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Abstract 
 
A simple model presented here is to study the thermal effect on vibration of non-homogeneous orthotropic 
visco-elastic rectangular plate of parabolically varying thickness having clamped boundary conditions on all 
the four edges. For non-homogeneity of the plate material, density is assumed to vary linearly in one direc-
tion. Using the separation of variables method, the governing differential equation has been solved for vibra-
tion of non-homogeneous orthotropic visco-elastic rectangular plate. An approximate frequency equation is 
derived by using Rayleigh-Ritz technique with a two-term deflection function. Results are calculated for time 
period and deflection at different points, for the first two modes of vibration, for various values of tempera-
ture gradients, non-homogeneity constant, taper constant and aspect ratio and shown by graphs. 
 
Keywords: Thermal Gradient, Vibration, Non-Homogeneous, Orthotropic, Visco-Elastic, Rectangular Plate, 

Variable Thickness 

1. Introduction 
 

In modern technology an interest towards the effect of 
high temperatures on non-homogeneous plates of varia-
ble thickness is developed due to applications in various 
engineering branches such as nuclear, power plants, 
aero-nautical, chemical etc. where metals and their alloys 
exhibits visco-elastic behavior. Therefore for these 
changes the structures are exposed to high intensity, heat 
fluxes and material properties undergo significant 
changes. 

The materials are being developed, depending upon 
the requirement and durability, so that these can be used 
to give better strength, flexibility, weight effectiveness 
and efficiency. So some new materials and alloys are 
utilized in making structural parts of equipment used in 
modern technological industries like space craft, jet en-
gine, earth quake resistance structures, telephone indus-
try etc. Applications of such materials are due to reduc-
tion of weight and size, low expenses and enhancement 
in effectiveness and strength. It is well known that first 
few frequencies of structure should be known before 
finalizing the design of a structure. The study of vibra-
tion of plate structures is important in a wide variety of 

applications in engineering design. Elastic plates are 
widely employed nowadays in civil, aeronautical and 
marine structures designs. Complex shapes with variety 
of thickness variation are sometimes incorporated to re-
duce costly material, lighten the loads, and provide ven-
tilation and to alter the resonant frequencies of the struc-
tures. Dynamic behavior of these structures is strongly 
dependent on boundary conditions, geometric shapes, 
material properties etc. 

As technology develops new discoveries day by day 
like in jet engine, field of spacecraft and nuclear power 
plants etc., the time dependent behavior of materials has 
become of great importance. Thus, the need of the study 
of vibration of visco-elastic plates (it may be rectangular, 
circular, elliptical etc.) of certain aspect ratios with some 
simple boundary conditions has been increased rapidly. 

Vibration phenomenon, common in mechanical de-
vices and structures, is undesirable in many cases, such 
as machine tools. But this phenomenon is not always 
unwanted; for example, vibration is needed in the opera-
tion of vibration screens. 

In the course of time, engineers have become increa-
singly conscious of the importance of an elastic behavior 
of many materials and mathematical formulations have 
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been attempted and applied to practical problems. Since 
plastics and new materials are widely used in the con-
struction of equipment and structures, so the develop-
ment of the application of visco-elasticity is needed to 
permit rational design. 

Leissa’s monograph [1] contains an excellent discus-
sion of the subject of vibrating plates with elastic edge 
support. Leissa [2] has given the solution for rectangular 
plate of variable thickness. Gupta, Johri and Vats [3] have 
discussed the thermal effect on vibration of non- homo-
geneous orthotropic rectangular plate having bi- direc-
tional parabolically varying thickness. Sobotka [4] dis-
cussed the free vibration of visco-elastic orthotropic rec-
tangular plates were discussed. Tomar and Gupta [5-7] 
solved the vibration problem of orthotropic rectangular 
plate of varying thickness subjected to a thermal gradient. 
Lal [8] has studied the transverse vibrations of ortho- 
tropic non-uniform rectangular plates with continuously 
varying density.  

Visco-elasticity, as its name implies, is a generaliza-
tion of elasticity and viscosity. The ideal linear elastic 
element is the spring. When a tensile force is applied to it, 
the increase in distance between its two ends is propor-
tional to the force. The ideal linear viscous element is the 
dashpot. 

The plate type structural components in aircraft and 
rockets have to operate under elevated temperatures that 
cause non-homogeneity in the plate material, i.e., elastic 
constants of the materials becomes functions of space 
variables. In an up-to-date survey of literature, authors 
have come across various models to account for non- 
homogeneity of plate materials proposed by researchers 
dealing with vibration but none of them consider 
non-homogeneity with thermal effect on visco-elastic 
plates. 

Gupta and Khanna [9] have studied the effect of li-
nearly varying thickness in both directions on vibration 
of visco-elastic rectangular plate. Gupta and Kaur [10] 
studied the effect of thermal on vibration of clamped 
viscoelastic rectangular plate with linearly thickness in 
both directions. Gupta, Kumar and Gupta [11] have con-
sidered the vibration of visco-elastic parallelogram plate 
with parabolic thickness variation. Recently, Gupta and 
Singhal [12] discussed the effect of non-homogeneity on 
thermally induced vibration of orthotropic visco-elastic 
rectangular plate of linearly varying thickness. 

The object of the present study is to determine the 
thermal effect on vibration of non-homogeneous ortho- 
tropic visco-elastic rectangular plate of parabolically 
varying thickness. It is clamped supported on all the four 
edges. The assumption of small deflection and linear 
orthotropic visco-elastic properties are made. It is further 
assumed that the visco-elastic properties of the plates are 

of the Kelvin type. Time period and deflection for the 
first two modes of vibration are calculated for the various 
values of thermal gradients, non-homogeneity constant, 
aspect ratio and taper constant.  
 
2. Analysis 
 
The equation of motion of a visco-elastic rectangular 
plate of variable thickness is [12]: 
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(1) 
and 
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2 0T p DT                   (2) 

where Equations (1) and (2) are the differential equations 
of motion for orthotropic plate of variable thickness and 
time function for visco-elastic orthotropic plate for free 
vibration respectively. 

Here p2 is a constant and  
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D  is Rheological operator and 

&x yE E  are the modules of elasticity in x- and 

y-direction respectively, x  and y  are the Poisson 

ratios & xyG  is the shear modulus. 

Assuming steady one dimensional temperature distribu-
tion along the length, i.e., x-direction for the plate as 
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where τ  denotes the temperature excess above the ref-
erence temperature at any point at distance x a  and 

0τ  denotes the temperature excess above reference 
temperature at the end, i.e., x=a. 

Temperature dependence of the modulus of elasticity 
for most of engineering materials can be expressed in 
this form 

 1 1xE E   ,  2 1yE E   ,  0 1xyG G     (4) 

Here E1 and E2 are values of the Young’s moduli re-
spectively along the x and y axis at the reference temper-
ature, i.e., at τ = 0 and γ is the slope of the variation of 
modulus of elasticity with τ. 

Thus modulus variation become  

   1 1 1xE x E x a     , 

   2 1 1yE x E x a     , 

   0 1 1xyG x G x a            (5) 

where  0 0 1     , a parameter ,known as ther-
mal gradient.  

The expression for the strain energy V and Kinetic 
energy P in the plate are [1]. 
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Assuming thickness and density varies parabolically 
and linearly in the x-direction respectively, therefore one 
can take 

  2

0 1h h x a                  (8) 

and        0 11 x a                      (9) 

where β is the taper constant and α1 is non-homogeneity 
constant. 
 
3. Solution and Frequency Equation 
 
To find a solution, we use Rayleigh-Ritz technique. This 
method requires that maximum strain energy must be 
equal to the maximum kinetic energy. So, it is necessary 
for the problem under consideration that 

  0V P                   (10) 

for arbitrary variations of W satisfying relevant geome-
trical boundary conditions which are 

0xW W   at 0,x a  

0yW W   at 0,y b           (11) 

and the corresponding two term deflection function is 
taken as [12]. 
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where  3*
1

1
12

2 oR E h a                     (16) 

On substituting the values of P and V from Equations (14) 
and (15) in Equation (10), we get 
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Equation (17) involves the unknown A1 and A2 arising 
due to the substitution of W(x,y) from Equation (12). 
These two constants are to be determined from Equation 
(17) as follows: 
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On simplifying (21) we get 

1 1 2 2 0n nb A b A                 (22) 

where 1, 2n  , bn1, bn2 involves parametric constants 
and the frequency parameter p. For a non-trivial solution, 
the determinant of the coefficient of Equation (22) must 
be zero. So, we get the frequency equation as 
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On solving Equation (23) one gets a quadratic equa-
tion in p2, which gives two values of p2. On substituting 
the value of 1 1A  , by choice, in Equation (12) one get 

2 11 12A b b   and hence W becomes:  
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4. Time Functions of Vibration of 

Viscoelastic Plates 
 
Equation (2) is defined as general differential equation of 
time functions of free vibrations of visco-elastic ortho-
tropic plates. It depends on visco-elastic operator 

~

D . 
One has, for Kelvin’s model [12], 

~
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             (25) 

where  is visco-elastic constant and G is shear modulus. 
Taking temperature dependence of viscoelastic constant 
η and shear modulus G is the same form as that of 
Young’s moduli, we have 

   0 11G G    ,    0 21           (26) 

where G0 is shear modulus and 0 is visco-elastic con-
stant at some reference temperature, i.e., at  = 0, 1 and 
2 are slope variation of  with G and  respectively. 
Substituting the value of  from Equation (3) and using 
Equation (13) in Equation (26), one gets:  

 0 51 1G G X     , where 5 1 0   ,  

50 1   and  0 41 1 X       ,  

where 4 2 0   , 40 1                    (27) 

Here 4 and 5 are thermal constants. 
After using Equation (25) in Equation (2), one obtains 

2 2 0T p k T p T
 
               (28) 

where 
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   

              (29) 

Equation (28) is a differential equation of second order 
for time function T. 

Solution of Equation (28) will be 

   1
1 1 2 1cos sina tT t e C b t C b t         (30) 

where 2
1 2a p k                            (31) 

2

1 1
2

pk
b p

    
 

              (32) 

and C1 ,C2 are constants which can be determined easily 
from initial conditions of the plate. 

Assuming initial conditions as 

1T   and 0T   at 0t             (33) 

Using Equation (33) in Equation (30), one obtains 

1 2 1 11&C C a b                (34) 

One has 

   1
1 1 1 1cos sina tT t e b t a b b t           (35) 

after using Equation (34) in Equation (30). 
Thus, deflection of vibrating mode w(x,y,t), which is 

equal to W(x,y)T(t), may be expressed as  

    2
1 1w XY a b X Y a b      

     11 121 1 1b b XY a b X Y a b        

  1
1 1 1 1cos sina te b t a b b t               (36) 

by using Equations (24) & Equation (35). 

Time period of the vibration of the plate is given by 

2K p                  (37) 

where p is the frequency given by Equation (23). 
 
5. Numerical Evaluations  
 
The values of time period (K) and deflection (w) (at two 
different instant of time) for a clamped visco-elastic or-
thotropic non-homogeneous rectangular plate for differ-
ent values of taper constant , thermal constants (α, α4, 
α5), non homogeneity constant α1 and aspect ratio a/b at 
different points for first two modes of vibrations are cal-
culated.  

The following orthotropic material parameters have 
been taken as [1]. 

* *
2 1 0.32E E   
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* *
1 0.04E E   

*
1 0.09oG E   

0.000069o oG   
53 10o    

(mass density per unit volume of the plate material). 
The thickness of the plate at the centre is taken as ho = 

0.01 meter. 
 
6. Results and Discussion 
 
Numerical results for a visco-elastic orthotropic 
non-homogeneous rectangular plate of parabolically vary-
ing thickness have been computed with accuracy by using 
latest computer technology. Computations have been 
made for calculating time period K and deflection w (at 
two different instant of time) for different values of taper 
constant , thermal constants (α, α4, α5), non homogeneity 
constant α1 and aspect ratio a/b for first two modes of vi-
bration. All these results are presented in Figure 1 to Fig-
ure 7. Comparison is made with the author’s paper [12] 
for uniform plate and found to be in very close agreement. 

Figure 1 shows the result of time period K for first 
two modes of vibration for different values of taper con-
stant β and fixed aspect ratio a/b = 1.5 and four combina-
tions of non-homogeneity constant α1 and thermal con-
stant α are 

α1 = 0.0, α = 0.0 
α1 = 0.0, α = 0.2 
α1 = 0.4, α = 0.0 

α1 = 0.4, α = 0.2 
It can be seen that time period K decreases when taper 

constant increases for first two modes of vibration. 
Figure 2 shows the result of time period K for first 

two modes of vibration for different values of 
non-homogeneity constant α1 and fixed aspect ratio a/b = 
1.5 and four combinations of taper constant β and ther-
mal constant α are 

β = 0.0, α = 0.0 
β = 0.4, α = 0.0 
β = 0.0, α = 0.2 
β = 0.4, α = 0.2 

It can be seen that time period K increases when non- 
homogeneity constant increases for first two modes of 
vibration. 

Figure 3 shows the result of time period K for differ-
ent aspect ratio and four combinations of thermal con-
stant α, taper constant β and non-homogeneity constant 
α1, i.e., 

α = 0.2 , β = 0.0, α1 = 0.0 
α = 0.2 , β = 0.4, α1 = 0.0 
α = 0.2 , β = 0.0, α1 = 0.4 
α = 0.2 , β = 0.4, α1 = 0.4 

It can be seen that time period K decreases when as-
pect ratio increases for first two modes of vibration. 

Figures 4-7 shows the results of deflection for first 
two modes of vibration for different X, Y and fixed as-
pect ratio a/b = 1.5 for initially time 0.K and time 5.K for 
the following combination of thermal constants (α, α4, 
α5), taper constant β and non-homogeneity constant α1. 
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Figure 1. Variation of time period with taper constant of visco-elastic non-homogeneous rectangular plate of parabolically 
varying thickness. 
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Figure 2. Variation of time period with non-homogeneity constant of visco-elastic non-homogeneous rectangular plate of pa- 
rabolically varying thickness. 
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Figure 3. Variation of time period with aspect ratio of visco-elastic non-homogeneous rectangular plate of parabolically va-
rying thickness. 
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Figure 4. Transverse deflection w V/S X of visco-elastic non-homogeneous rectangular plate of parabolically varying thick-
ness at initial time 0. K having constants combination as α = 0.0, β = 0.6, α1 = 0.0, α4 = 0.3, α5 = 0.2. 
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Figure 5. Transverse deflection w Vs X of visco-elastic non-homogeneous rectangular plate of parabolically varying thickness 
at initial time 0. K having constants combination as α = 0.0, β = 0.6, α1 = 0.0, α4 = 0.3, α5 = 0.2. 
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Figure 6. Transverse deflection w Vs X of visco-elastic non-homogeneous rectangular plate of parabolically varying thickness 
at time 5. K having constants combination as α = 0.8, β = 0.0, α1 = 0.4, α4 = 0.3, α5 = 0.2. 
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Figure 7. Transverse deflection w Vs X of visco-elastic non-homogeneous rectangular plate of parabolically varying thickness 
at time 5. K having constants combination as α = 0.8, β = 0.0, α1 = 0.4, α4 = 0.3, α5 = 0.2. 
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