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Abstract
Single-stranded nucleic acids can fold and create unique 3-dimensional structures when 
interacting with other molecules. The unique structure can achieve high specificity and affinity 
for the particular target. Synthetic oligonucleotide binding agents, also known as aptamers, 
are generated through the rational process of Systematic Evolution of Ligands by Exponential 
Enrichment (SELEX). As this technology matures, it shows increasing promise for use in the 
field of therapeutic drugs, drug discovery, development, and delivery, and this report seeks to 
detail how this technology may be applied. 
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Introduction
The continuous development of new medications to meet 
rising medical demand is subject to a tightly regulated 
system to ensure that emergent drugs are rendered safe 
and effective. Some drugs might take several years to 
be developed and an investment of millions of dollars 
is required.1 The efficiency and efficacy of drugs could 
be improved while reducing the development time and 
investment costs.1 The implementation of synthetic 
oligonucleotides, or aptamers, offers new methods for 
advancing the identification, production, and delivery of 
drugs with high efficiency and efficacy.
Aptamers are composed of single-stranded ribose nucleic 
acid (RNA) or deoxyribonucleic acid (DNA), which fold 
into target-specific unique 3D structures.2 where some of 
the nucleotide bases interact directly with the target while 
the remainder of the nucleotide bases associate with each 
other to stabilize the structure. Aptamers can bind to a target 
with high affinity and specificity, making them comparable 
in use to antibodies.3 This short communication endeavors 
to review how aptamers have been used as agents for drug 
discovery and drug development, as drug carriers, and as 
therapeutic drugs. We make emphasis on new approaches 
and novel technologies that use aptamers in therapeutics 
against cancer.

Evolution of Aptamers 
Aptamer selection was first demonstrated in 1990 by  
Tuerk and Gold, and Ellington and Szostak, in two 
separate publications.4,5 The word aptamer was chosen 

as a combination of the Latin term ‘aptus’, meaning ‘to 
fit’, and the Greek term ‘meros’, meaning ‘part’.4,5 These 
initial publications also described the in vitro process of 
generating aptamers, now commonly known as Systematic 
Evolution of Ligands by Exponential enrichment or 
SELEX.4,5 SELEX begins with the target molecule being 
introduced to a synthetic custom-designed and randomized 
oligonucleotide library. Following an incubation period, 
oligonucleotides with no affinity to the target are removed 
from the reaction solution and the bound oligonucleotides 
are enriched through PCR. This cycle is repeated with 
the addition of various selection pressures in order to 
promote variants within the oligonucleotide library 
to attain improved affinity and specificity to the target 
molecule.6 Provided sufficient evolution and selection 
pressures are subjected, the resulting aptamers evolved can 
discriminate between similar molecules such as caffeine 
and theophylline which differ in only by a single methyl 
group at nitrogen atom N-7, or between enantiomers of the 
same molecule such as L-arginine and D-arginine,7,8 with 
the capability of binding the target in complex biological 
matrices.9 Since the SELEX technique was first published, 
it has been modified into several subtypes to develop 
aptamers that bind to a diversity of targets including 
small molecules such as toxins and drugs, proteins, and 
contaminants. Also, the modification and improvement of 
SELEX techniques allows the enhancement of the natural 
properties of the aptamers upon binding such as changes 
in their 3D structure, to implement aptamers in several 
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detection and quantification sensor platforms.10-13 The use 
of synthetic affinity reagents such as aptamers offer multiple 
advantages over biologically generated antibodies.9,14,15 
(Table 1).

Chemical and Biological Properties
The oligonucleotide structure of aptamers has substantial 
impact on their properties and can be advantageous. 
Since their synthesis is carried out using well-established 
DNA synthesis laboratories, aptamers synthesis quality 
is maintained without the batch to batch variations 
expected from antibody synthesis. The synthetic nature 
of aptamers also allows for greater ease in chemical 
modifications, allowing them to mimic amino acid side-
chains increasing their chemical diversity and affinity to 
targets that unmodified aptamers show low-affinity.16  For 
example, Slow Off-rate Modified Aptamers (SOMAmers)17 
are aptamers where the 5’ position of the uridine bases 
has been replaced with naphthyl, tryptophan, benzyl, or 
isobutyl groups, adding to the potential functional groups 
that can bind to the target, and thus increasing both the 
dissociation time and the binding affinity for proteins.17,18 
The next-generation aptamers also known as X-aptamers 
are another technology where various functional groups 
are added to the bases of the oligonucleotide to improve 
binding and specificity.19 Aptamers with chemical 
modifications can be used in different detection platforms 
which enables the improvement of target-detection levels 
in complex matrices and permitting the measurement of 
target concentration.11 
The nucleic acid composition of aptamers makes them non-
immunogenic, unlike antibodies.20 The non-immunogenic 
property contributes to their high rate of clearance rate by 
the kidneys and susceptible to degradation by exonucleases 
in the bloodstream.3,21 The pharmacokinetics of aptamers 

or how aptamers move into, through, and out of the body, 
can be improved by modifying the natural oligonucleotide 
with un-natural forms. The use of spiegelmers, which 
are constructed from D-ribose instead of the L-ribose 
enantiomer recognised by exonucleases, can greatly extend 
the half-life of administered aptamers.22-24 Spiegelmers 
are synthetized by creating a ‘mirror image’ of an existing 
aptamer out of D-ribose.25,26 The use of non-natural bases 
can also decrease the degradation and renal clearance 
of administered aptamers.27 A common method is to 
substitute the 2’-hydroxyl group of the pyrimidine bases 
with fluoro or amino groups, reducing the ability of 
exonucleases to recognize the nucleobase and thus slowing 
degradation.14,28 Thioaptamers, which substitute sulfur 
with one or both of the non-bridging phosphoryl oxygens 
in the phosphate backbone of the aptamer, have a higher 
resistance to nucleases and can be processed by DNA 
and RNA polymerases. This gives rise to a higher binding 
affinity to proteins than unmodified oligonucleotides.29,30 
These chemical alterations can significantly increase the 
half-life of aptamer drugs in the body. However, it should 
be noted that conjugation of aptamers to carrier molecules 
can increase their bulkiness and may reduce their binding 
ability, especially to small molecules.31,32 Table 2 identifies 
some of the companies that have reported work on 
developing aptamer-based therapeutic drugs. 
The nucleic acid structure of aptamers allows for the 
rational design of antidotes.27 Antibodies and conventional 
drugs have no systematic method of antidote design, 
but aptamers can be disabled by the introduction of the 
antisense strand to the original nucleic acid sequence.33,34 
The antisense oligonucleotide performs Watson-Crick 
base pairing and disables the aptamer’s shape, so the 
aptamer is no longer capable of binding to the target. This 
has been a key advantage of aptamers in the design of 

Table 1. The functional and chemical differences between antibodies and aptamers are comparable due to their ability to bind target mol-
ecules ranging from ions to proteins, all the way up to whole cells, and do so with high specificity and affinity. As shown here, aptamers 
have several key advantages over antibodies.

Aptamers Antibodies
Synthetic origin Biological origin
Size is ~12 – 30 kDa Size is~150 – 170 kDa
Binding affinity down to pM Binding affinity down to pM
In vitro and in vivo generation In vivo generation
Adaptable to a variety of conditions Restricted to function in biological conditions
Wide range of targets Limited to targets that can be altered to provoke immune response
Enantiomer specific Not enantiomer specific
Uniform batch performance Non-uniform batch performance
Can be modified to improve pharmacokinetics, or how it moves 
into, through and out of the body. Limited modification to improve pharmacokinetics

Selection time variable Selection time long and affects specificity
Can regain function after denaturation Loss of function after denaturation
Possibility of rational antidote design No rational method of antidote design
Unlimited shelf life Limited shelf life
Usually not immunogenic Frequently immunogenic
Binding site can be modified to change specificity Binding to target only
Targeted by exonucleases Not targeted by exonucleases
High renal filtration Low renal filtration
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Table 2. The list of companies that are currently developing aptamers as drugs, their year of founding, and the field they work in.

Company Established Field
Antisoma Plc 2001 Aptamer-based cancer therapeutics
Apta Biosciences 2013 Aptamer-based therapeutics, diagnostics
AptaMatrix 2003 Aptamer discovery
Aptamer Sciences Inc 2011 Aptamer discovery
AptaTargets 2014 Aptamer-based therapeutics
Apterna 2011 Aptamers to assist drug delivery
Aptitude Medical Systems Inc 2011 Aptamer-based therapeutics, diagnostics
Archemix 2001 Thrombin-inhibiting aptamers
Centauri Therapeutics 2014 Aptamer-based immunogenic therapeutics
NOXXON Pharma 1997 Aptamer-based therapeutics
IVERIC Bio (formerly Ophthotech) 2007 Aptamer-based eye therapeutics
Ribomic 2003 Aptamer-based therapeutics
Somalogic 2000 Aptamer optimisation, biosensors
Veraptus 2011 Aptamer-based therapeutics for bacteria and viruses

anticoagulation drugs.35,36 An aptamer can be introduced 
before or during surgery to stop blood clotting, and the 
antidote can be introduced as part of the recovery process, 
resulting in a faster resumption of the clotting process than 
a conventional drug and a better health outcome for the 
patient.37 Anti-coagulation aptamers pegnivacogin and 
NU172 are currently undergoing drug trialing.15,38

Context of Aptamer Drugs
The potential use of aptamers as drugs was first discussed 
in 1995 due to the similarities between aptamers and 
antibodies, and the prevalence of antibody-based 
therapeutics.3,39,40 It was postulated that, if aptamers could 
be adapted to be functional in the body, their ability to 
change the properties or envelop their targets could be 
beneficial to inhibit diseases.41 The most popular targets 
for aptamer drugs were therefore diseases with a singular 
causative protein that could be inhibited by a suitably 
designed aptamer. Most notably, age-related macular 

degeneration, which is caused by the angiogenic VEGF, 
blood clotting disorders, and cancers were targeted 
by aptamer drug developers.42 Aged related macular 
degeneration was also selected as a popular target due 
to the immediacy of intravitreal injections, which allows 
them to bypass issues such as renal clearance that affect 
aptamer pharmacokinetics.43 The discovery of aptamers 
introduced the field of riboswitches and ribozymes, where 
folded pieces of RNA are capable of catalyzing reactions 
or altering gene expression.44 Aptamers can interact 
with a target to change its structure or enable or disable 
processes.45 This is the mechanism of Macugen, the first 
approved aptamer drug on the market, which targets 
VEGF and was approved in 2004.  It was commonly used 
until recent years when antibody-based drugs superseded 
it in effectiveness.15,38 Additional aptamer-based drugs that 
are currently in development can be found in Table 3.

Table 3. List of aptamer drugs currently in clinical trials, their developers, their structure, their target, and their progress. Macugen is the 
only aptamer drug that has been released onto the market.

Name Developed by Form Target Disease Progress

Macugen
(pegaptanib) NeXstar Pharmaceuticals 27-nt 

RNA VEGF Age-related macular 
degeneration On market

REG-1 
(pegnivacogin) Regado Biosciences Inc 37-nt 

RNA
Coagulation 
Factor IXa Arterial thrombosis Phase III 

(Suspended)

Zimura 
(avacincaptad pegol) IVERIC Bio 38-nt 

RNA
Complement 
Factor 5

Age-related macular 
degeneration/Stargardt disease Phase IIb

AS1411 Antisoma Research 26-nt 
DNA Nucleolin Acute myeloid leukemia Phase II

NOX-E36 
(emapticap pegol) NOXXON Pharma 40-nt 

RNA
Chemokine 
CCL2

Type 2 Diabetes Mellitus/
Albuminuria/Liver Cancer Phase II

NOX-A12 
(olaptesed pegol) NOXXON Pharma 45-nt 

RNA CXCL12 Pancreatic, colorectal, brain 
cancer/Multiple myeloma Phase II

NU172 Archemix Corp, Nuvelo 26-nt 
DNA Thrombin Heart disease Phase II

NOX-H94
(lexaptepid pegol) Pharma 44-nt 

RNA Hepcidin Anemia/renal disease Phase II

RBM-007 Ribomic 37-nt 
RNA

Fibroblast 
Growth Factor 2

Age-related macular 
degeneration Phase IIa
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Development of Aptamer-Based Drugs
Drug development most commonly begins with target 
identification. Once a disease or condition has been 
identified as a possible target for treatment, there are 
multiple methods that can be used to discover a candidate 
drug. High-throughput screening is used to test large 
libraries of potentially therapeutic molecules for efficacy in 
a disease model.46,47 Targeted methods use pharmacological 
principles to identify a potential drug target for the disease 
and develop an appropriate drug. Aptamers are best suited 
for targeted drug discovery since the oligonucleotides are 
developed against a specific molecule. The SELEX process 
can be modified to target different types of molecules; for 
example, cell-SELEX can screen libraries of oligonucleotides 
against a diseased cell, utilizing a healthy cell as a negative 
control in order to identify novel drug targets.48 After 
candidate aptamers have been identified, they are subject to 
refinement (Figure 1) in order to alter their properties for in 
vivo pharmacology. As previously discussed, the properties 
of aptamers in the body can be substantially modified in 
order to increase their effectiveness as clinical drugs.
The difficulty of transition from in vitro to in vivo has 
historically been one of the primary causes for aptamer 
drugs to fail during drug trials. Aptamer drugs are 
significantly less likely than traditional drugs to have issues 
with toxicity or immune reaction.49 In contrast, aptamer 
drugs are instead more likely than comparable antibodies 
to have issues with efficacy. Future research is likely to 
focus on chemical alterations of aptamer drugs during the 
refinement stage in order to carry over in vitro efficacy in a 
biological platform. It will also be essential to improve the 
pharmacokinetic optimization of aptamer drugs so that the 
administration of these drugs will not be a limiting factor 
in clinical success. Macugen (pegaptanib), the aptamer 
drug that has been brought to market, was successful in 
administration as it is delivered via an injection directly 
into the eye, bypassing many pharmacokinetic issues that 
will need to be addressed as a wider range of diseases are 
targeted.50 For example, the aptamer used for Macugen or 
pegaptanib is conjugated to polyethykene glycol or PEG to 
increase the intravitreal residence time and inhibiting the 
activity of the Vascular Endothelial Growth Factor (VEGF) 
for longer periods.39

Aptamers in the Drug Screening Process
The selective binding ability of aptamers makes them 
suitable for assays and screening applications,51 and 
in this capacity, they can be exceedingly useful in the 
development of non-aptamer drugs. For the initial stage of 
target identification, aptamer microarrays and SOMAscans 
can be used to measure gene and protein expression and 
provide comparative information on diseased and non-
diseased expression profiles.52,53 Aptamers can also be 
modified with fluorochromes and quenchers in which the 
binding of the aptamer to its target protein triggers the 
uncoupling of the fluorochrome and a quencher allowing 
to track the aptamer activity in vivo.54,55 Most notably, 
an RNA aptamer (spinach aptamer), was developed to 
bind the green fluorescence protein (GFP) fluorophore 
4-hydroxybenzlidene imidazolinone (HBI), and activate 
its fluorescence upon binding. The spinach aptamer can be 
introduced to the cell via vectors or plasmids and expressed 
for fluorescent visualisation inside the cell.56 The widely-
used enzyme-linked immunosorbent assay or ELISA, 
which utilises antibodies, can be adapted into an ELONA 
(enzyme-linked oligonucleotide assay) which allows a 
greater range of targets and cheaper scaling due to the low 
synthesis and production costs of aptamers compared to 
antibodies.57 The chemical structure of aptamers can also 
be used to produce aptabeacons, which use the structural 
change upon target binding to effect a measurable change 
such as activation of an attached fluorescent molecule.58 
These methods provide a useful toolkit for the identification 
of potentially novel candidates to be used as drugs.
Another use of aptamers for assays is their incorporation in 
microarrays. Microarrays are commonly used to identify 
molecules of interest in a mixed solution. Aptamer-based 
microarrays could bind to a variety of target molecules 
such as other oligonucleotides, organic and inorganic 
compounds, and peptides and proteins while antibody-
based arrays are limited to capture larger molecules such as 
proteins.59 Upon binding, the capture agent releases some 
kind of signal, such as a fluorescence, which is read by a high-
resolution camera and used to quantify how much binding 
has occurred. Complementary DNA (cDNA) used in DNA 
microarrays and antibodies are currently the most popular 
capture agents, but aptamers are equally suitable for this 
purpose and offer higher shelf stability, and small molecule 
recognition.60 Multiple aptamers can be used in concert 

Figure 1. The generic drug development pathway.
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with each other to test for multiple molecules whereas an 
antibody array would suffer from severe cross-reactivity. 
However, aptamer-based microarrays require significant 
optimization as the microarray format can interfere with 
the folding and structure adoption of aptamers when bound 
to their molecules.29 Aptamer-based microarrays could 
be one of the most robust aptamer biosensor platforms 
and can be of use in all stages of drug development.

Aptamers in Drug Purification
Due to their relative cost-effective synthesis, high-affinity 
binding to specific targets, and ability to withstand 
repeated denaturation, aptamers can be utilized in the 
purification of other drugs. Aptamers have previously been 
utilized in the purification of the antibody-drug, Avastin, 
for the purification of the age-based macular degeneration 
target VEGF, and for the purification of a medley of 
human proteins from serum using chromatographic 
methods.61 Their ability to selectively discriminate between 
enantiomers of a molecule and reach binding constants 
as low as the femtomolar are also strongly beneficial 
features when using aptamers for drug purification.62 An 
aptamer produced for the drug of choice can reach yields 
that approach 100% recovery of the drug when utilized in 
affinity chromatography through the methods detailed in 
this research, and it is likely that aptamers will see greater 
use in the field of drug purification after this success.63

Drug Delivery
Site-specific drug delivery has increasingly become an 
area of focus in pharmacology as treatment methods are 
refined. For localized diseases such as cancerous tumors, or 
for drugs with a high level of off-target effects, it is essential 
to develop methods to ensure that the drugs are delivered 
to the correct part of the body in order to maximize efficacy 
and produce the best health outcome for the patients. The 
most common use of aptamers in the clinical context is in 
the delivery of drugs, toxins, liposomes, or siRNAs, using 
their high specificity to locate the target site and reduce off-
target effects.64 Aptamers are well-suited for this purpose 
as they are simple to manufacture, highly specific for a 
given target, easily modified, and generally have little to no 
immunogenicity. 
The most notable example of a drug delivered by aptamer 
is doxorubicin, an anti-cancer drug that is only delivered 
to cancerous cells due to the aptamer’s specific binding 
to PMSA-positive cells.15 The versatility of the aptamer 
structure means that they can be conjugated to a given 
drug in a variety of different ways in order to reduce 
the impact that aptamers could have on the efficacy and 
sterics of the drug. Aptamers are most frequently used 
for the delivery of anticancer drugs since cancerous cells 
typically display a unique set of antigens that allows them 
to be distinguished from healthy cells by aptamers.65 
Small-interfering RNAs (siRNAs), which are a part of the 
RNA interference pathway, can be delivered to cells using 
aptamers as a targeting method, and since siRNAs and 

RNA oligonucleotides are both composed of RNA, the two 
are easily conjugated together.38,66 The use of aptamers for 
drug delivery is likely to increase as the need for targeted 
drug delivery increases in the future.

Conclusion
Aptamers are currently being utilized in different capacities 
at all stages of drug development. However, they have 
yet to be adopted universally into this process and will 
require additional research in order to reach maximum 
effectiveness. Aptamers have shown some effectiveness 
as drugs and have strengths in their low toxicity and easy 
manufacture. It is clear that the promise of aptamers in the 
drug development field has yet to be utilized, which paves 
the way for future discoveries that may have significant 
impacts on the field.
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