SCIENCEDOMAIN international www.sciencedomain.org

IGPR-Continuity and Compactness in Intuitionistic Topological Space

S. Selvanayaki^{1*} and Gnanambal Ilango²

¹Department of Mathematics, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India. ²Department of Mathematics, Government Arts College(Autonomous), Coimbatore, Tamil Nadu, India.

Article Information

DOI: 10.9734/BJMCS/2015/19568 <u>Editor(s)</u>: (1) Longhua Zhao, Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA. <u>Reviewers</u>: (1) Choonkil Park, Hanyang University, South Korea. (2) Ejegwa Paul Augustine, University of Agriculture, Makurdi, Nigeria. (3) Francisco Welington de Sousa Lima, Universidade Federal do Piaui, Brazil. Complete Peer review History: http://sciencedomain.org/review-history/10649

Original Research Article

Received: 16 June 2015 Accepted: 01 August 2015 Published: 23 August 2015

Abstract

In this paper, the notion of intuitionistic generalised pre-regular continuity is introduced. Also intuitionistic generalised pre-regular compactness is defined in intuitionistic topological spaces and several preservation properties are obtained. Moreover, some properties of intuitionistic generalised pre-regular continuity are outlined.

Keywords: Intuitionistic set; intuitionistic topology; intuitionistic cover; Igpr-continuous; Igpr compact.

2010 Mathematics Subject Classification: 54A99.

1 Introduction

After the introduction of the concept of fuzzy set by Zadeh [1], Atanassov[2] proposed the concept of intuitionistic fuzzy sets. Coker [3] introduced the concept of intuitionistic sets and intuitionistic points in 1996 and intuitionistic fuzzy topological spaces[4] in 1997. Also in 2000, Coker [5] developed the concept of intuitionistic topological spaces with intuitionistic sets and investigated basic properties of continuous functions and compactness. Selma ozcag and Dogan Coker [6,7] also examined

^{*}Corresponding author: E-mail: selva_sanju@yahoo.co.in

connectedness in intuitionistic topological spaces. Later, several researchers [8] studied some weak forms of intuitionistic topological spaces. In this paper, we study some properties of intuitionistic generalised pre-regular continuity and intuitionistic generalised pre-regular continuity compactness in intuitionistic topological spaces.

1.1 Preliminaries

We recall some definitions and results which are useful for this sequel. Throughout the present study, a space X means an intuitionistic topological space (X, τ) and Y means an intuitionistic topological space (Y, σ) unless otherwise mentioned.

Definition 1.1. [3] Let X be a nonempty set. An intuitionistic set (IS for short) A is an object having the form $A = \langle X, A_1, A_2 \rangle$, where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \phi$. The set A_1 is called the set of members of A, while A_2 is called the set of non-members of A.

Definition 1.2. [3] Let X be a nonempty set and let A,B be intuitionistic sets in the form $A = \langle X, A_1, A_2 \rangle$, $B = \langle X, B_1, B_2 \rangle$ respectively. Then

- (a) $A \subseteq B$ iff $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$.
- (b) A = B iff $A \subseteq B$ and $B \subseteq A$.
- (c) $\overline{A} = \langle X, A_2, A_1 \rangle$.
- (d) A B = $A \cap \overline{B}$.
- (e) $\phi = \langle X, \phi, X \rangle, X = \langle X, X, \phi \rangle.$
- (f) $A \cup B = \langle X, A_1 \cup B_1, A_2 \cap B_2 \rangle$.
- (g) $A \cap B = \langle X, A_1 \cap B_1, A_2 \cup B_2 \rangle$.
- (h) $[]A = \langle X, A_1, (A_1)^c \rangle.$
- (i) $<>A = < X, (A_2)^c, A_2 >.$

Furthermore, let $\{A_i : i \in J\}$ be an arbitrary family of intuitionistic sets in X, where $A_i = \langle X, A_i^{(1)}, A_i^{(2)} \rangle$. Then

- (j) $\bigcap A_i = \langle X, \cap A_i^{(1)}, \cup A_i^{(2)} \rangle$.
- (k) $\bigcup A_i = \langle X, \cup A_i^{(1)}, \cap A_i^{(2)} \rangle$.

Definition 1.3. [4,5] An intuitionistic topology (IT for short) on a nonempty set X is a family τ of IS's in X containing ϕ , X and closed under finite infima and arbitrary suprema. The pair (X, τ) is called an intuitionistic topological space (ITS for short). Any intuitionistic set in τ is known as an intuitionistic open set (IOS for short) in X and the complement of IOS is called intuitionistic closed set (ICS for short).

Proposition 1.1. [5] Let (X, τ) be an ITS on X and $A = \langle X, A_1, A_2 \rangle$ be an IS in X. Then the several intuitionistic topologies [(a), (b)] and general topologies [(c), (d)] generated by (X, τ) are

- (a) $\tau_{0,1} = \{ []A : A \in \tau \}$
- $(b) \ \tau_{0,2} = \{<>A : A \in \tau\}$
- (c) $\tau_1 = \{A_1 : < X, A_1, A_2 > \in \tau\}$
- (d) $\tau_2 = \{(A_2)^c : < X, A_1, A_2 > \in \tau\}$

Definition 1.4. [3] Let (X, τ) be an ITS and $A = \langle X, A_1, A_2 \rangle$ be an IS in X. Then the closure and interior of an intuitionistic set A is defined as $Icl(A) = \bigcap \{K : K \text{ is an ICS in } X \text{ and } A \subseteq K\}$ $Iint(A) = \bigcup \{G : G \text{ is an IOS in } X \text{ and } G \subseteq A\}$

It can be shown that Icl(A) is an ICS and Iint(A) is an IOS in X and A is an ICS in X iff Icl(A) = A and is an IOS in X iff Iint(A) = A.

Definition 1.5. [3] Let X be a nonempty set and $a \in X$. Then the IS $\underset{\sim}{a}$ defined by $\underset{\sim}{a} = \langle X, \{a\}, \{a\}^c \rangle$ is called an intuitionistic point (*IP for short*) in X. The intuitionistic point $\underset{\sim}{a}$ is said to be contained in $A = \langle X, A_1, A_2 \rangle$ (i.e. $a \in A$) if and only if $a \in A_1$.

Definition 1.6. [9] Let (X, τ) be an ITS. An intuitionistic set A of X is said to be intuitionistic regular open (intuitionistic regular closed) if A = Iint(Icl(A)) (A = Icl(Iint(A))).

Definition 1.7. [9] Let (X, τ) be an ITS and let $A = \langle X, A_1, A_2 \rangle$ be an intuitionistic set. Then A is said to be intuitionistic generalized pre-regular closed (*Igpr-closed*) if Ipcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic regular open in X. The class of all Igpr-closed subsets of (X, τ) is denoted by IGPRC (τ) .

The complement of intuitionistic generalized pre-regular closed sets are intuitionistic generalized pre-regular open (Igpr-open) and the class of all Igpr-open subsets of (X, τ) is denoted by IGPRO (τ) .

Definition 1.8. [4] Let (X, τ) be a nonempty ITS and let $A = \langle X, A_1, A_2 \rangle$ be IS. Then A is said to be

(i) intuitionistic regular generalized closed (*Irg-closed*) if $Icl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic regular open in X.

(ii) intuitionistic generalized α closed ($Ig\alpha$ -closed) if $I\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic open in X.

Definition 1.9. [3] Let X,Y be two nonempty sets and f :X \rightarrow Y be a function. (a) If B = $\langle X, B_1, B_2 \rangle$ is an IS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IS in X defined by $f^{-1}(B) = \langle X, f^{-1}(B_1), f^{-1}(B_2) \rangle$. (b) If A = $\langle X, A_1, A_2 \rangle$ is an IS in X, then the image of A under f, denoted by f(A), is the IS in

Y defined by $f(B) = \langle Y, f(A_1), f(A_2) \rangle$, where $f(A_2) = (f((A_2)^c))^c$.

Definition 1.10. [3] Let (X, τ) and (Y, σ) be two intuitionistic topological spaces and $f: X \to Y$ be a function. Then f is said to be continuous iff the preimage of each ICS in Y is intuitionistic closed in X.

Corollary 1.1. [4,5] Let A, A_i $(i \in J)$ be IS's in X, B, B_j $(j \in K)$ be IS's in Y and $f: (X, \tau) \to (Y, \sigma)$ be a function. Then

(a) $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2), B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$ (b) $A \subseteq f^{-1}(f(A))$ and if f is injective, then $A = f^{-1}(f(A))$ (c) $f(f^{-1}(B)) \subseteq B$ and if f is surjective then $f(f^{-1}(B)) = B$ (d) $f(\cup A_i) = \cup f(A_i); f(\cap A_i) \subseteq \cap f(A_i)$ and if f is injective then $f(\cap A_i) = \cap f(A_i)$ (e) $f^{-1}(\cup B_i) = \cup f^{-1}(B_i); f^{-1}(\cap B_i) \subseteq \cap f^{-1}(B_i)$ (f) If f is surjective then $f(A) \subseteq f(\overline{A})$. Further if f is injective then $\overline{f(A)} = f(\overline{A})$ (g) $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$ **Proposition 1.2.** [5] The following statements are equivalent :

(a) $f:(X,\tau) \to (Y,\sigma)$ is continuous. (b) $f^{-1}(int(B)) \subseteq int(f^{-1}(B))$ for each IS B in Y (c) $cl(f^{-1}(int(B))) \subseteq f^{-1}(cl(B))$ for each IS B in Y.

Definition 1.11. [6] If there exists an intuitionistic regular open set A in X such that $\phi \neq A \neq X$, then X is called super disconnected. X is called super connected, if X is not super disconnected.

2 Igpr-Continuity In Intuitionistic Topological Spaces

Definition 2.1. A mapping $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called intuitionistic generalised pre-regular continuous (*briefly Igpr*-continuous) if the preimage of every intuitionistic closed set of Y is Igpr-closed in X. i.e., $f^{-1}(V)$ is Igpr-closed in (X, τ) for every intuitionistic closed set V of (Y, σ) .

Theorem 2.1. A mapping $f : (X, \tau) \longrightarrow (Y, \sigma)$ is Igpr-continuous iff the preimage of every intuitionistic open set of Y is Igpr-open in X.

Proof. Let B = < Y, B₁, B₂ > be an intuitionistic open set of Y. Then $f^{-1}(B^c) = f^{-1}(< Y, B_2, B_1 > D) = < X, f^{-1}(B_2), f^{-1}(B_1) >$. Also $(f^{-1}(B))^c = (f^{-1}(< Y, B_1, B_2 >)^c = (< X, f^{-1}(B_1), f^{-1}(B_2) > D)^c = < X, f^{-1}(B_2), f^{-1}(B_1) >$. Since $f^{-1}(B^c) = (f^{-1}(B))^c$, for every intuitionistic set B of Y, $f^{-1}(B^c)$ is Igpr-closed in Y. So, $f^{-1}(B)$ is Igpr-open in X. Hence f is Igpr-continuous. The converse part follows from the definition. □

Proposition 2.1. Let (X, τ) and (Y, σ) be two intuitionistic topological spaces. If $f : (X, \tau_{0,1}) \rightarrow (Y, \sigma_{0,1})$ and $f : (X, \tau_{0,2}) \rightarrow (Y, \sigma_{0,2})$ are Igpr-continuous, then $f : (X, \tau) \rightarrow (Y, \sigma)$ is Igpr-continuous.

Proof. Let B = < Y, B₁, B₂ > be an intuitionistic open set of Y. By hypothesis, f : (X, τ_{0,1}) → (Y, σ_{0,1}) and f : (X, τ_{0,2}) → (Y, σ_{0,2}) are Igpr-continuous. So there exist an Igpr-open sets $f^{-1}(< Y, B_1, (B_1)^c >) = < X, f^{-1}(B_1), f^{-1}(B_1)^c > \text{in } (X, τ_{0,1}) \text{ and } f^{-1}(< Y, (B_2)^c, B_2 >) =$ $< X, f^{-1}(B_2)^c, f^{-1}(B_2) > \text{in } (X, τ_{0,2}).$ Since $B_2 ⊂ (B_1)^c$ and $B_1 ⊂ (B_2)^c, < X, f^{-1}(B_1), f^{-1}(B_2) >$ $⊆ < X, f^{-1}(B_1), f^{-1}(B_1)^c > \text{or } < X, f^{-1}(B_2)^c, f^{-1}(B_2) >.$ Hence $< X, f^{-1}(B_1), f^{-1}(B_2) >$ is Igpr-open in X and so f : (X, τ) → (Y, σ) is Igpr-continuous.

Proposition 2.2. Let (X, τ) and (Y, σ) be two intuitionistic topological spaces. If $f : (X, \tau_1) \longrightarrow (Y, \sigma_1)$ and $f : (X, \tau_2) \longrightarrow (Y, \sigma_2)$ are gpr-continuous, then $f : (X, \tau) \longrightarrow (Y, \sigma)$ is Igpr-continuous.

Proof. Similar to Proposition 2.1.

Theorem 2.2. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be intuitionistic continuous. Then f is Igpr-continuous but not conversely.

Proof. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be intuitionistic continuous and A be any intuitionistic closed set in Y. Then the inverse image $f^{-1}(A)$ is intuitionistic closed in X. Since every intuitionistic closed set is Igpr-closed, $f^{-1}(A)$ is Igpr-closed in X. So f is Igpr-continuous.

Remark 2.1. The converse of the above Theorem 2.2 is not true as seen from the following Example.

Example 2.3. Let $X = \{a, b, c\}$ with intuitionistic topology $\tau = \{\phi, < X, \{a\}, \{b\} >, < X, \{b\}, \{c\} >, < X, \{a, b\}, \phi >, < X, \phi, \{b, c\} >, X\}$ and $Y = \{1, 2, 3\}$ with intuitionistic topology $\sigma = \{\phi, < Y, \{1\}, \{2, 3\} >, < Y, \{2, 3\}, \phi >, < Y, \phi, \{2\} >, Y\}$. Define $f : (X, \tau) \longrightarrow (Y, \sigma)$ by f(a) = 1, f(b) = 2 and f(c) = 3. Then $f : (X, \tau) \longrightarrow (Y, \sigma)$ is Igpr-continuous but not intuitionistic continuous. Also, $f : (X, \tau_1) \longrightarrow (Y, \sigma_1), f : (X, \tau_2) \longrightarrow (Y, \sigma_2), f : (X, \tau_{0,1}) \longrightarrow (Y, \sigma_{0,1}), f : (X, \tau_{0,2}) \longrightarrow (Y, \sigma_{0,2})$ are Igpr-continuous but $f : (X, \tau_1) \longrightarrow (Y, \sigma_1), f : (X, \tau_0, 1) \longrightarrow (Y, \sigma_0, 1)$ are not intuitionistic continuous.

Proposition 2.3. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be Irg-continuous. Then f is Igpr-continuous.

Proof. Let B be intuitionistic closed in (Y, σ) . Since f is Irg-continuous, $f^{-1}(B)$ is Irg closed in (X, τ) . By the proposition 3.4 of [7], $f^{-1}(B)$ is Igpr-closed. Hence f is Igpr-continuous.

Remark 2.2. The converse of the above proposition does not need to be true as seen from the following example.

Example 2.4. Let $X = \{a, b, c\}$ with intuitionistic topology $\tau = \{\phi, X, A, B, C\}$ where $A = \langle X, \{c\}, \{a, b\} \rangle$, $B = \langle X, \{a\}, \{b, c\} \rangle$ and $C = \langle X, \{a, c\}, \{b\} \rangle$ and let $Y = \{1, 2, 3\}$ with intuitionistic topology $\sigma = \{\phi, P, Q, R, S, Y\}$ where $P = \langle Y, \{1\}, \{2\} \rangle$, $Q = \langle Y, \{2\}, \{3\} \rangle$, $R = \langle Y, \phi, \{2, 3\} \rangle$, $S = \langle Y, \{1, 2\}, \phi \rangle$. Define $f : (X, \tau) \longrightarrow (Y, \sigma)$ by f(a) = 1, f(b) = 3 and f(c) = 2. Then f is Igpr-continuous but not Irg-continuous.

Proposition 2.4. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be $I\alpha g$ -continuous. Then f is Igpr-continuous.

Proof. Let B be intuitionistic closed in (Y, σ) . Since f is I α g-continuous, $f^{-1}(B)$ is I α g-closed in (X, τ) . Since every closed set is Igpr-closed, $f^{-1}(B)$ is Igpr closed. Hence f is Igpr-continuous. \Box

Remark 2.3. The converse of the above proposition does not need to be true as seen from the following example.

Example 2.5. Let $X = \{a, b, c\}$ and $\tau = \{\phi, A, B, C, D, E, F, X\}$ where $A = \langle X, \phi, \{a, b\} \rangle$, $B = \langle X, \{c\}, \{a, b\} \rangle$, $C = \langle X, \phi, \{b, c\} \rangle$, $D = \langle X, \{c\}, \{b\} \rangle$, $E = \langle X, \{a, c\}, \{b\} \rangle$ and $F = \langle X, \phi, \{b\} \rangle$ and let $Y = \{1, 2, 3\}$ with intuitionistic topology $\sigma = \{\phi, P, Q, R, S, Y\}$ where $P = \langle Y, \{1, 2\}, \{3\} \rangle$, $Q = \langle Y, \{2, 3\}, \{1\} \rangle$ and $R = \langle Y, \{1, 3\}, \{2\} \rangle$. Define $f : (X, \tau) \longrightarrow (Y, \sigma)$ by f(a) = 1, f(b) = 2 and f(c) = 3. Then f is Igpr-continuous but not Iag-continuous.

Proposition 2.5. A mapping $f: (X, \tau) \longrightarrow (Y, \sigma)$ is Igpr-continuous if (X, τ) is intuitionistic super-connected.

Proof. If (X, τ) is intuitionistic super-connected, then the only intuitionistic regular open subsets of (X, τ) are ϕ and X which implies all the subsets of X are Igpr-closed. Hence the preimage of every intuitionistic closed set of Y is Igpr-closed in X.

Theorem 2.6. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be Igpr-continuous. Then $f(Igprcl(A)) \subset Icl(f(A))$ for every intuitionistic subset A of X.

Proof. Let A be an intuitionistic subset of X. Then Icl(f(A)) is intuitionistic closed in (Y, σ) . Since f is Igpr-continous, $f^{-1}(Icl(f(A)))$ is Igpr-closed in X. And $A \subset f^{-1}(f(A)) \subset f^{-1}(Icl(f(A)))$ implies $Igprcl(A) \subset Igprcl(f^{-1}(Icl(f(A)))) f^{-1}(Icl(f(A)))$. Hence $f(Igprcl(A)) \subset Icl(f(A))$. \Box

Definition 2.2. Let (X, τ) be an intuitionistic topological space then $\tau^* = \{A \subset X/Igprcl(X - A) = X - A\}$

Theorem 2.7. Every Igpr-closed set is intuitionistic closed iff $\tau^* = \tau$ holds.

Proof. Let $A \in \tau^*$. Then Igprcl(X - A) = X - A. Since $\tau^* = \tau$ every Igpr-closed set is intuitionistic closed. The other part can be proved easily.

Remark 2.4. If $\tau^* = \tau$ in the intuitionistic topological space (X, τ) , then intuitionistic continuity and Igpr-continuity coincide.

Proof. Let f: $(X, \tau) \longrightarrow (Y, \sigma)$ be Igpr-continuous. Then $f^{-1}(A)$ is Igpr-closed for every intuitionistic closed set A of Y. Since $\tau^* = \tau$ and by Theorem 2.7, $f^{-1}(A)$ is intuitionistic closed. Hence f is intuitionistic continuous.

Theorem 2.8. If IGPRO(X) forms a topology in intuitionistic space then τ^* is also a topology.

Proof. Obvious

Theorem 2.9. Consider the mapping $f: (X, \tau^*) \longrightarrow (Y, \sigma)$. Then the following statements are equivalent.

(i) For every intuitionistic subset A of X, $f(Igprcl(A)) \subset Icl(f(A))$. (ii) If τ^* is a topology, then $f: (X, \tau^*) \longrightarrow (Y, \sigma)$ is intuitionistic continuous.

 $\begin{array}{l} Proof. (i) \implies (ii) : \text{Let A be intuitionistic closed in } (Y, σ). \\ \text{From } (i), f(Igprcl(f^{-1}(A))) \subset Icl(f(f^{-1}(A))) \subset Icl(A) = \text{A. So } Igprcl(f^{-1}(A)) \subset f^{-1}(A). \\ \text{Also } f^{-1}(A) \subset Igprcl(f^{-1}(A)). \\ \text{Thus } (f^{-1}(A))^c \in \tau^* \\ \text{ which implies } f^{-1}(A) \\ \text{ is intuitionistic closed } (Y, σ). \\ \text{Then from } (ii) \implies (i) : \text{ For every subset A of X, } Icl(f(A)) \\ \text{ is intuitionistic closed in } (Y, σ). \\ \text{Then from } (ii), f^{-1}(Icl(f(A))) \\ \text{ is intuitionistic closed in } τ^*. \\ \text{So, } Igprcl(f^{-1}(Icl(f(A)))) = f^{-1}(Icl(f(A))) \\ \text{ which implies } f(Igprcl(f^{-1}(cl(f(A))))) \subset Icl(f(A)). \\ \text{Since f is intuitionistic continuous, } A \subset Icl(A) \subset Icl(f^{-1}(f(A))) \subset f^{-1}(Icl(f(A))). \\ \text{Hence } f(Igprcl(A)) \subset f(Igprcl(f^{-1}(cl(f(A))))) \subset Icl(f(A)). \\ \\ \square \end{array}$

3 Igpr-Compactness In Intuitionistic Topological Spaces

Definition 3.1. Let (X, τ) be an intuitionistic topological space. If a family $\{\langle X, G_i^{(1)}, G_i^{(2)} \rangle$; $i \in \Lambda\}$ of Igpr-open sets in X satisfies the condition $\cup \{\langle X, G_i^{(1)}, G_i^{(2)} \rangle; i \in \Lambda\} = X$, then it is called an Igpr-open cover of X.

A finite subfamily of an Igpr-open cover $\{\langle X, G_i^{(1)}, G_i^{(2)} \rangle; i \in J\}$ of X, which is also an Igpr-open cover of X is called a finite subcover of $\{\langle X, G_i^{(1)}, G_i^{(2)} \rangle; i \in \Lambda\}$.

Definition 3.2. An intuitionistic topological space (X, τ) is said to be Igpr-compact iff each Igpropen cover has a finite subcover.

Definition 3.3. Let (X, τ) be an intuitionistic topological space and A be an IS in X. The family $\{\langle X, G_i^{(1)}, G_i^{(2)} \rangle; i \in \Lambda\}$ of Igpr-open sets in X is called a Igpr-open cover of A if $A \subseteq \cup \{\langle X, G_i^{(1)}, G_i^{(2)} \rangle; i \in \Lambda\}$.

Definition 3.4. An IS A = $\langle X, A^{(1)}, A^{(2)} \rangle$ in an ITS (X, τ) is called Igpr-compact iff every Igpr-open cover of A has a finite sub cover. Also we can define an IS A = $\langle X, A^{(1)}, A^{(2)} \rangle$ in (X, τ) is Igpr-compact iff for each family $\mathcal{G} = \{G_i : i \in \Lambda\}$ where $G_i = \{\langle X, G_i^{(1)}, G_i^{(2)} \rangle : i \in \Lambda\}$ of Igpr-open sets in X, $A^{(1)} \subseteq \bigcup_{i \in \Lambda} G_i^{(1)}$ and $A^{(2)} \supseteq \bigcup_{i \in \Lambda} G_i^{(2)}$, there exists a finite subfamily $\{G_i : i = 1, 2, ..., n\}$ of \mathcal{G} such that $A^{(1)} \subseteq \bigcup_{i=1}^n G_i^{(1)}$ and $A^{(2)} \supseteq \bigcup_{i=1}^n G_i^{(2)}$.

Proposition 3.1. Let (X, τ) be an intuitionistic topological space. Then (X, τ) is Igpr-compact iff the ITS $(X, \tau_{0,1})$ is Igpr-compact.

 $\begin{array}{l} Proof. \ \text{Neccesity: Let } (X,\tau) \ \text{be Igpr-compact and consider an Igpr-open cover } \{ []G_j: j \in \Lambda \} \ \text{of X} \\ \text{in } (X,\tau_{0,1}). \ \text{Since } \cup ([]G_j) = X, \ \text{we obtain } \cup G_j^{(1)} = X \ \text{and hence } G_j^{(2)} \subseteq (G_j^{(1)})^c \Rightarrow \cap G_j^{(2)} \subseteq (\cup G_j^{(1)})^c \\ = \phi \Rightarrow \cup G_j = X. \ \text{Since } (X,\tau) \ \text{is Igpr-compact, there exists } G_1, G_2, \dots, G_n \ \text{such that } \bigcup_{i=1}^n G_i = X \\ \text{which implies } \bigcup_{i=1}^n G_i^{(1)} = X \ \text{and } \bigcap_{i=1}^n G_i^{(2)} = \phi. \ \text{So } (X,\tau_{0,1}) \ \text{is Igpr-compact.} \\ \text{Sufficiency: Suppose } (X,\tau_{0,1}) \ \text{is Igpr-compact. Consider an Igpr-open cover } \{G_j: j \in \Lambda\} \ \text{of X in } (X,\tau). \ \text{Since } \cup (G_j) = X, \ \text{we obtain } \cup G_j^{(1)} = X \ \text{and hence } \cap (G_j^{(1)})^c = \phi \Rightarrow \cap G_j^{(2)} \subseteq (\cup G_j^{(1)})^c = \phi \Rightarrow \\ \cup G_j = X. \ \text{Since } (X,\tau_{0,1}) \ \text{is Igpr-compact, there exists } G_1, G_2, \dots, G_n \ \text{such that } \bigcup_{i=1}^n []G_i = X \ \text{which } \\ \text{implies } \bigcup_{i=1}^n G_i^{(1)} = X \ \text{and } \bigcap_{i=1}^n (G_i^{(1)})^c = \phi. \ \text{Hence } G_i^{(1)} \subseteq (G_i^{(2)})^c \Rightarrow X = \bigcup_{i=1}^n G_i^{(1)} \subseteq \bigcap_{i=1}^n (G_i^{(2)})^c \Rightarrow \bigcap_{i=1}^n G_i^{(2)} \\ = \phi. \ \text{Thus } \bigcup_{i=1}^n G_i = X. \ \text{So } (X,\tau) \ \text{is Igpr-compact.} \\ \end{array}$

Proposition 3.2. The ITS (X,τ) is Igpr-compact iff (X,τ_1) is Igpr-compact.

Proof. Similar to Proposition 3.1.

Proposition 3.3. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be a surjective Igpr-continuous mapping. If (X, τ) is Igpr-compact then (Y, σ) is intuitionistic compact.

Proof. Let {< X, G_i⁽¹⁾, G_i⁽²⁾ >: i ∈ Λ} be any intuitionistic open cover of Y. Since f is Igprcontinuous, { $f^{-1}(G_i) : i ∈ Λ$ } is an Igpr-open cover of X. Since (X, τ) is Igpr-compact, it has a finite subcover { $f^{-1}(G_1), f^{-1}(G_2), f^{-1}(G_3), ..., f^{-1}(G_n)$ } such that $\bigcup_{i=1}^n f^{-1}(G_i^{(1)}) = X$ and $\bigcap_{i=1}^n f^{-1}(G_i^{(2)})$ = ϕ . i.e, $f^{-1}(\bigcup_{i=1}^n G_i^{(1)}) = X$ and $f^{-1}(\bigcap_{i=1}^n G_i^{(2)}) = \phi \Rightarrow \bigcup_{i=1}^n G_i^{(1)} = f(X)$ and $\bigcap_{i=1}^n G_i^{2} = f(\phi)$. Since f is surjective { $G_1, G_2, ..., G_n$ } is an open cover of Y and hence (Y, σ) is intuitionistic compact. □

Corollary 3.1. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be Igpr-continuous. If A is Igpr-compact in (X, τ) , then f(A) is intuitionistic compact in (Y, σ) .

Definition 3.5. [10] Let (X, τ) and (Y, σ) be two intuitionistic topological spaces and $f : X \to Y$ be a function. Then f is said to be Igpr-irresolute if the preimage of every Igpr-closed set of Y is Igpr-closed in X.

Proposition 3.4. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an Igpr-irresolute mapping and if A is Igpr-compact relative to X, then f(A) is Igpr-compact relative to Y.

Proof. Let $\{G_i : i \in \Lambda\}$ be an Igpr-open set of Y such that $f(A) \subseteq \cup \{G_i : i \in \Lambda\}$. Then $A \subset \cup \{f^{-1}(G_i) : i \in \Lambda\}$ where $f^{-1}(G_i)$ is Igpr-open in X for each i. Since A is Igpr-compact relative to X, there exists a finite sub collection $\{G_1, G_2, ..., G_n\}$ such that $A \subset \cup \{f^{-1}(G_i) : i = 1, 2, ..., n\}$. i.e., $f(A) \subset \cup \{G_i : i = 1, 2, ..., n\}$. Hence f(A) is Igpr-compact relative to Y.

Proposition 3.5. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an Igpr-irresolute mapping. If X is Igpr-compact, then Y is also an Igpr-compact space.

Proof. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an Igpr-irresolute mapping from Igpr-compact space (X, τ) onto an intuitionistic topological space (Y, σ) . Let $\{G_i : i \in \Lambda\}$ be an Igpr-open cover of Y. Then $\{f^{-1}(G_i) : i \in \Lambda\}$ is an Igpr-open cover of X. Since X is Igpr-compact, there is a finite subfamily $\{f^{-1}(A_{i_1}), f^{-1}(A_{i_2}), f^{-1}(A_{i_3}), \dots, f^{-1}(A_{i_n})\}$ of $\{f^{-1}(A_i) : i \in \Lambda\}$ such that $\bigcup_{j=1}^{n} G_{i_j} = X$. Since f is onto, f(X) = X and $f(\bigcup_{j=1}^{n} f^{-1}(G_{i_j})) = \bigcup_{j=1}^{n} f(f^{-1}(G_{i_j})) = \bigcup_{j=1}^{n} G_{i_j}$. It follows that $\bigcup_{j=1}^{n} G_{i_j} = X$ and the family $\{G_{i_1}, G_{i_2}, ..., G_{i_n}\}$ is an intuitonistic finite subcover of $\{G_i : i \in \Lambda\}$. Hence (Y, σ) is an Igpr- compact.

4 Conclusions

In this paper, the development of intuitionistic generalised pre-regular continuity and its various algebraic features in intuitionistic topological spaces are studied. Also intuitionistic generalised pre- regular compactness in intuitionistic topological spaces are also discussed and it is proved that (X, τ) is Igpr-compact if and only if $(X, \tau_{0,1})$ is Igpr-compact.

Competing Interests

The authors declare that no competing interests exist.

References

- [1] Zadeh LA. Fuzzy sets. Information and control. 1968;338-353.
- [2] Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986;20(1):87-96.
- [3] Coker D. A note on intuitionistic sets and intuitionistic points. Turkish J. Math. 1996;20(3):343-351.
- [4] Coker D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems. 1997;88(1):81-89.
- [5] Coker D. An introduction to intuitionistic topological spaces. Busefal. 2000;81:51-56.
- Selma Ozcag, Dogan Coker. On connectedness in intuitionistic fuzzy special topological spaces. Internat. J. Math. Math. Sci. 1998;21(1):33-40.
- [7] Selma Ozcag, Dogan Coker. A note on connectedness in intuitionistic fuzzy special topological spaces. Internat. J. Math. & Math. Sci. 2000;23(1):45-54.
- [8] Younis J. Yaseen, Asmaa G. Raouf. On generalization closed set and generalized continuity on intuitionistic topological spaces. J. of Al-Anbar University for Pure Science. 2009;3(1).
- [9] Gnanambal Ilango, S. Selvanayaki. Generalized preregular closed sets in intuitionistic topological spaces. Internat. J. Math. Archive. 2014;5(4):1-7.
- [10] Selvanayaki.S, Gnanambal Ilango. IGPR connectedness on intuitionistic topological spaces. J. Advanced Studies in Topology. 2015;6(3):90-98.

©2015 Selvanayaki & Ilango; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/10649