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Abstract

In this paper, we introduce the comparative study of new #iegeiterative methods for finding the ze
of the nonlinear equatidifx) = 0. The new method based on the Steffensen’s methoHalley method
with using predictor — corrector technique. It is esligd that the new method (NTSM-1) has
convergence order sixth and second new method (NTSM-2) hasrgenge order seventh. Numerigal
tests show that the new methods is comparable with the wellrkegisting methods and gives better
results.

Keywords: Non linear equations; iterative methods; three stapjvergence analysis; Halley method;
Steffensen’s method.

1 Introduction

Numerical analysis is the area of mathematics and comgcitnces that creates, analyzes and implements
algorithms for solving numerically the problems of conbtmsi mathematics. Such problems originate
generally from real — world applications of algebra, geloyrend calculus and they involve variables which
vary continuously: These problems occur throughout the nasgiahces, social sciences, engineering,
medicine and business. New three step iterative methmdéintling the approximate solutions of the
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nonlinear equatiof(x) = 0 are being developed using several different techniques inglddiylor series,
quadrature formulas, homotopy and decomposition technique$l-4&¢ and the references therein. The
most famous of these methods is the classical Newton’s m@¥ihap[16].

— f(xn)
Xn+1 = Xn — f’(x";) (1)

The Newton's method (1) was modified by Steffensené&hod who replaced the first derivatif€x) in
Newton's method by forward difference approximation [16].

’ _f(xn+ f(xn))_f(xn)
x) ==l one g
f ( ) f(xn)

and obtained the famous Steffensen’s method (SM) [17,8,16].

[f xn)1?
fCen+f (en))—f (xn) )

Xn+1 = Xp —
Newton's method and Steffensen’s method are of second aodeerges.
For a givenx,, compute approximation solutiofy,; by the iterative scheme

2f(xn) f'(xn)
_ - 3
Xn+1 Xn 2F 2 (xp) -f () f 7 (xn) ?

This is known as Halley’'s method has cubic convergenee[(s&2]).

We use Predictor — corrector methods, we shall now skstie application of the explicit and implicit
multistep methods, for the solution of the initial valproblems. We use explicit (predictor) method for
predicting a value and then use the implicit (correatzg}hod iteratively until the convergence is obtained
[20].

2 lterative Methods

It is well known that a wide class of problems, whickeaiin various fields of pure and applied sciences can
be formulated in terms of nonlinear equations of the.type

fx)=0 (4)

Various numerical methods have been developed using ther Bayies and other techniques. In this paper,
we use another series of the nonlinear funcfier) which can be obtained by using the trapezoidal rule and
the Fundamental Theorem of Calculus. To be more greeais assume thatis a simple root of (4) angis

an initial guess sufficiently close tonow using the trapezoidal rule and fundamental theorem afloa)c
one can show that the functigiix) can be approximated by the series [19].

fe)=fO +x7_7 [f G+ f (] (5)
wheref ’(x) is the differential off .
From (4) and (5), we have

o SD) o f@)
x =y-250 == e ©)
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Using (6), one can suggest the following iterative method feirgpthe nonlinear equations (4).

For a given initial choice,, find the approximate solutioy, ., by the iterative scheme [19].

f(xn)

f/(en+1)
- x L n+l/
f(xn) n)

f(xn)

Xn+1 = Xn (xn+1 -

N=0,1,2,3, ..o (7

we use the predictor — corrector technique. Using theeBisgh’'s method as a predictor, Halley method and
equation (6) as a corrector, we suggest and analyze towifa iterative method for solving the nonlinear
equation (4) and this is the main motivation of this note [174]8

Theorem 1: For a given initial choice,, find the approximate solutior),, ; by the iterative schemes. From
equation (2), (3) and (6).

[f ew)]?

A = X Gt £ Gon))—F o)

b = a2 fan)
n n ZfZ(an) -f (an)f”(an)

— (xn) [ (bn)
Xn+1 = Xpn - 2 x::) - (bn - xn) -

f
fe I (xn)

Theorem 1 is called the NEW THREE STEP METHOD -1 (NIF$) and has sixth order convergence.
Theorem 2: From equation (4) and equation (5) we can have

2 f(xn)
Xnt1 =Xp - =5
LTI (o) +f ()]

This is fixed point formulation enable us to suggest theWatig iterative method for solution the nonlinear
equation.

Theorem 3: For a given initial choice,, find the approximate solutior),,, by the iterative schemes. From
equation (2), (3) and theorem (2)

a. = _ [f en))?
n T f@ntf ()= f(xn)
bn — _ 2f(an) f'(an)

= 2f‘2(an) -f (an)f”(an)

— 2 f(xn)
b1 = Xn T [ o]

Theorem 3 is called the NEW THREE STEP METHOD -2 (NF3) and has seventh order convergence.
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3 Convergence Analysis

Let us now discuss the convergence analysis of the aboveehiméo

Theorem 3.1:leta el be a simple zero of sufficiently differential functipn I <R — R for an open
interval |, if x4 is sufficiently close ta then the three step iterative method defined by thedrsixth order
convergence.

Proof: Let a be a simple zero ¢f. Than by expanding(x,,) andf” (x,) abouta we have

Xp) =e,c, +e2c, +elcy + ... 8
n nt1 n-2 n+3
4 —1+22 & 2+ﬂ 3 4 9
f(xn) = B en B en p eyt (9)
1 1 1

Wherec, == f®(@)  k=1,2,3, oo,

ande, =x, -a

from (8), we have
[f(c)]? =c2e2 + 2cicped +c2ef + ... (10)
flen + f(x)) =cten + (Beicy + c2c, + 2¢8)e2 +....... (12)

From (10) and (11), we have

[F )2 — N2 .
Tt ) en—( o +c, +2 2 erit .. (12)
From (12), we have
2
a,=a +(Z—2+c2+25—§)e§+ .......... (13)
1 1

Let us set A =,, - @. Then the equation (13) can be re — written in the form
2
A=(Z24c,4+22)e2+........ (14)
c1 cf

Now expanding (a,), f “(a,), f ”(a,) abouta and using (13), we have

ay)=Acy +A%c, + A3cy + ... 15

n 1 2 3

f (ay) =c; + A2¢c, + A?3c3 + A34c, + ... (16)
f 7(a,) =2c, +Abcy + A%12¢, +......... a7

Combining (13) — (17), we have

b, =a+(c?— c;) A3 (18)
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Also expanding’ ’(b,) abouta and using (18), we have
frba)=c [142(c3— c)A® 2 + 3(F— )2 A4° 2 4| of1
1 1
By substituting (8), (9), (18), (19) in theorem (1) and after ssimgle calculations, we obtain

2
Xpsq =0 +(c2 — c3)(z—j+c2+22—§) e+ ... (20)

ensr = (2 — c3)(z—i+c2+2%) eS+ i, (21)
This shows that Theorem 1 is sixth order convergence.
Let us now discuss the convergence analysis of the abaweihnd.
Theorem 3.2: Leta eI be a simple zero of sufficiently differential functipn I <R — R for an open

interval | , ifx, is sufficiently close ta then the three step iterative method defined by theoresav@nth
order convergence.

Proof:
From equation (19), we have
f/(by)=2c, e, +2c,e2+2c;e3+2c,ef + ........ (22)

By substituting (8), (9), (22) in theorem ( 3) and after somelsirralculations, we obtain

2
Xpe1 =0 +2(c2 — ¢3) (Z—j+c2 +ZZ—§) L U (23)

2
eni1 =2(c2 — c3)(2—j+cz+25—§) el i (24)

This shows that Theorem 3 is seventh order convergence.

4 Numerical Examples

For comparisons, we have used Steffensen’s method [20heae®l step predictor-corrector Newton-Halley
method (PCNH) [8] defined respectively by

el
Tnt1 = Xn fOen+f(xn))—f (xn)
and
. _few
Wn T T
— 2f(wn) f’'(Wn)
In = Wn T S ) - ) )
fm)  F2m)f” ()
P - - ,
nl =Y T EE S T 2 )
n=0,1,2,.....
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All computations are performed using MATLAB. The followiagamples are used for numerical testing.

fi(x) = 3 —\/1 + sin(x)
fo(x) = x + sin) - x3
f2(x) =e* -3x
fa(x) = cosf) - X +1
fs(x) = xe* -2

fo(x) = xlogyox -1.2
f7(x) =x — cos(x)
fo(x) =4x-e*
fo(x) = sin) -1 -x3
fio(x) =e* - 1.5 -tan"'(x)

As for the convergence criteria, it was required thatdiseance of two consecutive approximati@nand
also displayed is the number of iterations to approxirttagezero (IT), the approximate zerp and the

valuef (x,).

Table 1. Numerical examples and comparison

Method IT x, f(x,) be)

f1,%=0.5

SM 4 0.391846907002648 -4.44089209850063e-0161.01410879693731e-010
PCNH 3 0.391846907002648 2.50388310085725e-008
NTSM-1 2 0.391846907002648 7.53028660899213e-006
NTSM-2 2 0.391846907002648 3.78833973964160e-006
f2.%0=1

SM 5 1.31716296100603 9.76996261670138e-015 3.32861537577501e-005
PCNH 6 1.31716296100603 4.68398653197255e-011
NTSM-1 3 1.31716296100603 5.34990427110637e-012
NTSM-2 3 1.31716296100603 6.47483999749454e-009
f3,%=0.2

SM 4 0.619061286735945 2.22044604925031e-016 7.0389180040209e-009
PCNH 5 0.619061286735945 6.835598753691e-011
NTSM-1 3 0.619061286735945 3.10652923940502e-007
NTSM-2 3 0.619061286735945 3.59104859182224e-008
fa,%0=0.2

SM 5 0.607101648103123 -1.33226762955019e-0159.99200722162641e-016
PCNH 4 0.607101648103123 5.16754083967896e-010
NTSM-1 3 0.607101648103123 6.95768997971413e-011
NTSM-2 3 0.607101648103123 3.65396601864632e-012
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Method T x, f(x) o)

f5! Xo = 1

SM 6 0.852605502013726 -2.44249065417534e-0153.517610647279e-010
PCNH 4 0.852605502013726 2.43496630636386e-008
NTSM-1 4 0.852605502013726 2.68309041651094e-010
NTSM-2 3 0.852605502013726 2.88919999036352e-011
fer %o =2

SM 4 2.74064609597369 -3.10862446895044e-0151.70161289503313e-008
PCNH 4 2.74064609597369 1.95032203720302e-008
NTSM-1 3 2.74064609597369 3.98418986691024e-009
NTSM-2 3 2.74064609597369 1.98129956885396e-010
f7, xo =0. 5

SM 5 0.739085133215161 6.66133814775094e-016 7.13984427136438e-013
PCNH 4 0.739085133215161 7.05561942204724e-010
NTSM-1 3 0.739085133215161 4.4899972628798e-011
NTSM-2 3 0.739085133215161 2.45103937146496e-012
fe, x0=1.8

SM 6 2.15329236411035 -1.77635683940025e-0155.27400345617934e-011
PCNH Divergent

NTSM-1 3 2.15329236411035 1.48246099840321e-008
NTSM-2 3 2.15329236411035 2.29886798486234e-008
fo, %o =-1

SM 4 -1.24905214850119 -1.99840144432528e-0140.000227912085001725
PCNH 5 -1.24905214850119 2.53839993469285e-009
NTSM-1 3 -1.24905214850119 1.20446399520802e-008
NTSM-2 3 -1.24905214850119 1.01799013663140e-009
fi0 %=1

SM 5 0.767653266201279 0 2.27928786955545e-012
PCNH 5 0.767653266201279 1.48392409471398e-012
NTSM-1 3 0.767653266201279 9.48948919443637e-010
NTSM-2 3 0.767653266201279 1.48009937639415e-010

5 Conclusion

In this paper, we have suggested and analyzed newly dedeteghnique is faster than Steffensen’s method
(SM) and predictor-corrector Newton-Halley method (PCNHiis method based on a Steffensen’s method
and Halley method and using predictor — corrector techniquem@thod can be considered as significant
improvement of Steffensen’s method and PCNH and can bédeoed as alternative method of solving
nonlinear equations.
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