information already 
generated by the constructed polygons. Here two 
such improvements are proposed and presented. 
The proposed algorithms use only values 
obtained from the traditional and well-known 
methods. New created algorithms produce faster 
convergence to π than original techniques. Such 
approach already was realized for some other 
numerical methods. Table 1 shows the results for 
the regular polygons (N = 6, 12, 24, 48, and 96) 
and their combinations proposed in XVII century 
by Snell and later proved by Huygens [2]. 
Archimedes’ approach is a true algorithm to 
obtain the value of π. The method is capable of 
generating an arbitrarily precise number π. The 
process is relatively slow in its convergence. It is 
also difficult to use this algorithm in direct 
calculations for a large number of sides. It is a 
similar situation as with Turing’s machine and a 
modern computer. Theoretically all computable 
problems can be realized on both types of 
machines. It’s only a difference and matter of 

time. There were many attempts to improve 
Archimedes’ method. One such approach 
resulted in Pfaff-Borchardt-Schwab’s (PBS) 
method developed in the XIX century. It was 
realized without using trigonometric functions. 
 

The PBS method is defined by the following 
formulas:  new values 

a′, b′ are determined by the old values a, b - the 
values from the previous step. It’s an iterative 
process and is easy to realize on a computer. 
Starting with a = 2√3 and b = 3; the values for 
circumscribed and inscribed regular 6-gons, we 
can generate the sequence of the intervals [b, a], 
b < a. The intervals contain π. It’s π for the circle 
of the diameter one (d = 1), or for a unit circle (r = 
1), and in this case it’s half of its perimeter, which 
is also π. 
 

Table 1 represents the approximations of the 
number π  obtained by Archimedes’ method 
(values a and b, from the inscribed and 
circumscribed polygons, respectively), their 

arithmetic average (� =
(���)

�
) , and by using 

Snell’s approach (� =
(����)

�
), Here N determines 

the number of sides in regular polygons and  
� = 180�/�  is the central angle in the circle. 
 

Ludolph van Ceulen (1540-1610) was the last 
person who performed great Archimedean 
calculations. He used 262-gons and obtained 39 
places with 35 correct digits. The number is still 
called Ludolph’s number in some parts of 
Europe. For example, in Poland it is called in 
Polish ”liczba Ludolfina”. Archimedes’ method 
may be interpreted as a rectification problem. Its 
goal is to find the length of the arc of the 
considered circle. In this case, the method 
estimates the circumference of the circle (i.e. full 
arc for the angle 2π). A very simple and beautiful 
rectification method was developed by the Polish 
mathematician Adam Adamandy Kochański [3]. 
His construction results with π estimation equals 
to 3.141533…. Kochański’s geometrical 
construction can be done with only one opening 
of a compass. In this case the process is not 
iterative. It is one-time construction. 

 

Table 1. Estimated values of the number pi 
 

N a=N*sin(x) b=N*tan(x) c=a+(b-a)/2 d=a+(b-a)/3 
6 3.00000 3.46410 3.23205 3.15470 
12 3.10583 3.21539 3.16061 3.14235 
24 3.12567 3.17389 3.14978 3.14174 
48 3.13263 3.15966 3.14614 3.14164 
96 3.13585 3.15313 3.14449 3.14161 
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2. MATERIAL AND METHODS  
 

For our purpose, we consider two basic methods, 
Snells’ rectification method and Dörrie’s method 
[2,4]. Both methods were developed to 
accelerate Archimedes’ process. Here, we are 
going the next step further. Our two approaches 
use the values generated by Snell’s and Dörrie’s 
method to construct better approximations for the 
number π. We listed all used methods in this 
work in Table 2. In our notation we added X 
(after M) to indicate that the method (M) is the 
result of combinations. We assumed that 
combination occurred when the composite 
method is defined by elements already 
calculated in its components, [5-7]. Consider 
three of the following methods: MX4: Snell-P 
based on perimeter (P) of the circle, MX5: Snell-
A based on area (A) of the circle, (Huygens, 
1654)) and MX6: Ch-H based on the methods 
M1, M2 and M3, [5]. Table 2 represents the 
applied methods, their short descriptions, and the 
results for using them with N=3 and 6. 
(π=3.14159265358979...). The method M8 was 
invented by Cusanus (XV), Snell-Huygens (XVII), 
and again by Dörrie (XX century). One of the 
results of this presentation is detection that one 
Dörrie’s formula (for B) was already known in XV 
and XVII centuries. 
 

2.1 Algorithm 1: Snell’s Rectification 
 

Cardinal Nicolaus Cusanus (1401-1464) has 
elaborated the following rectification of the arc in 
the circle for the corresponding angle x: arc = 
3sin(x)/(2 + cos(x)). It corresponds to the first 
convergent of the continued fraction for sin(x)/x. 

This formula was once again proposed two 
hundred years later by the Dutch mathematician 
and physicist Snell (Willebrord Snellius, 1580-
1626). We do not know whether it was an original 
invention or used the known result obtained by 
the cardinal. Snell developed two bounds for the 
length of the arc, lower (M8: Snell-ArcL) and 
upper (M7: Snell-ArcU), Huygens (1654). We 
combine these two methods to define a better 
approximation (MX11; Szyszkowicz, 2015, [6]). 
To develop such an approach, we used Taylor 
series for the corresponding methods (Tables 3 
and 4), in this case M7 and M8, and generated 
the new method as MX11=u*M7+v*M8. The 
coefficients u and v are determined by the 
following system of equations (see Table 4) to 
improve its accuracy: � + � = 1,�/1620 − �/
180=0. The solution allows us to define a more 
accurate method of the form MX11=M7+(M8-
M7)/10. Table 4 shows that in its Taylor series 
the next term after x is x to the power 7. We keep 
the element x (x to the power one) but eliminate 
x to the power 5. Here x = π/N and as N is 
growing N*MX11 goes to π. 

 
The Ch-H (MX6, [5]) method can be derived 
differently than originally presented by its 
authors. The method can be determined 
(Richardson’s approach) as the results of a linear 
combination MX6 = a ∗ M1 + b ∗ M2 + c ∗ M3. 
Here we use all methods related to Archimedes’ 
technique. We are able to improve the accuracy 
without additional calculations (increasing N). 
Using their Taylor representation, it is possible to 
keep the term with x (we need to satisfy the 
condition a+b+c=1) and to eliminate the terms 

 
Table 2. Methods, their descriptions and the results for pi using N=3 and 6. Method M8 was 

invented by Cusanus, Snell-Huygens, and Dörrie 
 

Method (X combined) Description N=3 N=6 

M1, side, inscribed sin(x) 2.598076 3.000000 

M2, side, area circumscribed tan(x) 5.196152 3.464101 

M3, area, inscribed sin(2x)/2 1.299038 2.598076 

MX4=M1+(M2-M1)/3 Snell-P 3.464101 3.154700 

MX5=M2+(M3-M2)/3 Snell-A 3.897114 3.175426 

MX6=(32M1+4M2-6M3)/30 Ch-H 3.204293 3.142264 

M7=(2 cos (x/3)+1) tan (x/3) Snell-ArcU 3.144031 3.141740 

M8=3 sin(x)/(2+cos (x)) Snell-ArcL 3.117691 3.140237 

MX9=(M2*M1*M1)
1/3

 A- Dörrie 3.273370 3.147345 

MX10=M8+(MX9-M8)/5 Szysz-Dörrie 3.148827 3.141658 

MX11=M7+(M8-M7)/10 Szyszkowicz 3.141397 3.141589 
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Table 3. Taylor series of the methods related to Archimedes’ algorithm 
 

Method Taylor series 

M1: sin(�) 
� −

��

6
+

��

120
−

��

5040
+

��

362880
−

���

39916800
+ �(���) 

M2: tan(�) 
� +

��

3
+

2��

15
+

17��

315
+

62��

2835
+

1382���

155925
+ �(���) 

M3: sin(2�)/2 
� −

2��

3
+

2��

15
−

4��

315
+

2��

2835
−

4���

155925
+ �(���) 

 
Table 4. Taylor series of the presented methods 

 

Method Taylor series or analytic formula 

M7 
� +

��

1620
+

��

40824
+

7��

6298560
+

3931���

78568237440
+ �(���) 

M8 
� =

3��

2� + �
=

3tan (�)sin (�)

2 tan(�)+ sin (�)
=

3sin (�)

2 + cos (�)
 

M8 
� −

��

180
−

��

1512
−

��

25920
+

���

391680
+ �(���) 

MX9 � = �����
= �tan (�)sin (�)��

 

MX9 
� +

��

45
+

4��

567
+

��

405
+

248���

280665
+ �(���) 

MX10 
� +

4��

1134
+

��

2160
+

227���

1283040
+ �(���) 

MX11 
� −

��

22680
−

��

349920
+

437���

6235574400
+ �(���) 

 
with x with powers 3 and 5. This produces the 
following conditions on the coefficients � + � +

� = 1,−
�

�
+

�

�
−

��

�
= 0,

�

���
+

�

��
� +

�

��
� = 0.  The 

obtained linear system is easy to solve. The 
system results in the following formula MX6 = 
(32M1 + 4M2 − 6M3)/30. With the new set of the 
parameters a and b, this method is also defined 
as MX6 = a ∗ MX2 + b ∗ MX4, with the following 

conditions: � + � = 1,
�

��
+

��

��
= 0  (see Tables 3 

and 4). 
 

2.2 Algorithm 2: Dörrie’s Sequence 
 
In his book, the German mathematician Heinrich 
Dörrie, in problem No. 38 presented another 
approach to improve Archimedes’ method, [4]. 
He constructed two new series B and A, (the [B, 
A] interval) which give a better approximation for 
the length of the circumference (C) of the circle. 
For given values b and a (the [b, a] interval) are 
generated � =

���

����
 ��� � = √����

 . He proved 

that the following inequalities hold b < B < C < A 
< a. The sequence of Bs increases to C, and the 

sequence of As decreases to C. Always the 
interval [b, a] contains the interval [B, A]. For 
example, starting with a regular hexagon d = 1, a 
= 2√3, b = 3 we have the following values from 
Dörrie’s method: B = 3.140237343, A = 
3.14734519, a precision achieved by 
Archimedes’ method first with a 96-gon. It is 
interesting that the method used to generate the 
sequence B is the same formula as proposed by 
the cardinal Cusanus and by Snell (M8); see also 
Tables 2 and 4, and Fig. 1. In a similar way as 
the method MX11 was obtained, the method 
MX10 was derived. The method is constructed 
as follows: MX10=M8+(MX9-M8)/5. 
 
3. RESULTS AND DISCUSSION 
 
The program in R is presented below. It realizes 
some of the discussed methods. Finally, the 
results are given for N=64. The listing of this 
program allows for a better understanding of the 
presented material and the realized formulae. 
The program starts with a square (N=4) or 
hexagon (N=6). 
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#Program realizes the following methods: M1, M2, M8, MX9, and MX10. 
options(digits=15) 
N=4; b=2*sqrt(2); a=4 #square 
N=6; b=3; a=2*sqrt(3) #hexagon 
for (k in 1:5){ 
cn=c(k-1,N); print(cn) 
arch = c(b,a) #Archimedes' results 
# Dörrie: 
B=3*a*b/(2*a + b) 
A=(a*b*b)^(1/3) 
dor = c(B,A) # Dörrie's results 
#Szyszkowicz 
S=B+(A-B)/5 # Szyszkowicz's method 
res=c(arch,dor,S) 
print(res) 
#Next Archimedes: 
a=2*a*b/(a+b) 
b=sqrt(a*b) 
N=N+N} 
method=c("M1","M2","M8","MX9","MX10") 
print(method) 
print(pi); #The end   
#The results for 96-gon 
M1: 3.14103195089051; M2: 3.14271459964537; M8: 3.14159263357057 
MX9: 3.14159273368372; MX10: 3.14159265359320; pi: 3.14159265358979 
 
The main results of this paper are the two 
methods (MX10 and MX11), where we used 
Taylor series to justify their correctness and 
accuracy. The methods are very easy to 
program. Some calculations were executed as 
presented in the program in R. Table 5 shows 
the results for the Pfaff-Borchardt-Schwab 
algorithm (a, b values), Dörrie’s method (A, B 
values) and the method MX10 proposed in this 
paper. 
 
Table 6 presents the obtained results for the 
method MX11 and a few other methods already 
known in literature. 
 
Method MX11 has an interesting geometrical 
interpretation and one example is presented 
here. Fig. 1 shows the rectification process for 
the arc corresponding to the angle x = 135 
degrees. It is a relatively large angle and 
consequently the estimation is not very accurate. 
In this approach, we have to realize two 
methods, M7 and M8, to obtain lower and upper 
bounds for the length of the arc. Their arithmetic 
average is less accurate than the one generated 
by the MX11 method. We have already the value 
3.11582354 for pi. The exact value for the length 

of this arc is 
�

�
�. It allows us to determine our 

accuracy obtained for the angle x=135 degrees 
using the MX11 method. 

As the method needs also the angle x/3, we 
need to be able to do the trisection of a given 
angle x. In this case, it is possible to do this by a 
pure geometrical construction. It is easy to obtain 
the angle x/3. It’s by using a half of the right 
angle (90/2 = 45 = 135/3). The lower (L) and 
upper (U) estimations are generated by the 
methods M8 and M7, respectively. They have 
geometrical interpretations: the angle’s vertex 
has the distance r (radius) to the circle for L, and 
to the cutting point on the circumference for the 
angle x. We are using the method MX11 to 
obtain a better approximation for the number π. 
 

 
 

Fig. 1. Rectification of the arc - Szyszkowicz’s 
method (MX11) 
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Table 5. The approximations generated by Archimedes, Dörrie’s method, and Szyszkowicz’s 
method (MX10) 

 
Size Archimedes Dörrie Szyszkowicz 
N M1 (b) M2 (a) M8 (B) MX9 (A) M10 (B+(A-B)/5) 
6 3.0000000 3.4641016 3.1402373 3.1473452 3.1416589 
12 3.1058285 3.2153903 3.1415100 3.1419279 3.1415936 
24 3.1326286 3.1596599 3.1415875 3.1416133 3.1415927 
48 3.1393502 3.1460862 3.1415923 3.1415939 3.1415927 
96 3.1410320 3.1427146 3.1415926 3.1415927 3.1415927 

 
Table 6. Estimated value of pi from various methods and N 

 
Size MX5 MX6 M7 M8 MX11 
N Snell-A Ch-H Snell-ArcU Snell-ArcL Szyszkowicz 
6 3.89711432 3.20429399 3.14403156 3.11769145 3.14139755 
8 3.33333333 3.15032227 3.14234913 3.13444650 3.14155887 
10 3.21435552 3.14368811 3.14189972 3.13874170 3.14158392 
12 3.17542648 3.14226497 3.14174002 3.14023734 3.14158975 
14 3.15948495 3.14185286 3.14167196 3.14086739 3.14159151 
16 3.15194804 3.14170766 3.14163906 3.14116990 3.14159214 
18 3.14800282 3.14164881 3.14162159 3.14132974 3.14159240 
20 3.14577340 3.14162228 3.14161162 3.14142063 3.14159252 
22 3.14443578 3.14160929 3.14160560 3.14147540 3.14159258 
24 3.14359354 3.14160249 3.14160179 3.14150999 3.14159261 

 

 
 

Fig. 2. Quadrature based on the rectification 
of the arc - Szyszkowicz’s method (MX11) 

 

Fig. 2 shows a more difficult situation. The angle 
of 120 degrees can’t be trisected. We need the 
angle of 40 degrees. We may use other sources 
for such an angle, but not from a pure 
geometrical construction process. In this case, 
agraphic software was asked to rotate horizontal 
segment by 40 degrees. The method MX11 is 
applied and determines the segment S = U + (L 
− U)/10. Here, the main problem (mainly 
construction) is to determine the segment (U-
L)/10. In Fig. 2, a series of small circles was used 
to realize the division into 10 equal parts. Thales’ 

approach to divide a segment in a proportion is 
applied. The obtained segment (2/3πr) is 
extended by 1/3πr and r. It allows us to perform 
the squaring of the rectangle (interpreted as 
such) of sides πr and r. Consequently, we 
approximated the quadrature of our circle with an 
estimated value of the number π. In the 
geometrical process Thales theorem on 
proportion is applied to divide the segment U-L 
into 10 equal parts. 
 

4. CONCLUSION 
 
The illustrative results summarized obtained 
approximations by various methods. As the 
values show, the best approximation is produced 
by the MX10 method. The method is the result of 
the combination of two sequences generated by 
Dörrie’s algorithm. 
 
Well known methods to approximate the number 
pi are realized. The Taylor series of these 
methods (and Richardson’s extrapolation) allow 
producing new methods with better convergence 
properties. As the main results, two methods are 
proposed: (i) combined Dörrie’s sequence (MX10 
method), (ii) combined Snell’s sequence (MX11). 
 
Two methods presented here improve 
Archimedes' technique. The method MX11 can 
be used geometrically for an angle x, if x/3 can 
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be constructed to execute an approximate 
quadrature of the circle. In addition, the 
presented methodology has an educational 
aspect. 
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