

SCIENCEDOMAIN *international* www.sciencedomain.org

Some New Three Step Iterative Methods for Solving Nonlinear Equation Using Steffensen's and Halley Method

Najmuddin Ahmad1* and Vimal Pratap Singh¹

¹Department of Mathematics, Integral University, Lucknow, Uttar Pradesh, India.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/29322 *Editor(s):* (1) Andrej V. Plotnikov, Department of Applied and Calculus Mathematics and CAD, Odessa State Academy of Civil Engineering and Architecture, Ukraine. (2) Zuomao Yan, Department of Mathematics, Hexi University. China. *Reviewers:* (1) Nasr Al Din IDE, University of Aleppo, Syria. (2) Fayyaz Ahmad, Politecnical University Catalonia, Barcelona, Spain. Complete Peer review History: http://www.sciencedomain.org/review-history/16602

Original Research Article

Received: 3rd September 2016 Accepted: 29th September 2016 Published: 18th October 2016

Abstract

In this paper, we introduce the comparative study of new three step iterative methods for finding the zeros of the nonlinear equation $f(x) = 0$. The new method based on the Steffensen's method and Halley method with using predictor – corrector technique. It is established that the new method (NTSM-1) has convergence order sixth and second new method (NTSM-2) has convergence order seventh. Numerical tests show that the new methods is comparable with the well known existing methods and gives better results.

Keywords: Non linear equations; iterative methods; three step; convergence analysis; Halley method; Steffensen's method.

1 Introduction

Numerical analysis is the area of mathematics and computer sciences that creates, analyzes and implements algorithms for solving numerically the problems of continuous mathematics. Such problems originate generally from real – world applications of algebra, geometry and calculus and they involve variables which vary continuously: These problems occur throughout the natural sciences, social sciences, engineering, medicine and business. New three step iterative methods for finding the approximate solutions of the

*_____________________________________ *Corresponding author: E-mail: najmuddinahmad33@gmail.com;*

nonlinear equation $f(x) = 0$ are being developed using several different techniques including Taylor series, quadrature formulas, homotopy and decomposition techniques, see [1-15] and the references therein. The most famous of these methods is the classical Newton's method (NM) [16].

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\tag{1}
$$

The Newton's method (1) was modified by Steffensen's method who replaced the first derivative $f(x)$ in Newton's method by forward difference approximation [16].

$$
f'(x) = \frac{f(x_n + f(x_n)) - f(x_n)}{f(x_n)}
$$

and obtained the famous Steffensen's method (SM) [17,8,16].

$$
x_{n+1} = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}\tag{2}
$$

Newton's method and Steffensen's method are of second order converges.

For a given x_0 , compute approximation solution x_{n+1} by the iterative scheme

$$
x_{n+1} = x_n - \frac{2f(x_n) f'(x_n)}{2f^2(x_n) - f(x_n)f''(x_n)}
$$
\n(3)

This is known as Halley's method has cubic convergence (see [7,12]).

We use Predictor – corrector methods, we shall now discuss the application of the explicit and implicit multistep methods, for the solution of the initial value problems. We use explicit (predictor) method for predicting a value and then use the implicit (corrector) method iteratively until the convergence is obtained [20].

2 Iterative Methods

It is well known that a wide class of problems, which arise in various fields of pure and applied sciences can be formulated in terms of nonlinear equations of the type.

 $f(x) = 0$ (4)

Various numerical methods have been developed using the Taylor series and other techniques. In this paper, we use another series of the nonlinear function $f(x)$ which can be obtained by using the trapezoidal rule and the Fundamental Theorem of Calculus. To be more precise, we assume that α is a simple root of (4) and γ is an initial guess sufficiently close to α now using the trapezoidal rule and fundamental theorem of calculus, one can show that the function $f(x)$ can be approximated by the series [19].

$$
f(x) = f(\gamma) + \frac{x - \gamma}{2} [f'(x) + f'(\gamma)] \tag{5}
$$

where $f'(x)$ is the differential of f.

From (4) and (5), we have

$$
x = \gamma - 2 \frac{f(\gamma)}{f'(\gamma)} - (x - \gamma) \frac{f'(\alpha)}{f'(\gamma)}
$$
(6)

Using (6), one can suggest the following iterative method for solving the nonlinear equations (4).

For a given initial choice x_0 , find the approximate solution x_{n+1} , by the iterative scheme [19].

$$
x_{n+1} = x_n - 2 \frac{f(x_n)}{f'(x_n)} - (x_{n+1} - x_n) \frac{f'(x_{n+1})}{f'(x_n)}
$$

n = 0, 1, 2, 3, (7)

we use the predictor – corrector technique. Using the Steffensen's method as a predictor, Halley method and equation (6) as a corrector, we suggest and analyze the following iterative method for solving the nonlinear equation (4) and this is the main motivation of this note [17,18,14].

Theorem 1: For a given initial choice x_0 , find the approximate solution x_{n+1} by the iterative schemes. From equation (2) , (3) and (6) .

$$
a_n = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}
$$

\n
$$
b_n = a_n - \frac{2f(a_n) f'(a_n)}{2f^2(a_n) - f(a_n)f''(a_n)}
$$

\n
$$
x_{n+1} = x_n - 2 \frac{f(x_n)}{f'(x_n)} - (b_n - x_n) \frac{f'(b_n)}{f'(x_n)}
$$

\n
$$
n = 0, 1, 2, 3, \dots
$$

Theorem 1 is called the NEW THREE STEP METHOD -1 (NTSM-1) and has sixth order convergence.

Theorem 2: From equation (4) and equation (5) we can have

$$
x_{n+1} = x_n - \frac{2 f(x_n)}{[f'(x_{n+1}) + f'(x_n)]}
$$

This is fixed point formulation enable us to suggest the following iterative method for solution the nonlinear equation.

Theorem 3: For a given initial choice x_0 , find the approximate solution x_{n+1} by the iterative schemes. From equation (2) , (3) and theorem (2)

$$
a_n = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}
$$

\n
$$
b_n = a_n - \frac{2f(a_n) f'(a_n)}{2f^2(a_n) - f(a_n)f''(a_n)}
$$

\n
$$
x_{n+1} = x_n - \frac{2 f(x_n)}{[f'(b_n) + f'(x_n)]}
$$

n=0, 1, 2, 3, …………………

Theorem 3 is called the NEW THREE STEP METHOD -2 (NTSM-2) and has seventh order convergence.

3 Convergence Analysis

Let us now discuss the convergence analysis of the above Theorem 1.

Theorem 3.1: let $\alpha \in I$ be a simple zero of sufficiently differential function $f : I \subseteq R \to R$ for an open interval I, if x_0 is sufficiently close to α then the three step iterative method defined by theorem 1 sixth order convergence.

Proof: Let α be a simple zero of f. Than by expanding $f(x_n)$ and $f'(x_n)$ about α we have

$$
f(x_n) = e_n c_1 + e_n^2 c_2 + e_n^3 c_3 + \dots
$$
 (8)

$$
f'(x_n) = 1 + \frac{2c_2}{c_1} e_n + \frac{3c_3}{c_1} e_n^2 + \frac{4c_4}{c_1} e_n^3 + \dots
$$
 (9)

Where $c_k = \frac{1}{k!}$ $\frac{1}{k!} f^{(k)}(\alpha)$ k=1, 2, 3, …..........

and $e_n = x_n - \alpha$

from (8), we have

$$
[f(x_n)]^2 = c_1^2 e_n^2 + 2 c_1 c_2 e_n^3 + c_2^2 e_n^4 + \dots \dots \tag{10}
$$

$$
f(x_n + f(x_n)) = c_1^2 e_n + (3c_1c_2 + c_1^2 c_2 + 2c_2^2)e_n^2 + \dots
$$
\n(11)

From (10) and (11) , we have

$$
\frac{[f(x_n)]^2}{f(x_n+f(x_n))} = e_n - \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right)e_n^2 + \dots \dots \tag{12}
$$

From (12), we have

$$
a_n = \alpha + \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right)e_n^2 + \dots \dots \tag{13}
$$

Let us set $A = a_n - \alpha$. Then the equation (13) can be re – written in the form

$$
A = \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right) e_n^2 + \dots \dots \tag{14}
$$

Now expanding $f(a_n)$, $f'(a_n)$, $f''(a_n)$ about α and using (13), we have

$$
f(a_n) = Ac_1 + A^2c_2 + A^3c_3 + \dots
$$
 (15)

$$
f'(a_n) = c_1 + A2c_2 + A^23c_3 + A^34c_4 + \dots
$$
 (16)

$$
f''(a_n) = 2c_2 + A6c_3 + A^2 12c_4 + \dots \tag{17}
$$

Combining $(13) - (17)$, we have

$$
b_n = \alpha + (c_2^2 - c_3) A^3
$$
 (18)

Also expanding $f'(b_n)$ about α and using (18), we have

$$
f'(b_n) = c_1 \left[1 + 2(c_2^2 - c_3)A^3 \frac{c_2}{c_1} + 3(c_2^2 - c_3)^2 A^6 \frac{c_3}{c_1} + \cdots \right]
$$
 (19)

By substituting (8) , (9) , (18) , (19) in theorem (1) and after some simple calculations, we obtain

$$
x_{n+1} = \alpha + (c_2^2 - c_3) \left(\frac{c_2}{c_1} + c_2 + 2 \frac{c_2^2}{c_1^2} \right) e_n^6 + \dots \dots \dots \tag{20}
$$

$$
e_{n+1} = (c_2^2 - c_3)(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}) e_n^6 + \dots \tag{21}
$$

This shows that Theorem 1 is sixth order convergence.

Let us now discuss the convergence analysis of the above theorem 3.

Theorem 3.2: Let $\alpha \in I$ be a simple zero of sufficiently differential function $f : I \subseteq R \to R$ for an open interval I, if x_0 is sufficiently close to α then the three step iterative method defined by theorem 3 seventh order convergence.

Proof:

From equation (19), we have

$$
f'(b_n) = 2c_1 e_n + 2 c_2 e_n^2 + 2 c_3 e_n^3 + 2 c_4 e_n^4 + \dots
$$
 (22)

By substituting (8), (9), (22) in theorem (3) and after some simple calculations, we obtain

$$
x_{n+1} = \alpha + 2(c_2^2 - c_3) \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right) e_n^7 + \dots \tag{23}
$$

$$
e_{n+1} = 2(c_2^2 - c_3) \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right) e_n^7 + \dots \tag{24}
$$

This shows that Theorem 3 is seventh order convergence.

4 Numerical Examples

For comparisons, we have used Steffensen's method [20] and three step predictor-corrector Newton-Halley method (PCNH) [8] defined respectively by

$$
x_{n+1} = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}
$$

and

$$
w_n = x_n - \frac{f(x_n)}{f'(x_n)},
$$

\n
$$
y_n = w_n - \frac{2f(w_n) f'(w_n)}{2f'^2(w_n) - f(w_n)f''(w_n)},
$$

\n
$$
x_{n+1} = y_n - 2 \frac{f(y_n)}{f'(y_n)} - \frac{f^2(y_n)f''(y_n)}{2f'(y_n)^3},
$$

\n
$$
n = 0, 1, 2,
$$

All computations are performed using MATLAB. The following examples are used for numerical testing.

 $f_1(x) = 3x - \sqrt{1 + \sin(x)}$ $f_2(x) = x + \sin(x) - x^3$ $f_3(x) = e^x - 3x$ $f_4(x) = \cos(x) - 3x + 1$ $f_5(x) = xe^x - 2$ $f_6(x) = xlog_{10}x -1.2$ $f_7(x) = x - \cos(x)$ $f_8(x) = 4x - e^x$ $f_9(x) = \sin(x) - 1 - x^3$ $f_{10}(x) = e^x - 1.5 - \tan^{-1}(x)$

As for the convergence criteria, it was required that the distance of two consecutive approximations δ and also displayed is the number of iterations to approximate the zero (IT), the approximate zero x_n and the value $f(x_n)$.

Table 1. Numerical examples and comparison

5 Conclusion

In this paper, we have suggested and analyzed newly developed technique is faster than Steffensen's method (SM) and predictor-corrector Newton-Halley method (PCNH). This method based on a Steffensen's method and Halley method and using predictor – corrector technique. Our method can be considered as significant improvement of Steffensen's method and PCNH and can be considered as alternative method of solving nonlinear equations.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Ostrowaki AM. Solution of equations and systems of equations. Academic Press, New-York, London; 1966.
- [2] Noor MA. New family of iterative methods for nonlinear equations. Appl. Math. Computation. 2007; 190:553–558.
- [3] Hasan A, Ahmad N. Comparative study of a new iterative method with that of Newton's method for solving algebraic and transcedental equations. 2015;4(3). ISSN 2347-8527
- [4] Chun C. Iterative methods improving Newton's method by the decomposition method. Computers Math. Appl. 2005;50:1559-1568 .
- [5] Householder AS. The numerical treatment of a single nonlinear equation. McGraw Hill, New York; 1970.
- [6] Ortega JM, Rheinboldt WG. Iterative solutions of nonlinear equations in several variables. Press, New York – London; 1970. DOI: 10.1137/1.9780898719468
- [7] Hafiz MA. Solving nonlinear equations using Steffensen type methods with optimal order of convergence. Palestine Journal of Mathematics. 2014;3(1):113-119.
- [8] Bahgat SM, Hafiz MA. New two step predictor Corrector method with ninth order convergence for solving nonlinear equations. Journal of Advance in Mathematics. 2013;2:432-437.
- [9] Bahgat SM, Hafiz MA. Three Step iterative method with Eighteenth order convergence for solving nonlinear equations. International Journal of pure and applied Mathematics. 2014;93(1):85-94. ISSN: 1314-3395 (on-line version)
- [10] Javidi M. Fourth order and fifth order iterative methods for nonlinear algebraic equations. Math. Comput. Model. 2009;50:66-71.
- [11] Zheng Q, Wang J, Zhao P, Zhang L. A Steffensen-like method and its higher order variants. Applied Mathematics and Computation. 2009;214:10-16.
- [12] Khattri SK, Log T. Constructing third order derivative free iterative methods. Int. J. Comput. Math. 2011;88(7):1509-1518. DOI: 10.1080/00207160.2010.520705
- [13] Khattri SK. Quadrature based optimal iterative methods with applications in high precision computing. Numer. Math. Theor, Meth. Appl. 2012;5:592-601.
- [14] Khattri SK, Steihaug T. Algorithm for forming derivative free optimal methods. Numerical Algorithms; 2013. DOI: 10.1007/s11075-013-9715-x
- [15] Feng X, He Y. High order iterative methods without derivatives for solving nonlinear equations. Applied Mathematics and Computation. 2007;186: 617-1623.
- [16] Jain MK, Iyengar SRK, Jain RK. Numerical methods for scientific and engineering computation. New Age International Publishers; 2009.
- [17] Kincaid D, Cheney W. Numerical analysis. Second ed., Brooks/Cole, Pacific Grove, CA; 1996.
- [18] Soleymani F. Optimized Steffensen-type method with eight-order convergence and high efficiency index. International Journal of Mathematics and Mathematical Sciences. 2012;1-14. (Article in press)
- [19] Noor MA, Noor KI, Kshif A. Some new iterative methods for solving nonlinear equations. World Applied Sciences Journal. 2012;20(6):870-874.
- [20] Argyros LK, Khattri SK. An improved semi local convergence analysis for the Chebyshev method. Journal of Applied Mathematics and Computing. 2013;42(1,2):509-528. DOI: 10.1007/s12190-013-0647-3

___ *© 2016 Ahmad and Singh; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/16602