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ABSTRACT 
 

Aims:  Bacteria including Pseudomonas and T. thermophilus secretes rhamnose–containing 
glycolipid biosurfactants called rhamnolipids (RLs), known as bacterial virulence factors. The aim of 
this investigation was the evaluation of DNA damage induced on human lymphocytes by both RLs 
itself, secreted in a host organism by pathogens during a bacterial attack or symbiosis and in 
combination with the camptothecin (CPT), and on calf thymus DNA. 
Study Design:  Human lymphocytes and calf thymus DNA were treated with isolated                          
T. thermophilus RLs for studying DNA damage in vitro.   
Methodology:  RLs DNA damaging action was evaluated by the Sister Chromatid Exchanges 
(SCEs) methodology, a method for estimating genotoxicity of human exposure to different 
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chemicals or other mutagenic agents and by DNA electrophoretic mobility experiments. 
Results:  RLs at concentrations of 100 and 150 µg/mL reveal significant toxicity. The highest 
concentration of 200 µg/mL reveals higher genotoxicity. The frequency of SCEs/cell was increased 
two times over the control level. When CPT, an antineoplastic drug with DNA damaging action, was 
tested together with RLs the genotoxic activity was reduced significantly (P<0.01) compared to the 
action caused by CPT itself. Sequential increase in the concentration of RLs results in the 
proportional reduction of Proliferation Rate Index (PRI) which is a cytostatic index. Also, Mitotic 
Index (MI), a cytotoxic index, was also significantly decreased at concentration of 200 µg/mL RLs. 
Addition of RLs in the same concentration together with CPT doesn’t affect the MI so much. 
Moreover, RLs are obviously capable for strong binding to plasmid or calf thymus DNA in vitro. 
Conclusion:  RLs exert genotoxicity, cytotoxicity and cytostaticity in human lymphocytes and play 
probably a protective role for cells against CPT due to RLs’ detergent capability to enrobe CPT and 
DNA, providing a significant property that might support its possible involvement in DNA horizontal 
transfer phenomena. 
 

 
Keywords: T. thermophilus; rhamnolipids; Sister Chromatid Exchanges; SCEs; proliferation rate 

Index; PRIs; Mitotic Index; MIs; DNA binding. 
 
1. INTRODUCTION  
 
Many microorganisms especially pathogens like 
Pseudomonas produce rhamnose–containing 
glycolipid biosurfactants called rhamnolipids 
(RLs) [1-3]. They are secreted into the 
extracellular fluid and act as biosurfactants and 
virulence factors [2]. The reason why 
microorganisms produce RLs is described [4]. In 
response to certain environmental signals, 
bacteria will differentiate from an independent 
free-living mode of growth and take up 
interdependent surface-attached microbial 
communities that are known as biofilms [5]. RLs 
are amphipathic molecules, which are composed 
of a hydrophilic sugar moiety (gluconic part) 
usually containing one or two rhamnoses, and a 
hydrophobic lipid moiety (lipidic part) which 
contains one or two hydroxy-fatty acids, 
providing them tension active properties [6]. First 
the thermophilic bacterium Thermus 
thermophilus HB8 was shown to produce RLs 
too, in large amounts using sunflower seed oil, 
sodium gluconate or glucose as carbon source 
[7-8]. Later additionally, bacteria Thermus sp., 
Thermus aquaticus and Meiothermus ruber were 
found to produce RLs differing in chain length up 
to unusually long chains with 24 carbon atoms 
and unsaturation [9].  
 
There is an extended list of reports concerning 
the biological impact of RLs, including the 
hemolytic activity, on various cellular constituents 
[10-14]. Saponin white (C27H42O3), a relative 
compound of RLs isolated from plants, exhibited 
hemolytic activity in red blood cells [15], and 
therefore it has been used as a positive control.  

Plethora of biological activities is ascribed to RLs 
detergent-like properties, and is referred mainly 
for P. aeruginosa biosurfactants that cause 
changes in the morphology of the plasmatic 
membrane [16]. Specifically, RLs caused a 
complete loss in cellular fatty acid content due to 
release of LPS (lipopolysaccharides) from the 
outer membrane and that is the probable 
mechanism of enhancement of cell surface 
hydrophobicity [17]. RLs also increase binding of 
insoluble substrates by augmenting cell surface’s 
hydrophobicity through displacement of LPS [18]. 
RLs cause alterations in the morphology of cell 
surface of the producer’s bacteria and they can 
disrupt white blood cells, namely neutral 
polymorphonuclear and monocytes [16,19-22].   

 
Moreover, due to the RLs secretion P. 
aeruginosa attacks respiratory epithelia 
reconstituted with primary human respiratory 
cells. The mechanism which is implicated in the 
internalization of RLs within the host cell 
membrane followed by tight-junction alterations 
ending to the presumption that the junction-
dependent barrier of the respiratory epithelium is 
selectively altered by RLs [23]. Increased levels 
of RLs in the bronchial epithelium of patients with 
cystic fibrosis with established infection of the 
bacterium P. aeruginosa and the aggravation of 
the clinical state of the patients were correlated 
[24]. RLs inhibit the function of the epithelial 
mucociliary and create alteration to the bronchus 
affecting the ion transport by decreasing the 
absorption of sodium and single direction 
chlorine through bronchial epithelium [25]. Di-
RLs were applied on clinical trials on the 
treatment of persistent diseases like psoriasis, 
lichen ruber planus, neurodermatitis and human 
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wound healing [26], and of autoimmune diseases 
[12]. Finally, RLs exhibit low irritancy and even 
anti-irritating effects, as well as compatibility with 
human skin [1]. 
 
The in vitro antitumor activity of RLs produced by 
the new strains of Pseudomonas aeruginosa 
BN10 and B189 demonstrated inhibition of 
proliferation of BV-173 pre-B human leukemia 
cells by induction of apoptotic cell death [27] and 
of the growth of human breast cancer cell line 
MCF-7 and the insect cell line C6/36 respectively 
[28]. However, RLs elicit the same cytotoxic 
sensitivity without any distinction between cancer 
and normal cell by reducing surface tension of 
culture medium due to their detergent properties 
[29]. 
 
Despite the numerous reports in RLs biological 
activities, few reports exist concerning their 
interaction in the level of cellular DNA. To assess 
the direct effects of RLs on the chromosome the 
SCEs methodology was used. SCEs are a 
natural phenomenon related to DNA replication 
and they involve into the exchange of 
chromosomal parts between homologous loci of 
the two sister chromatids during the phase of 
DNA synthesis and before M phase of cell cycle. 
The SCEs evaluation is a simple, rapid and very 
sensitive cytogenetic method for detecting 
chromosome instability, or DNA unrepair 
produced by different mutagenic agents, 
carcinogens or antimutagens [30-34]. SCEs 
methodology is more sensitive method than 
chromosome aberrations since induced DNA 
damage can be revealed by the induction of SCE 
frequencies even at low concentrations of DNA 
damaging factors. Furthermore, the other two 
cytogenetic parameters, the PRI and the MI, are 
also sensitive indices of cytostaticity and 
cytotoxicity produced by mutagenic and 
chemotherapeutic agents respectively. 
 
Irinotecan (CPT) has been chosen as a positive 
control to reveal any underlying chromosomal 
damage. CPT is a very common anticarcinogen, 
a semisynthetic analogue of camptothecin-11, 
which is an alkaloid isolated from the plant 
Camptotheca accuminata. Its action is focused 
on the inhibition of topoisomerase I, a valuable 
enzyme involved in DNA replication [35]. This 
ability turns CPT into an important DNA 
damaging agent, which produces high levels of 
SCEs in human chromosomes. 
 
The aim of this investigation was first the 
quantitative and qualitative evaluation of DNA 

damage induced on culture of peripheral 
lymphocytes using the SCE assay by both RLs 
itself, the secondary metabolites secreted in a 
host organism generally by pathogenic 
microorganisms during a bacterial attack, and in 
combination with the CPT added. For this 
purpose three cytogenetic parameters were 
estimated: (a) the SCEs, (b) the proliferation rate 
index (PRI), and (c) the mitotic index (MI), which 
is a qualitative and quantitative index of 
genotoxicity, cytostaticity and cytotoxicity 
respectively. Secondly, the aim was to estimate 
the interaction of RLs with DNA directly in vitro 
on calf thymus double-stranded DNA (dsCTDNA) 
and plasmid DNA (pDNA) by separating the 
products of RLs’s interaction with DNA by 
agarose gel electrophoresis. 
 
2. MATERIALS AND METHODS  
 
2.1 Bacterial Strain and Growth for RLs 

Production 
 
T. thermophilus HB8 (DSM 579) was grown in a 
rich medium (DSMZ-74) culture used as pre-
culture. For RLs production, the bacterium was 
grown in the presence of sodium gluconate 
(1.5% w/v) as carbon source at 75°C for 70 h [8]. 
 
2.2 Extraction and Analysis of RLs 
 
Produced RLs were extracted from the cell-free 
supernatant of T. thermophilus culture grown in 
the presence of sodium gluconate [7,8]. 
Quantification of RLs was obtained by the 
colorimetric orcinol method [36]. RLs 
concentration was calculated as described [37].  
 
2.3 Materials and Cell Culture 
 
2.3.1 In vitro  SCE assay  
 
Human peripheral blood samples were obtained 
from two male and two female donors, who were 
healthy medical students, not taking any 
medication, non-smokers and non-consumers of 
alcohol. Informed consent was taken from all 
donors and this study was approved by the 
University Ethics Committee. 
 
Human peripheral lymphocyte cultures were set 
up by adding 11 drops of heparinized whole 
blood from each of the four normal subjects to 5 
mL of chromosome medium 1A (RPMI 1640, 
Biochrom, Berlin). For SCEs evaluation, we add 
5-bromodeoxyuridine (BrdU) in a concentration 
of 5 mg/ml, RLs, CPT and saponin (SAP) at the 
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beginning of 72 h culture. All cultures were kept 
in the dark to minimize photolysis of the BrdU 
and were incubated for 72 h at 37°C. Two hours 
before harvesting, colchicine was added at 0.3 
mg/mL. Metaphases were collected and air-dried 
preparations were stained by the Fluorescence 
Plus Giemsa (FPG) technique [38-39] and 
scored for cells undergoing first mitosis (where 
both chromatids are dark stained), second 
(where one chromatid of each chromosome is 
dark stained) and third and/or subsequent 
mitosis (where a proportion of chromosomes 
have both chromatids light stained). Mean SCEs 
were measured only in suitable second division 
metaphases and at least 30-40 well spread and 
differentiated metaphases were blindly counted 
per culture, because, only at this stage, we were 
able to observe and count them. In order to 
establish PRI, at least 200 cells were counted 
and the following formula was used: PRI = 
(M1+2M2+3M3+)/N, were M1 is the percentage of 
cells at first division, M2 is the percentage of cells 
at second division and M3+ is the percentage of 
cells at third and subsequent divisions, while N is 
the total number of cells counted. Finally for the 
MIs, at least 2000 activated lymphocytes were 
determined for each culture [40-41]. 
 
2.3.2 Statistical analysis  
 
One-way analysis of variance (ANOVA) and 
subsequent the Duncan test were performed for 
all pair-wise comparisons after logarithmic 
transformation of SCE values. Chi-squared test 
was used for PRI and MI comparisons and a p-
value less than 0.05 was considered to indicate 
statistical significance.  
  
2.3.3 Materials for DNA electrophoresis  
 
Agarose was purchased from BRL. Tryptone and 
yeast extract were purchased from Oxoid 
(Unipath Ltd., Hampshire, UK). All other 
chemicals were obtained from Sigma. Nucleic 
acids: Native DNA (dsDNA) type I, highly 
polymerized from calf thymus gland was 
purchased from Sigma (D-1501). The DNA stock 
solution (1 mg/mL) was prepared at 0–4°C by 
dissolving the commercially purchased calf 
thymus DNA in buffer A [50 mM Tris 
[(hydroxymethyl)aminomethane)–HCl buffer (pH 
7.5)] as solvent. Plasmid DNA, pDNA (pET29c) 
was isolated from Escherichia coli (Top 10) using 
the GenEluteTM HP endotoxin-free plasmid 
maxiprep preparation (Sigma-Aldrich), according 
to the manufacturer's specifications. The 
intercalative dye ethidium bromide (EthBr), were 
purchased from Sigma. Stock solutions of RLs 

were prepared at a final concentration of 500 
µg/mL by dissolving RLs in water. 
 
2.3.4 RLs interaction with dsCT-DNA or pDNA  
 
The binding and/or cleavage reaction of dsCT-
DNA or pDNA exposed to RLs was monitored by 
DNA mobility shift experiments in agarose gel 
electrophoresis. Generally, the efficiency of the 
DNA interaction with a compound reflects to the 
electrophoretic mobility and it is dependent from 
the concentration of the compound as well as the 
form and structure of the DNA substrate used. 
When a DNA band after interaction with a 
compound displays a retardation in its 
electrophoretic mobility compared to control, this 
effect could be attributed to the binding of certain 
molecules of the compound on DNA molecules 
able to increase its molecular weight. While when 
in electrophoretic mobility a precession of the 
DNA band was observed after the pre-referred 
interaction this fact could be attributed to the 
damage of the initial DNA substrate mirrored to a 
decrease of its molecular weight. DNA molecules 
with lower molecular weight from that of the initial 
DNA molecule migrate faster, while DNA 
molecules with higher molecular weight delay 
compared with the mobility of the initial DNA 
band. Reactions contained aliquots of an amount 
(µg) of nucleic acid (CT-DNA DNA or pDNA) as 
indicated in the legends, which were incubated at 
37°C for 30 min in the presence of various 
concentrations of RLs in a buffer A to a final 
volume of 20 µL. Reaction were terminated and 
separated in agarose gel electrophoresis as 
previously described [39]. 
 

3. RESULTS  
 
3.1  Genotoxicity, Cytostaticity and 

Cytotoxicity of RLs on Human 
Lymphocytes 

 
For the evaluation of genotoxicity, cytostaticity 
and cytotoxicity caused by RLs on human 
lymphocytes the following three parameters have 
been evaluated: SCEs, PRIs and MIs, 
respectively for every experimental procedure 
that has been completed three times. Every one 
of these consisted of culture: control, with CPT, 
with RLs in concentrations of 100, 150 and 200 
µg/mL, with their combinations with CPT and 
finally with SAP, as positive controls, in 
concentrations of 1 and 2.5 µg/mL.  
 
First, as it is shown in Fig. 1 and Table 1, RLs in 
concentration of 100, 150 and 200 µg/mL 
produced a statistically significant induction of 
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SCEs compared to controls that indicate the 
possible genotoxic effects of RLs in these 
concentrations. In parallel CPT tested alone 
produced statistically significant induction of 
SCEs compared to controls. However, when RLs 
were tested in different concentrations 
supplemented with CPT SCE frequencies display 
statistically significant increase compared to both 
control and RLs cultures, but there wasn’t found 
any difference between the combinations of CPT 
plus RLs. The above double combinations (CPT 
plus RLs) compared to CPT alone, showed 
statistically significant (P<0.01) reduction in 
SCEs. This observation can be interpreted as a 
protective action of RLs against CPT. 
Furthermore, adding SAP as positive control, in 
concentrations used (1 and 2.5 µg/mL), it didn’t 
cause significant change in SCEs in these 
concentration compared to control and between 
the two concentrations. Similar results showed 
that RLs biosurfactants decrease the toxicity of 
chlorinated phenols against Pseudomonas putida 
DOT-T1E [42]. Secondly, as for PRIs, the 
addition of CPT produced a strong delay 
(P<0.01) in cell proliferation rate (PRI) compared 
to control. However, the increase of RLs 
concentrations showed a very strong significant 
decrease of PRIs (P<0.01). Similarly, a decrease 
(P<0.01) of PRI was observed from the double 
combination of CPT plus RLs of 200 µg/mL 
compared to controls (Fig. 2). 
 
At the end, the qualitative x2–test showed a 
decrease of MIs in cultures with RLs compared 

to control and specially a very strong decrease 
(P<0.01) in concentration of  200 µg/mL of RLs 
(Fig. 3). The above results are also collectively 
shown in Table 1. 
 
3.2 RLs interaction with CT-DNA by DNA 

Mobility Shift Experiments in Agarose 
Gel Electrophoresis  

 
Extracellular nucleic acids among other 
polymeric substances (EPS) alter the surface 
properties of the bacteria themselves to either 
promote or prevent initial attachment to a surface 
[43-44], and extracellular DNA has been shown 
to be one of the principal factors involved in 
biofilm formation for P. aeruginosa while 
treatment with DNase I inhibit it [45]. In parallel, 
RLs may be able to maintain open channels by 
affecting cell-cell interactions and the attachment 
of bacterial cells to surfaces and their production 
affects biofilm architecture in P. aeruginosa 
PAO1 [5]. Thus, the concept was to investigate a 
possible interaction between RLs and DNA in 
vitro. This interaction was studied first by treating 
calf thymus ds DNA with two amounts of RLs. 
When calf thymus ds DNA was incubated with 
RLs under investigation an up-shift of a small 
amount of the DNA band was observed to move, 
resulting in the formation of a new band in the 
top of the gel, while the main DNA band 
appeared more wide, diffused and degraded 
because of the detergent properties of RLs         
(Fig. 4). This suggestion mirrored binding or 
coating of DNA with RLs.   

 
Table 1. Effects of RLs on human lymphocytes 

 
Treatment SCEs/Metaphase ± 

SEM (range) 
Proliferation rate 
index (PRI) 

Mitotic index 
(MI) 

1. Control 3,70±0,29(1-8) 2,28 26,50 
2. CPT 0.5 µg/mL  31,75±1,14(17-40) 2,18 23,33 
3. RLs 100 µg/mL  5,34±0,44(2-11) 2,27  24,75 
4. RLs 150 µg/mL  6,00±0,88(1-12) 2,17  23,00  
5. RLs 200 µg/mL 7,56±0,34(2-18) 1,70 13,75 
6. CPT 0.5 µg/mL + RLs 100 µg/mL 19,53±0,97(11-25) 2,28 25,00 
7. CPT 0.5 µg/mL+ RLs 150 µg/mL 19,90±1,33(10-27) 2,33 24,50 
8. CPT 0.5 µg/mL + RLs 200 µg/mL 22,23±1,13(9-31) 2,19 23,50  
9. Saponin 1 µg/mL 4,06±0,39(1-8) 2,23  25,00  
10. Saponin 2.5 µg/mL 4,42±0,33(1-9) 2,18  22,00  
For SCEs, using ANOVA test, the F value was 134,995 (P<0.05 between cultures) and comparing with Tukey-

test, it was found P<0.01 for 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 2/6, 3/6, 4/7, 5/8 and P<0.05 for 2/7 and 2/8 
comparisons. For PRIs, using x2–test, it was found P<0.01 for 1/2, 1/4, 1/5, 1/10, 2/6, 2/7, 3/4, 3/5, 3/6, 3/10, 4/5, 

4/7, 5/8, 5/9, 5/10, 6/8, 7/8. For MIs, using x2–test, it was found P<0.01 for 1/5, 2/5, 3/5, 4/5, 5/8, 5/9 and 5/10 
comparisons 
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Fig. 1. The change in mean number of chromatid exch anges per metaphase for cell cultures 
exposed to CPT at final concentration of 0.5 µg/mL, RLs at concentrations of 100, 150 and 200 
µg/mL, CPT and the corresponding concentration of RL s and saponin in concentrations of 1 

and 2.5 µg/mL for 72 h. For the observation and assessment o f chromatid exchanges was used 
the method Fluorescence plus Giemsa (FpG) slightly modified (where P<0.01 for 1/2, 1/3, 1/4, 

1/5, 1/6, 1/7, 1/8, 2/6, 3/6, 4/7, 5/8 and P<0.05 f or 2/7 and 2/8 comparisons respectively) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The change in mean of PRI in lymphocyte cul tures exposed to CPT at final 
concentration of 0.5 µg/mL, RLs at concentrations of 100, 150 and 200 µg/mL, CPT and RLs at 
the corresponding concentrations and saponin at con centrations of 1 and 2.5 µg/mL for 72 h. 
The proliferation rate index was based on the deter mination of the proportion of metaphases 

1st, 2nd  or 3 rd+ generation (where P<0.01 for 1/2, 1/4, 1/5, 1/10,  2/6, 2/7, 3/4, 3/5, 3/6, 3/10, 4/5, 4/7, 
5/8, 5/9, 5/10, 6/8, 7/8 comparisons) 
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Fig. 3. The change in mean rate of MI in cell cultu res exposed to CPT at final concentration of 

0.5 µg/mL, RLs at concentrations of 100, 150 and 200 µg/mL, CPT and RLs at the 
corresponding concentrations and saponin at concent rations of 1 and 2.5 µg/mL for 72 h. 

Measurement of MI requires the measurement of metap hases encountered by a representative 
set of nuclei, that is, not undergoing mitosis (whe re P<0.01 for 1/5, 2/5, 3/5, 4/5, 5/8, 5/9 and 

5/10 comparisons) 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Agarose (1% w/v) gel electrophoretic patter n of calf thymus DNA after 2 h of 

electrophoresis duration. Each sample containing 3 µg of calf thymus DNA that was treated 
with the indicated amount of RLs at 37 °C for 60 mi n. Lane 1: control, calf thymus DNA 

incubated without treatment in water; Lanes 2 and 3 : calf thymus DNA treated with 16. 66 and 
33.33 µg of RLs, respectively 

 
3.3 Interaction of RLs with pDNA   
 

To take onto account the secondary and 
supercoiled structure of the pDNA, the possible 
direct interaction of RLs on the pDNA was also 
studied by treating pDNA with four different 
amounts of RLs and then by separating the 
products in agarose gel electrophoresis. When 
pDNA was incubated with RLs, an up-shift of the 
two pDNA bands (supercoiled and relaxed) was 
observed resulting in the formation of new bands 
with delayed electrophoretic mobility. Additionally 
a new band in the top of the gel near the well that 
increased quantitatively with the amount of RLs 
added, with a concomitant disappearance of the 

two pDNA bands. These results mirrored the 
binding of RLs with pDNA and formation of RLs-
pDNA complexes with delayed electrophoretic 
mobility attributed to the bio-surfactants nature 
and properties of RLs like detergents that may 
coat pDNA (Fig. 5). This finding might be proved 
significant whether RLs implicated and mediate 
DNA transfer with this manner between bacteria. 
 
4. DISCUSSION 
 
Despite the numerous reports in RLs biological 
impacts in cellular constituent’s, rare reports exist 
concerning their interaction in the level of cellular  
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Fig. 5. Agarose (1% w/v) gel electrophoretic pattern of an EthBr stained mixture of supercoiled 
and relaxed DNA, plasmid DNA (pET29c) 

Each sample containing 3 µg of plasmid DNA that was treated with the indicated amount 
RLs at 37°C for 60 min. Lane 1: control, plasmid DN A incubated without treatment in water 

(zone S represents the supercoiled form of plasmid ( supercoiled), zone L represents the linear 
form of the plasmid (linear) and zone R represents t he relaxed form 

Lanes 2, 3, 4 and 5: plasmid DNA treated with 6.66,  16.66, 33.33 

 
DNA. Lymphocytes displayed chromosomal 
fragility when are exposed to RLs, secreted by 
pathogens microorganisms during provisional or 
more permanent symbiosis with humans. RLs 
secretion by bacteria is favored under nutrient 
limitation especially phosphate [8], and this is 
crucial especially in humans when the host 
organism is found mainly under specific 
conditions of homeostatic imbalance
nutrients limitation of e.g. phosphate (in 
hypophosphatemia), nitrogen etc. RLs induce 
cytotoxicity as it was assessed by MTT test, 
pronounced alterations in morphology
skin fibroblasts, when they were co
with two different kinds of purified RLs, originated 
from T. thermophilus cultures grown in different 
carbon sources previously elucidated by our 
group [46].   
 
RLs reported to inhibit DNA synthesis in 
human epidermal cells but did not caused 
chromosomal aberrations [12], and to interact 
even with DNA transcriptional and translational 
machinery [26] after internalization 
receptor, passage through the phospholipid 
bilayer of the cell membrane and the probable 
formation of complexes with serum constituents. 
In contrast it was also reported that the ability of 
RLs (II) to cause SCEs on CHO cells,
that SCEs method did not show significant 
differences between control and treated cultured 
cells [12]. Additionally, structural chromosomal 
aberration analysis was performed for evaluation 
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RLs-treated tumor cell cultures [48,49]. Saponin 
tested in SCEs causes cytogenetic damages in 
cultured human lymphocytes. Saponins possess 
detergent-like properties and increase the 
permeability of cell membranes without 
destroying them [50]. It has been recently 
pointed out that the triterpenoid saponin avicin 
can induce apoptosis through the formation of 
channels within the cell membrane [51]. All these 
results are in agreement with our findings. 
 
Moreover, it was also demonstrated that RLs are 
able to bind or mask DNA due to their detergent 
properties, providing significance on their 
possible physiological role in different processes. 
A high-molecular-weight bioemulsifier was 
previously reported that coat the bacterial 
surface and can be transferred horizontally to 
other bacteria, thereby changing their surface 
properties and interaction with the environment. 
This horizontal transfer of bioemulsifiers from 
one bacterial species to another has significant 
implication in natural microbial communities, co-
aggregation and biofilms [52].  
 
Moreover other authors support the hypothesis 
that RLs facilitate the transport of flagellin, a 
bacterial virulence factor, across the stratum 
corneum, and this RLs-based shuttle system is 
not limited only to flagellin [53], but could 
constitute a universal transport system 
throughout the skin barrier [53], shuttling even 
host derived factors like the cytokines by the 
participation of this RL-based delivery system. 
RLs vesicle may potentially be able to fuse with 
the cell membrane and release its contents into 
cytoplasm like chemo-therapeutics agents etc 
[53]. 
 
The experimental results demonstrated also that 
CPT likely encased by RLs, was shuttled easier 
to the cells and consequently causes a reduced 
number of SCEs, resulting from its reduced 
capacity as anticarcinogen due to its coating by 
RLs. Thus, it can be assumed that other 
compounds like mutagens or other factors on 
cells including DNA might be delivered finally 
resulting in activation or suppression of a specific 
host response such as SCEs or CPT capacity. 
The DNA coating capacity prompted us to the fair 
question, why to exclude the possibility of 
transport of agents or other bacterial components 
into the eukaryotic cells including DNA via a RLs-
dependent manner, in case that bacteria are in 
favorable environment in host cells. Moreover,  
P. aeruginosa is capable of utilizing as a nutrient 
source extracellular DNA that is ubiquitous in 

various environments and is a rich source of 
carbon, nitrogen and phosphate [54]. The result 
of the direct binding of RLs to DNA might support 
this hypothesis. 
 
5. CONCLUSION 
 
The addition of RLs in culture of human 
lymphocytes influences the three cytogenetic 
indices (SCEs, PRIs and MIs) producing 
genotoxic, cytostatic and cytotoxic effects 
respectively. It is obvious that their presence in 
lymphocyte cultures decreases the genotoxic 
effects of CPT probably due to detergent-like 
activity of RLs that might coat the molecules of 
CPT and thereafter at one hand improve the 
uptake of CPT, but at the other hand prevent the 
CPT action due to its encasement into the RLs 
layer. Thus, we believe that RLs worked as 
scavengers of CPT molecules and so they 
reduced CPT’s activity. On the other hand RLs 
bind to pDNA, and this indicates that they have 
the ability to be involved in DNA horizontal 
transfer phenomena. 
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