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ABSTRACT 
 
A one-step computational method is proposed for the simulation of Duffing oscillators in this 
research. In achieving this, power series was adopted as a basis function in the derivation of the 
method. The integration was carried out within a one-step interval, where the interval was 
partitioned at four different points. The computational method developed was applied on some 
Duffing equations and from the results obtained; it was evident that the method developed is 
computationally reliable.  
 

 
Keywords: Computational method; damping; Duffing oscillator; nonlinear; simulations. 
 
2010 AMS subject classification: 65L05, 65L06, 65D30. 
 

1. INTRODUCTION 
 

Duffing equation is one of the most significant 
and classical nonlinear ordinary differential 

equations in view of its diverse applications in 
science and engineering, [1]. Little wonder, it has 
received remarkable attention due to its variety of 
applications in science and engineering. The 
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Duffing oscillators are applied in weak signal 
detection [2], magneto-elastic mechanical 
systems [3], large amplitude oscillation of 
centrifugal governor systems [4], nonlinear 
vibration of beams and plates [5], fluid flow 
induced vibration [6], among others. Given its 
characteristic of oscillation and chaotic nature, 
many scientists are inspired by this nonlinear 
differential equation since it replicates similar 
dynamics in our natural world.  
 
In this paper, we shall consider a computational 
method for the simulation of Duffing oscillators of 
the form; 
 

3'' ( ) '( ) ( ) ( ) ( )y t y t y t y t f t          (1) 

 
with initial conditions, 
 

(0) , '(0)y y                                  (2) 

 
where , , , and      are real constants and 

( )f t  is a real-valued function. We shall assume 

that equation (1) satisfy the existence and 
uniqueness theorem stated below. 

 
Theorem 1.1 [7] 
 
Let, 
 

( ) ( 1) ( )
0( , , ',..., ), ( )n n k

ku f x u u u u x c    (3) 

 

0,1,..., ( 1)k n  , u and f  are scalars. Let 

  be the region defined by the inequalities 

0 0 , , 0,1,..., ( 1)j jx x x a s c b j n       , 

( 0, 0)a b  . Suppose the function 

0 1 1( , , ,..., )nf x s s s   is defined in   and in 

addition: 
 

(i) f  is non-negative and non-decreasing in 

each of 0 1 1, , ,..., nx s s s   in   

(ii) 0 1 1( , , ,..., ) 0nf x c c c   , for 

0 0x x x a   , and 

(iii) 0, 0,1,..., 1kc k n    

 
Then, the initial value problem (1) and (2) has a 

unique solution in  . 
 

Several methods have been proposed in 
literature for simulating problems of the form (1). 
These methods include; Hybrid method [1], 
Laplace decomposition method [8], restarted 
Adomian decomposition method [9], differential 
transform method [10], modified differential 
transform method [11], improved Taylor matrix 
method [12], variational iteration method [13,14], 
modified variational iteration method [15], 
Trigonometrically fitted Obrechkoff method [16], 
among others. The most recent of these works is 
the development of hybrid block method for the 
simulation of problems of the form (1), see [1] for 
details. 
 
It is important to note that the Duffing equation is 
a simple model that shows different types of 
oscillations such as chaos and limit cycles. The 
terms associated with the system in equation (1) 
as given by [1] are; 
 

' ( )y t : Small damping 

 
 : Ratio (coefficient) of viscous damping (it 

controls the size of damping) 
 

3( ) ( )y t y t  : Nonlinear restoring force 

acting like a hard spring (with   controlling 

the size of stiffness and   controlling the 

size of nonlinearity) 
 

( )f t : Small periodic force 

 
Duffing equations are routinely associated with 
damping in physical systems [1], where damping 
is defined as an influence within or upon 
oscillatory system that has the effect of reducing, 
restricting or preventing its oscillation.  
 

2. MATHEMATICAL FORMULATION OF 
THE COMPUTATIONAL METHOD 

 
We shall formulate a discrete computational 
method (which is an extension of the earlier work 
of [1]) for the simulation of equation (1). The 
author in [1] partitioned the one-step interval at 
three different points. However, in this research, 
the one-step interval shall be partitioned at four 
different points. This will enable us to develop a 
more accurate method that will be used for the 
simulation of equations of the form (1). The 
discrete computational method shall have the 
form,  
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1
(0) ( ) ( ) 2 2

0

( ) ( ), 0,1i i i
m i n i n i m

i

A h e y h d f y h b f i


   Y Y  

(4)
        

We shall seek the approximate solution to 

equation (1) in the integration interval  1,n nx x  . 

We assume that the solution on the interval 

 1,n nx x   is locally approximated by the basis 

function, 
 

1

0

( )
r s

j
j

j

y x x
 



                                 (5) 

 

where j are the real coefficients to be 

determined, s  is the number of interpolation 
points, r  is the number of collocation points and 

1n nh x x    is a constant step-size of the 

partition of the interval  ,   which is given by 

0 1 2 1... n nx x x x x        . 

The polynomial (5) is assumed to pass through 

the interpolation points  
3 4

, , ,
5 5

n s n sx y s    

and the collocation points 

 
1

, , 0 1
5

n r n rx f r 

 
  

 
. This gives the following 

( )r s  system of equations,  

 
1

0

1
2

0

3 4
, ,

5 5

1
( 1) , 0 1

5

r s
j

j n s
j

r s
j

j n r
j

x y s

j j x f r





 




 






  




         




         (6) 

 

The ( )r s  undetermined coefficients j  are 

obtained by solving the system of nonlinear 
equations (6) using Gauss elimination method. 
This gives a continuous hybrid linear multistep 
method of the form; 

 
1

2
3 3 4 4

05 5 5 5

1 2 3 4
( ) ( ) ( ) ( ) ( ) , , , ,

5 5 5 5
j n j k n k

n n
j

y x t y t y h t f t f k    
 



 
     

 
      (7) 

 

where the coefficients 3 4 0 1 2 3 4 1

5 5 5 5 5 5

, , , , , , ,         are given by; 

 

 

 

3

5

4

5

7 6 5 4 3 2
0

7 6 5 4 3
1

5

7 6
2

5

4 5

5 3

1
156250 656250 1115625 984375 479500 126000 15880 672

252000

1
781250 3062500 4659375 3368750 1050000 70295 10668

252000

1
781250 2843750 38718

126000

t

t

t t t t t t t

t t t t t t

t t











 

 

        

      

    

 

 

5 4 3

7 6 5 4 3
3

5

7 6 5 4 3
4

5

7
1

75 2340625 525000 15700 9744

1
781250 2625000 3215625 1706250 350000 29065 13524

126000

1
781250 2406250 2690625 1334375 262500 160 2688

252000

1
156250 437500

252000

t t t t

t t t t t t

t t t t t t

t







   

      

       

  6 5 4 3459375 218750 42000 535 84t t t t t























     


 (8)
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where 
h

xx
t n
 .  

 
The continuous method (7) is then solved for the independent solution at the grid points to give the 
continuous block method: 
 

 
( )

1 1
( ) 2

0 0

1 2 3 4
( ) ( ) , , , ,

! 5 5 5 5

m

m
n j n j k n k

j j

jh
y t y h t f f k

m
  

 

 
    

 
            (9) 

 

where the coefficients 
1

, 0 1
5

i i
 

  
 

  are given by; 

 

 

 

 

 

7 6 5 4 3 2
0

7 6 5 4 3
1

5

7 6 5 4 3
2

5

7 6 5 4 3
3

5

7 6 5
4

5

1
1250 5250 8925 7875 3836 1008

2016

25
250 980 1491 1078 336

2016

25
250 910 1239 749 168

1008

25
250 840 1029 546 112

1008

25
250 770 861

2016

t t t t t t

t t t t t

t t t t t

t t t t t

t t t











      

    

     

    

    

 

4 3

7 6 5 4 3
1

427 84

1
1250 3500 3675 1750 336

2016

t t

t t t t t














 


     

                            (10) 

 

We then evaluate (9) at 
1 1

1
5 5

t
 

  
 

 to give the one-step computational method of the form (4) where, 

 

1 2 3 4 1 1 2 3 4 1

5 5 5 5 5 5 5 5

, ( )

T T

m n m n
n n n n n n n n
y y y y y f f f f f f 

       

   
    

   
Y Y  

 

 ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 1 2 3 4, ( )

T Ti i i i i i
n n n n n n n n n n n ny y y y y f f f f f f       

   y y  

 

and 
(0) 5 5A    identity matrix. 

 

For 0 :i   
 

0 1 0 0

1 1231 863
0 0 0 0 0 0 0 0

5 126000

2 710 0 0 0 1 0 0 0 0 0 0 0 0
5 31500 0 0 0 1
3 123

0 0 0 0 1 , 0 0 0 0 , 0 0 0 0 ,
5 3500

0 0 0 0 1
4 376

0 0 0 0 0 0 0 00 0 0 0 1 5 7875

0 0 0 0 1 61
0 0 0 0

1008

e e d b

   
   
   
    
    
    
       
    
    
         
   
   
   

761 941 341 107

50400 63000 126000 126000 25200

544 37 136 101 8

7875 1575 7875 15750 7875

3501 9 87 9 9

28000 3500 2880 875 5600

1424 176 608 16 16

7875 7875 7875 1575 7875

475 25 125 25 11

2016 504 1008 1008 2016

  
 
 

  
 
 

  
 
 
 
 
 

 


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For 1:i   
 

1 1 1

19 1427 133 241 173 3
0 0 0 0

288 7200 1200 3600 7200 800

14 43 7 7 1 10 0 0 0 1 0 0 0 0
225 150 255 255 75 4500 0 0 0 1
51 219 57 57 21

0 0 0 0 1 , 0 0 0 0 ,
800 800 400 400

0 0 0 0 1
14

0 0 0 00 0 0 0 1 225

19
0 0 0 0

288

e d b

  
 
 

  
  
       
  
  
     
 
 
 

3

800 800

64 8 64 14
0

255 75 255 255

25 25 25 25 19

96 144 144 96 288

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

    

3. ANALYSIS OF BASIC PROPERTIES OF THE COMPUTATIONAL METHOD 
  
Some basic properties of the computational method derived shall be discussed in this section.  
 

3.1 Order of Accuracy and Error Constant of the Method 
 

According to [17], the computational method (4) is said to be of uniform accurate order p , if p  is the 

largest positive integer for which 0 1 2 1 2... 0, 0p p pc c c c c c        . 2pc   is called the error 

constant and the local truncation error of the method is given by; 
 

 ( 2) ( 2) ( 3)
2 ( )p p p

n k pt c h y t O h  
             (11) 

 

Therefore, for the computational method derived 0 1 2 3 4 5 6 7 0c c c c c c c c        , implying 

that the order  6 6 6 6 6
T

p   and the error constant is give by 
 

 
8

199 19 141 8 11

9450000000 369140625 1750000000 73828125 75600000

T

c
 

       
. 

 

3.2 Consistency of the Method 
 

The computational method (4) is consistent since it has order 6 1p   . Consistency controls the 

magnitude of the local truncation error committed at each stage of the computation, [18]. 
 

3.3 Zero-stability of the Method 
 

Definition 3.1 [18]: The computational method (4) is said to be zero-stable, if the roots 

kszs ,...,2,1,   of the first characteristic polynomial )(z  defined by 
(0)

0( ) det( )z zA e    satisfies 

1sz  and every root satisfying 1sz  have multiplicity not exceeding the order of the differential 

equation. Moreover, as 0, ( ) ( 1)rh z z z     , where   is the order of the matrices 

(0)
0.A and e  

 

For our method, 
 

4

1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1

( ) 0 0 1 0 0 0 0 0 0 1 ( 1) 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 1

z z z z

   
   
   
       
   
   
      

                                            (12) 
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Therefore, 1 2 3 4 50, 1z z z z z     . Hence, the computational method is zero-stable.
 

Zero-

stability controls the propagation of the error as the integration progresses. 
 

3.4 Convergence of the Method 
 
The computational method is convergent since it is consistent and zero-stable. 
 
Theorem 3.1 [19] 
 
A linear multistep method is convergent if and only if it is stable and consistent. 
 

3.5 Region of Absolute Stability of the Method 
 
Definition 3.2 [20] 
 

Region of absolute stability is a region in the complex z  plane, where z h . It is defined as those 

values of z  such that the numerical solutions of ''y y   satisfy 0jy   as j  for any initial 

condition. 
 
Applying the boundary locus method, we obtain the stability polynomial for the computational method 
derives as; 
 
 

10 5 4 8 5 4

6 5 4 4 4 5 2 5 4

5 4

1 149 1481 893603
( )

1230468750 14 765625000 29 531250000 177 187500000

311 42407 139 1 1 47

236250000 59062500 3750 5000 50 75

2

h w h w w h w w

h w w h w w h w w

w w

   
       

   

     
          

     

 

   (13) 

 

The stability region for the computational method is shown in Fig. 3.1. 
 

 
 

Fig. 3.1. Stability region of the computational method 
 
The stability region in the Fig. 3.1 is A-stable. 
 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
-4

-3

-2

-1

0

1

2

3

4

Re(z)

I
m

(
z
)
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4. RESULTS 
 
4.1 Numerical Experiments    
 
We shall apply the computational method derived 
in this research to simulate some Duffing 
oscillators that find applications in science and 
engineering. 
 
The following notations shall be used in the 
tables below. 
 
ESS-End point absolute errors obtained in [16] 
 
EOM-Absolute error in [21] 
 
EJS-Absolute error in [1] 
 
EMU-Absolute error in [22] 
 
ETG-Absolute error in [10] 
 
Problem 4.1:  
 
Consider the undamped Duffing equation,  
 

 
33''( ) ( ) ( ) cos sin10 99 sin10y t y t y t t t t        

(14) 
 
with the initial conditions, 
 

(0) 1, '(0) 10y y               (15) 

 

where 
1010  . The exact solution is given by, 

 

( ) cos sin10y t t t            (16) 

 
This equation describes a periodic motion of low 
frequency with a small perturbation of high 
frequency. 
 
Source: [21] 
 
Problem 4.2: 
 
Consider the following undamped Duffing 
equation of the form;     
 

3' '( ) ( ) ( ) cosy t y t y t B t            (17) 

 
with initial conditions, 
 

(0) , '(0) 0y y                             (18) 

 

 where, 

 
0.200426728067, 0.002, 1.01B       

 
The exact solution to the problem is 

 

  
3

2 1
0

( ) 2 1i
i

y t A Cos i t


           (19) 

 
where, 

 
1 3 5

7 9

, , , 0.200179477536,0.0024946143,0.000000304014,

, 0.000000000374,0.000000000000

A A A

A A

   
   

  

 

 
Source: [16] 

 
Problem 4.3:  

 
Consider the damped Duffing equation,  

 
3 3''( ) 2 '( ) ( ) 8 ( ) ty t y t y t y t e             (20) 

 
with the initial conditions, 
 

1 1
(0) , '(0)

2 2
y y                          (21) 

 
The exact solution is given by, 
 

1
( )

2
ty t e                         (22) 

 
Source: [22] 
 
Problem 4.4:  
 
Consider the damped Duffing equation, 
 

3 3' '( ) '( ) ( ) ( ) cos ( ) sin( )y t y t y t y t t t       

(23) 
 
whose initial conditions are, 
 

(0) 1, '(0) 0y y                                      (24) 

 
The exact solution is given by, 
 

( ) cos ( )y t t                                     (25) 

 
Source: [10] 
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Problem 4.5:  
 
Consider the undamped Duffing equation,  
 

3' '( ) 3 ( ) 2 ( ) cos( )sin(2 )y t y t y t t t            (26) 

 
with the initial conditions, 

(0) 0, '(0) 1y y                                      (27) 

 

The exact solution is given by, 
 

( ) sin ( )y t t             (28) 

 
Source: [12] 

 
Table 4.1. Showing the results for problem 5.1 in comparison with the absolute errors in [21]  

                         
 Exact solution Computed solution Error EOM Time/s 

0.0025 0.9999968750041274 0.9999968750041274    0.000000e+000 0.000000e+000 0.1039 
0.0050 0.9999875000310395 0.9999875000310395 0.000000e+000 1.110223e-016 0.1348 
0.0075 0.9999718751393287 0.9999718751393286 1.110223e-016 8.881784e-016 0.1736 
0.0100 0.9999500004266486 0.9999500004266486 0.000000e+000 7.771561e-016 0.2112 
0.0125 0.9999218760297148 0.9999218760297148 0.000000e+000 4.440892e-016 0.2121 
0.0150 0.9998875021243030 0.9998875021243031 1.110223e-016 9.992007e-016 0.2127 
0.0175 0.9998468789252486 0.9998468789252487 1.110223e-016 1.665335e-015 0.2133 
0.0200 0.9998000066864446 0.9998000066864449 2.220446e-016 2.775558e-015 0.2140 
0.0225 0.9997468857008414 0.9997468857008415 1.110223e-016 5.440093e-015 0.2146 
0.0250 0.9996875163004431 0.9996875163004431 0.000000e+000 7.216450e-015 0.2152 
0.0275 0.9996218988563066 0.9996218988563066 0.000000e+000 9.436896e-015 0.2160 

 

 
 

Fig. 4.1. Graphical result showing the oscillatory nature of problem 4.1 
 

Table 4.2. Comparison of the end-point absolute errors in [1] and [16] with that of the new 
method 

 
 Error EJS ESS 

 4.846124e-015 8.813783e-013 1.81e-010 

 2.148108e-014 1.114692e-012 8.02e-012 

 9.221651e-014 2.953554e-012 5.52e-012 

 2.008060e-014 2.339406e-012 7.28e-012 

 2.930989e-014 1.859929e-012 6.99e-012 

 3.613776e-014 1.328992e-012 6.65e-012 

Note: in Table 4.1 above 
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Fig. 4.2. Graphical result showing the oscillatory nature of problem 4.2 
 

Table 4.3. Showing the results for problem 4.3 in comparison with the absolute errors in [22] 
 

 Exact solution Computed solution Error EMU Time/s 

0.1000 0.4524187090179798 0.4524187090179798 0.000000e+000 1.487e-08 0.0411 
0.2000 0.4093653765389909 0.4093653765389909 0.000000e+000 1.286e-07 0.0474 
0.3000 0.3704091103408589 0.3704091103408589 0.000000e+000 1.464e-07 0.0539 
0.4000 0.3351600230178196 0.3351600230178196 0.000000e+000 1.393e-07 0.0603 
0.5000 0.3032653298563167 0.3032653298563167 0.000000e+000 1.845e-07 0.0669 
0.6000 0.2744058180470131 0.2744058180470131 0.000000e+000 2.422e-07 0.0735 
0.7000 0.2482926518957047 0.2482926518957047 0.000000e+000 2.468e-07 0.0799 
0.8000 0.2246644820586107 0.2246644820586106 2.775558e-017 2.127e-07 0.0866 
0.9000 0.2032848298702994 0.2032848298702994 0.000000e+000 1.987e-07 0.0929 
1.0000 0.1839397205857211 0.1839397205857210 5.551115e-017 2.071e-07 0.0998 

 

 
 

Fig. 4.3. Graphical result showing the oscillatory nature of problem 4.3 
 
Table 4.4. Showing the results for problem 4.4 in comparison with the absolute errors in [10]                      
     

 Exact solution Computed solution Error ETG Time/s 

0.1000 0.9950041652780258 0.9950041652780257 1.110223e-016 9.418022e-013 0.0093 
0.2000 0.9800665778412416 0.9800665778412414 2.220446e-016 9.320766e-012 0.0160 
0.3000 0.9553364891256060 0.9553364891256060 0.000000e+000 2.371603e-011 0.0234 
0.4000 0.9210609940028850 0.9210609940028852 2.220446e-016 4.248379e-011 0.0301 
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 Exact solution Computed solution Error ETG Time/s 

0.5000 0.8775825618903727 0.8775825618903725 1.110223e-016 6.390422e-011 0.0367 
0.6000 0.8253356149096781 0.8253356149096780 1.110223e-016 8.632239e-011 0.0434 
0.7000 0.7648421872844882 0.7648421872844881 1.110223e-016 1.082653e-010 0.0500 
0.8000 0.6967067093471651 0.6967067093471649 1.110223e-016 1.285219e-010 0.0567 
0.9000 0.6216099682706640 0.6216099682706638 1.110223e-016 1.461836e-010 0.0634 
1.0000 0.5403023058681392 0.5403023058681390 2.220446e-016 1.606468e-010 0.0704 

 

 
 

Fig. 4.4. Graphical result showing the oscillatory nature of problem 4.4 
 

Table 4.5. Showing the results for problem 4.5 in comparison with the absolute errors in [12] 
 

t  Exact solution Computed solution Error   EJS Time/s 

0.1000 0.0998334166468281 0.0998334166468282 1.387779e-017 3.024248e-013 0.0437 

0.2000 0.1986693307950612 0.1986693307950612 0.000000e+000 4.584944e-013 0.0492 

0.3000 0.2955202066613397 0.2955202066613396 1.110223e-016 7.316370e-014 0.0547 

0.4000 0.3894183423086507 0.3894183423086505 2.220446e-016 1.692257e-012 0.0603 

0.5000 0.4794255386042032 0.4794255386042029 2.775558e-016 4.596878e-012 0.0662 

0.6000 0.5646424733950356 0.5646424733950353 3.330669e-016 8.754997e-012 0.0719 

0.7000 0.6442176872376914 0.6442176872376908 5.551115e-016 1.390665e-011 0.0775 

0.8000 0.7173560908995231 0.7173560908995226 5.551115e-016 1.959244e-011 0.0831 

0.9000 0.7833269096274838 0.7833269096274829 8.881784e-016 2.519718e-011 0.0888 
1.0000 0.8414709848078968 0.8414709848078962 6.661338e-016 2.999911e-011 0.0946 

 

 
 

Fig. 4.5. Graphical result showing the oscillatory nature of problem 4.5 
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5. DISCUSSION OF RESULTS 
 
We simulated some Duffing oscillators with the 
aid of the computational method developed and 
from the results obtained, it is obvious that the 
computational method developed is more 
efficient than the existing ones with which we 
compared our results. 
 

6. CONCLUSION 
 
A one-step computational method has been 
developed for the simulation of Duffing oscillators 
using the power series approximate solution. It is 
obvious from the results (numerical and 
graphical) obtained that the method is 
computationally reliable. The method developed 
was also found to be consistent, convergent, 
zero-stable and A-stable. This paper therefore 
recommends the use of this method for solving 
not only Duffing equations but second order 
nonlinear (and linear) differential equations of the 
form (1).     
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