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ABSTRACT
Since all information depends solely on the training data, 
machine learning algorithms typically do not employ external 
knowledge or other experiences during the learning process. 
Methods for machine learning have been rigorously tested 
against novel varieties of highly technical “black box” or 
“white box” adversarial attacks. By employing attacks, attackers 
can change systems to serve a harmful end goal. When author-
ized implementers and eavesdroppers are geographically close 
together, it is difficult to perform secure beamforming in wave-
form applications, for instance, leading to erroneous beam 
forms and, as a result, disastrous beam leakages. As a result, 
the first move in a prospective black-box offense will be based 
on the waveform features of a learning signal. By including 
a non-orthogonality concept into the physical layer signal wave-
form, the Waveforms Eavesdropping Prevention Framework 
(WEPF) proposed in this work aims to boost machine learning 
security to address these difficulties. The implementation sce-
nario is based on a waveforms scenario used to categorize the 
Electrical Penetration Graph (EPG) for insects, a crucial tool for 
researching the feeding conduct of piercing-sucking insects and 
the transition mechanism between viruses and insects. An attri-
bute vector with six dimensions, consisting of low-frequency 
wavelet energy (LFWE) in the second and third layers of the 
Wavelet Kernel Extreme Learning Machine, fractal box dimen-
sion (FBD), the Hurst exponent (HE), and spectral centroid (SC) in 
the first two layers of the HHT, was used to test the proposed 
framework. Two adversarial scenarios were explored. However, 
the suggested architecture secures all waveform signals, 
demonstrating the method’s effectiveness in lowering the risk 
of eavesdropping or tampering with the waveforms used in 
advanced machine-learning methods.
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Introduction

Machine learning has become an increasingly important technology in many 
fields, including computer vision, natural language processing, robotics, and 
autonomous systems. However, machine learning algorithms are vulnerable to 
adversarial attacks, which can lead to incorrect or even malicious decisions 
with serious consequences. Adversaries can manipulate the input data or the 
learning process to exploit vulnerabilities in the algorithm and achieve their 
goals. Therefore, improving the security of machine learning algorithms is 
a critical research area.

One of the challenges in securing machine learning algorithms is that 
they typically rely solely on the training data to acquire knowledge and 
make decisions. However, this approach can be vulnerable to attacks 
that manipulate the training data or exploit biases in the data distribu-
tion. Therefore, it is essential to incorporate additional knowledge or 
experience into the learning process to improve the algorithm’s robust-
ness and security.

Using specialized computational models and automation systems built 
on cutting-edge technical infrastructure is necessary for the management of 
modern science in general, as well as for the supervision and optimization 
of its operations. To achieve complete automation, higher-level commu-
nications and information technology solutions are required, including 
seamless networking and technologies for intelligent data analysis. Still, 
this reality raises serious concerns about the dependability of the technical 
processes being utilized, particularly those concerned with digital threats 
that can be physically and conceptually exploited. The question technolo-
gies bring with them a landscape of digital risks and cyberattacks, which 
results in establishing a new regulatory system that is extremely vulnerable. 
Intelligent systems, despite being able to demonstrate logic, experiential 
learning, and the ability to make optimal decisions without human inter-
vention, bring extra security challenges throughout the full length of their 
implementation line. These security issues include the possibility of an 
adversary manipulating the training data to take advantage of the model’s 
sensitivity and impact its performance in a way that benefits the attacker. 
In particular, the training and testing phases determine the threats’ various 
grades and degrees of intensity.

The targets of machine learning assaults can be determined in several ways, 
including by using the physical domain, input sensors, digital representation 
for preprocessing operations, the algorithm itself, or the physical domain of 
output activities. It is believed that supervised learning systems, widely utilized 
in many intelligent applications that use waveforms, are the most vulnerable 
type of machine learning system, even though all types of machine learning 
systems are, in theory, vulnerable to attack.
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The following are some of the characteristics of machine learning algo-
rithms that contribute to the development of artificial intelligence but also 
make systems more vulnerable to assault:

(1) Characteristic 1: The process of machine learning results in forming 
fairly fragile patterns that are effective but readily derailed. The statis-
tical associations that machine learning models develop are typically 
quite fragile and readily broken. Attackers can take advantage of this 
vulnerability by initiating assaults, which results in a model that is 
otherwise superb performing below expectations.

(2) The most common reason a machine learning model is unsuccessful is 
when it places too much weight on the data alone. The system is harmed 
due to possible data poisoning, and it becomes easier for malicious 
actors to carry out their malicious operations. Only through collecting 
patterns from data sets can machine learning models be taught and 
learned. The problematic models do not have the essential parallel 
knowledge that would enable them to utilize all of the information; as 
a result, their comprehension is wholly reliant on the data with which 
they are trained.

(3) Characteristic 3: The inability to correctly comprehend modern 
machine learning algorithms makes it difficult to exercise control over 
them (black box algorithms). Deep neural networks, for example, are 
among the most cutting-edge approaches based on machine learning; 
despite their widespread use, these methods are still considered black- 
box algorithms in many respects because it is fundamentally difficult to 
grasp them fully. Because of this, it is extremely difficult, if not impos-
sible, to determine whether a machine learning algorithm has been 
hacked, is being attacked, or is simply not doing as well as it should be.

These flaws explain why no ideal repair strategies can be implemented when 
AI attacks are carried out. They also explain why the attacks are very different 
from the typical cybersecurity challenges, in which vulnerabilities are clearly 
defined even if it is difficult to uncover them.

The first step on the path toward a potential black-box attack will be 
learning the properties of the signal waveform. Rosaries could use these attacks 
to deceive systems into changing behavior to accomplish a potentially destruc-
tive end goal. For instance, secure beamforming presents several difficulties in 
waveform applications when authorized users and eavesdroppers are close to 
one another. This is because imprecise beam forms and, as a result, damaging 
beam leakages make the task difficult.

The context and issues surrounding the need for secure machine learning 
algorithms can be exposed as follows:
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(1) Adversarial attacks in machine learning: Machine learning algorithms 
are vulnerable to adversarial attacks, where attackers can change sys-
tems to serve a harmful end goal. These attacks have been rigorously 
tested against various technical “black box” or “white box” adversarial 
attacks, making it crucial to enhance the security of machine learning 
algorithms.

(2) Difficulty in secure beamforming: When authorized implementers and 
eavesdroppers are geographically close together, it becomes difficult to 
perform secure beamforming in waveform applications, leading to 
erroneous beam forms and beam leakages.

(3) Importance of waveform signals in machine learning: Waveform signals 
are an essential component of advanced machine learning methods and 
their tampering or eavesdropping can result in disastrous consequences.

These are the context and issues that the WEPF aims to address. By incorpor-
ating non-orthogonality into the physical layer signal waveform, the WEPF 
aims to enhance the security of machine learning algorithms, especially in 
scenarios where authorized implementers and eavesdroppers are close to each 
other.

To carry out exhaustive research on how to defend against adversarial 
attacks against waveforms, it is necessary to have both a respectable sentence. 
Within this environment, exhaustive experiments will be carried out, and the 
results of these experiments will be used to evaluate any process (Xu 2020,  
2021).

Scenario

Most types of Aphids, which are characterized as tiny plant piercing-sucking 
insects (PSIs), are significant pests used for both agriculture and forestry such 
as Aphis gossypii (AG), Myzus persicae (MP), Aphis glycines (AR), and 
Rhopalosiphum padi (RP). Besides, they are called the most significant vectors 
on which plant viruses exist.

A powerful device, called the insect electrical penetration graph (EPG), was 
utilized to examine the nourishing conduct of PSIs (Jallingii 1978; Tjallingii  
1985, 2014), both insect transmission and crop resistance mechanisms, etc. 
Thus, its technical capability could help prevent and control piercing-sucking 
insects. More than 50 insects are studied successfully with this device so far. 
Some most widely studied ones are called aphids, whiteflies, planthoppers, 
leafhoppers, thrips, and bugs.

Once the implementation of the EPG is under consideration for the inves-
tigation of both insects and plants, correct classification of EPG waveforms is 
required. Manual processes have been employed so far. Thus, analyzing EPG 
signals and extracting insights lead to obtaining statistics by employing 
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software such as Stylet, Probing, and Statistical Analysis Systems program-
ming (Ebert et al. 2015). However, the classification of waveforms still needs to 
be operated manually even though the latest version of the mentioned software 
is in use before statistical analysis is run.

The literature has two research related to grouping waveforms of EPG 
for Aphid. A method called the assisted examination of EPG abbreviated 
as A2EPG was suggested to analyze the EPG waveform by Adasme- 
Carreño et al. (2015). Thus, the waves such as np, C, pd, G, and E1 
are identified and the time in every band is measured. Nevertheless, 
A2EPG does not generate a better accuracy ratio. While waves of np 
and pd are recognized very well, waves of E2 and F could not be 
identified. On the other hand, G and E1 waves are misdeemed as 
C waves. Thus, reexamination of outcomes should be conducted when 
outcomes are obtained.

The method used to extract and recognize attributes is so immature that the 
A2EPG gives a lower recognition ratio. Other issues are expressed as follows: 
while the extreme and slope attributes of the waveform related to the time 
domain are extracted, both time-frequency and non-linear attributes are not 
considered. While the computational complexity to a certain extent is reduced 
by this method, the general attributes of the waveform are represented par-
tially, which results in ignoring significant details in the waveforms. Moreover, 
the binary classifier, poorer in learning by itself and non-linear data crunching 
than machine learning methods, is employed by A2EPG.

The EPG signals emitted by aphids are researched to extract attributes and 
classify the waves of np, C, E1, E2, and F by Wu et al. (2018). An attribute 
extraction algorithm that combines both FD and HHT is suggested. Then, 
a classifier called a decision tree (DT) is utilized. Four grouped samples tested 
gives a mean recognition ratio of 91.43%. When the comparison is made with 
the manual method concerning duration, the recognition duration by machine 
is just 1/46 of the manually conducted one. Thus, the efficacy of the analysis is 
enormously enhanced.

The research presented by (Wu et al. 2018) discussed preliminaries to 
extract non-linear attributes and mention classifiers related to decision tree- 
based methods. Other attributes such as time-frequency ones were not 
regarded, and other methods related to classification schemes using machine 
learning were not debated.

As described above, signal analysis methods are exciting and can support 
cutting-edge systems containing artificial intelligence methods to advance 
science and the common good. But these methods have been thoroughly 
sensitive to contemporary types of cyber-attacks. The plans can be manipu-
lated by adversaries employing these offenses to alter the system into 
a malicious end objective. When the further integration of AI-based systems 
into delicate science constituents is realized, these offenses pose an emerging 
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and systemic sensitivity that potentially has significant implications for global 
security. It should be said that there exist fundamental differences between 
conventional cyber-attacks and new types, which are certainly different from 
ones related to bugs or human errors in the scripts. Inherent constraints 
embedded in AI methods that cannot be remedied or are very tough to fix 
could lead to AI attacks. More generally, the methods used for functioning AI 
systems efficiently are flawed, and adversaries utilize those constraints 
embedded in the systems to attack.

Furthermore, the set of entities utilized by AI offenses is expanded to realize 
cyber-attacks. They start with utilizing physical objects first. Then, manipula-
tion of data in new ways is employed. When it occurs, how information is 
collected, placed, and utilized is changed to prevent potential exploitation.

Therefore, this manuscript proposes the WEPF, attempting to increase 
machine learning security by including a non-orthogonality idea into the 
physical layer signal waveform. Also, various attribute derivation methodolo-
gies and classification methods are utilized to study the better clustering of 
EPG waveforms.

The sections of the manuscript are constructed subsequently. Section 2 
presents the common waveforms utilized in the signal analysis of the EPG. 
The presentation of the extreme kernel learning machine is presented in 
Section 3. Section 4 is allocated to present the feature extraction, the proposed 
method, and its implementation. Section 5 concludes the research.

The Common Waveforms Employed in the Analysis of EPG Signals

The EPG signals carry biological importance for the behavior of PSIs. Those 
are pertinent to both plant and insect species and vary widely in all types, 
namely, aphids, leafhoppers, lygus lucorum, etc.

The signal of the EPG is used to study the piercing-sucking character-
istics of Aphids, which is the first insect. The EPG waveforms have been 
researched most comprehensively. Eight fundamental waveforms and their 
importance related to biological attributes have been documented clearly 
(Alba-Tercedor, Hunter, and Alba-Alejandre 2021; Backus, Shih, and 
Weintraub 2020; Cornara et al. 2018; Jing, Bai, and Liu 2013; Prado and 
Tjallingii 1994; Tjallingii and Esch 1993). np, A, B, C, pd, E, G, and F waves 
are the eight of the waveforms. A non-penetration wave is denoted by np 
whose waveform is represented by an almost straight line, which implies 
that the plant epidermis cannot be penetrated by aphid stylets. The path 
waves are denoted by A, B, and C, respectively. The water-soluble saliva 
secretion always accompanies A. B comes out after A when there exists 
a secretion of gelatinous saliva, and the aphid stylet (AS) is situated at the 
epidermis and parenchyma. C comes out following B. No definite line 
exists between them. The most complicated is the C wave. When the 
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analysis of EPG waves is conducted, namely, the AS is situated between the 
epidermis and the microtubule bundle. Once the identification of the 
waveforms is realized, some of them not separated are mainly grouped as 
C. Both A and B waves were also statistically grouped as C waves. The 
mouth needle designates the puncture wave denoted by pd. Thus, when the 
cell membrane is punctured by an aphid, it measures the possible disparity 
between the inside and outside of the membrane. The operating syringe 
located at the mouth exploring the sieve tube in the phloem is characterized 
by E, which is categorized into two waves called El (the phloem secretes 
saliva wave and E2 (the phloem-feeding wave). While a xylem feeding wave 
is denoted by G, a mechanical barrier wave is characterized by F. Figure 1 
depicts the characteristic waveforms of the EPG. So, the handbook of the 
EPG system can be employed as a source sample to interpret many 
waveforms.

When the nourishing conduct of insects, plant resistance system, or 
mechanism of virus transmission is examined by EPG, manual identification 
of the aforementioned waveforms is generally required. Afterward, the para-
meters of each waveform are analyzed.

Figure 1. The EPG waveforms of aphid feeding.
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Wavelet Kernel Extreme Learning Machine

Huang et al. advanced a single hidden layer feedforward neural network 
(SLFN) utilizing Extreme Learning Machine (ELM) to overcome the 
issues of conventional NNs whose training speed is slow, and it easily 
falls into the local smallest score. The weights between the input and 
hidden layers and the threshold for the hidden layer neuron are pro-
duced randomly in the ELM. Assigning the neuron numbers within the 
hidden layer during the training operation leads to the optimum out-
come. When the comparison is made with the conventional SLFN, both 
faster learning speed and better performance for generalizability appear 
to be the advantages. Hence, it has been extensively employed in ana-
lyses such as regression, data fitting, and classification detection (Huang  
2015).

Figure 2 depicts the network edifice of the ELM, which is composed of 
input, hidden, and output layers. All neurons in this network are fully con-
nected with no exception as depicted.

Suppose that the input layer consisting of n neurons corresponds to n input 
attributes. While l neurons are contained in the hidden layer, m neurons are 
included in the output layer that corresponds to m output attributes. The 
matrix representing connection weights between the input and the hidden 
layers is denoted byw. The matrix representing relation weights between the 
hidden and the output layers is represented by λ. The matrix representing the 
threshold of the hidden layer neurons is represented by b, then 

Figure 2. The network edifice of the ELM.
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If G xð Þis assigned as the activation mapping for the input layer, Ydenotes the 
outcome of the network 

Y ¼ Hλ (4) 

where H and N represents the output matrix for the hidden layer and the 
output data number, respectively. 

H ¼
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The equation represents a neural network with an input, hidden, and output 
layer. The input layer is represented by the variables x1 through xN , the hidden 
layer is represented by the function h xð Þ, and the output layer is represented by 
the matrix H.

Huang suggests two theorems related to the convergence of the ELM 
algorithm. The first theorem states that if the hidden layer of the ELM has 
the same number of neurons as the training set has data points for each weight 
and bias value, the ELM can converge to the training set with zero error. 
The second theorem states that if the training set has a large number of data 
points, the ELM can converge to an acceptable training error (ε >0) by using 
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a hidden layer with fewer neurons than the number of data points, to reduce 
the computational complexity of the algorithm.

The statement “the ELM can converge to an acceptable training error 
(ε >0)” suggests that the ELM algorithm can achieve a training error 
that is greater than zero but still small enough to be considered accep-
table. A training error of ε = 0.1 might be acceptable, while a smaller 
error of ε = 0.01 might be required in others. The acceptable training 
error depends on the complexity of the model and the amount of 
available data for training.

Thus, as G xð Þ, the mapping for activation, has the property of being 
infinitely differentiable, the whole parameters are not needed to be tuned. 
Both w and b parameters could be picked randomly before the training stage is 
conducted and are kept fixed when training is in progress. The affinity weights 
λ between the hidden and the output layers are attained by the LS result 
represented in Equation 33. 

min
λ
jjHλ � Yjj (6) 

The solution is represented by 

bλ ¼ HþY (7) 

where Hþdenotes the generalized Moore-Penrose inversion of the output 
matrix of the hidden layer H.

Equation 33 presents the solution 

bλ ¼ HTðHHT þ
I
C
Þ
� 1Y (8) 

where C represents a tunable parameter.
Equation 33 denotes the result of the classifier called ELM. 

f xð Þ ¼ h xð ÞHTðHHT þ
I
C
Þ
� 1Y (9) 

The result of the hidden layer of each sample is considered an attribute map of 
the sample in the ELM. Equation 33 represents this attribute map substituted 
by a kernel mapping proposed by (Diker et al. 2019). 
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The result of the ELM classifier alters through Equation 33 and Equation 33. 
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Where the kernel function is denoted by K. When the wavelet function is 
utilized by the kernel function, ELM turns out to be called WKELM (wavelet 
kernel extreme learning machine). The manuscript utilizes the basis of the 
Morlet wavelet to establish the wavelet kernel mapping. Equation 33 presents. 

K xi; xj
� �

¼
Yn

i¼1
cosð1:75

xi � xj

a
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expð�

ðxi � xjÞ
2

2a2 Þ� (12) 

Proposed WEPF

The proposed WEPF is based on an index-modulated nonorthogonal spec-
trally efficient frequency-division multiplexing (SEFDM) framework in which 
non-orthogonal subcarriers are index-modulated to reduce the impacts of 
destructive intercarrier interference while using the SEFDM-specific higher 
bandwidth efficiency. Furthermore, the model employs a low-complexity 
successive finding technique utilizing the smallest mean-squared error 
(MMSE) statistics and Log-Likelihood Ratio-based index modulation finding, 
allowing us to run the suggested system in a situation with a realistically large 
number of subcarriers.

In the proposed system, N subcarriers were separated into L classes, each of 
which contains M subcarriers; hence, N ¼ LM. The transmission frame of the 
whole frequency-domain s 2 C

N is defined by 

s ¼ s0; s1; � � � ; sN� 1½ �
T
¼ s 0ð ÞT; s 1ð ÞT; � � � ; s L� 1ð ÞT� �T

(13) 

The symbols of the frequency domain in the lth subcarrier class are defined by 

s lð Þ ¼ s lð Þ
0 ; s

lð Þ
1 ; � � � ; s

lð Þ
M� 1

h iT
2 C

M (14) 

Also, the signal representation of the time-domain of the suggested frame-
work, which is sent to the receiver, is defined by 
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x tð Þ ¼
1
ffiffiffiffi
T
p

XN� 1

n¼0
snexp j2πnαt=Tð Þ (15) 

The received time-domain signals are denoted as: 

y tð Þ ¼ x tð Þ þ n tð Þ (16) 

So, the result of the nth receiver correlator is presented by 

rn ¼ ò
T

0
y tð Þb�n tð Þdt n ¼ 0; � � � ;N � 1ð Þ (17) 

The observation statistics is re rewritten by 

r ¼ Msþ n (18) 

were 

r ¼ r0; � � � ; rN� 1½ � (19) 

and M represents the N � N covariance matrix and their entries are calcu-
lated by: 

mp;q ¼
1
ffiffiffiffi
T
p ò

T

0
exp j2πqαt=Tð Þb�p tð Þdt (20) 

and n related as noise matrix is characterized by 

ni ¼
1
ffiffiffiffi
T
p ò

T

0
n tð Þb�i tð Þdt (21) 

The conditional pairwise error probability, where s, the symbol vector, is 
demodulated as s′ is denoted by 

Pr s! s0ð Þ ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjM s � s0ð Þ
2
Fjj

2N0

s0

@

1

A (22) 

The suggested multiple architectures allow for the concurrent processing of 
many small-size subcarrier signals. Its complexity is calculated as follows: 

Table 1. Effective Bandwidth Transformation (N = 256, NB = 16).
NB ¼ 16 Sub-carrier In-band BCF Effective BCF

N ¼ 256 β ¼ 0:756 α ¼ 0:8
β ¼ 0:661 α ¼ 0:7
β ¼ 0:633 α ¼ 0:67
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The actual number of subcarriers must be sufficient to prevent multipath 
fading. Table 1 shows the effective bandwidth compression factor transforma-
tion for SEFDM signals with 256 data subcarriers and 16 subcarriers in each 
block.

The current solution is a practical scheme that reduces the negative impacts 
of intercarrier interference and enables functioning in a high-N environment. 
Also, the suggested technique for particular low-rate operations, low- 
complexity successive detection, is offered.

Material and Method

Acquisitions of the EPG Waveforms

The EPG device with a direct current Giga-8, manufactured in the Netherlands 
is utilized to collect the waveforms of EPG. The device’s input impedance was 
set to 109 Ω, the resolution of the A/D accession card was set to 12 bits, 8 
channels, and the frequency of the sampling was assigned to 100 Hz. The 
experimented insect type called MP was fostered on well-conditioned tobaccos 
in a greenhouse for a lengthy period. The nourishing requirements are set 
subsequently: the temperature, relative moisture, and photoperiod were 
assigned to 25°C, 70%, and 14:10 (L: D), respectively, and the experimenta-
tions were run by employing grown-up aphids with no wings. Tobacco is 
chosen as a plant used in the experiment (Zhongyan No. 1 type), cultivated in 
pots in an artificially designed climate bin. Water was distilled and was given 
every half week and the nourishing liquid was given every three weeks with no 
pesticides.

The culture requirements are set subsequently: the temperature, relative 
moisture, and photoperiod were assigned to 25°C, 70%, and 14:10 (L:D), 
respectively, and plants at 4–6 leaf phases of the same outgrowth condition 
are picked to run experimentations. The waveforms of EPG waveforms are 
acquired at a fixed 20°C in the daytime. The recordings of the experimented 
aphids were saved after they starved for an hour, and the duration to save was 
assigned to four hours.

Preprocessing of the EPG Waveforms

Noises coming from instruments measuring EPG signals and insects corrupt 
unavoidably the quality of EPG signals when data acquisition is in progress. 
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The sources that lead to those interferences are generally called the interfer-
ence of power frequency, interior discordance of the amplifier circuit, insects’ 
move artifact, threshold stream, etc. To derive the attributions of the EPG 
signals more accurately, inferences must be disregarded before running the 
analysis.

Denoising bioelectric signals and performing the analysis of multi- 
resolution utilizing the operations of stretching and translation could be 
conducted by wavelet transformation that could efficiently derive useful 
insights at diverse breakdown statuses. Hence, denoised signals are attained. 
The method called denoising of the wavelet threshold not only attains the 
optimum approximated signal for the foremost one but also reaches a faster 
processing speed.

As a consequence, the manuscript dealing with issues of the method called 
threshold denoising utilized the original EPG signal to eliminate the inter-
ference of power frequency, Gaussian type discordance, and threshold stream.

The Attribute Derivation of the Waveforms for EPG

Morphologically expressed attributes of the waveforms for EPG differ grandly 
and proposing a method used to extract attributes capable of deriving all kinds 
of waves is difficult. So, the time-frequency domain and non-linear angles are 
utilized to extract attributes to establish an attribute vector concerning 
a higher recognition ratio of the waveform in the manuscript.

When EPG is employed to extract attributes in the experiment, one sample 
consisting of 10 s long data is taken (1000 data points contained in each 
sample), and each waveform consists of 100 samples.

The Attributes of a Wavelet Energy
Both amplitude and frequency of the EPG signal are characterized as non- 
stationary signals altering with time. Wavelet transformation could split the 
signals into varied frequency constituents or distinct-scale constituents 
(Khokhar et al. 2017). Thus, the coefficients of the wavelet could designate 
the energy distribution of the signal in the time-frequency domain. Moreover, 
the energy of wavelet coefficients is derived from the time-frequency attributes 
of the waveforms of EPG (Xing et al. 2022). The feature extraction method of 
the wavelet energy for the EPG waveforms is conducted based on the steps: 1. 
Cj;k, the coefficients of wavelet decomposition in each layer, are attained by 
decomposing the j-layer wavelet of signals of EPG. 2. The mean energy 
distribution in each decomposition layer is computed. Namely, Equation 33 
shows the computational procedure, which consists of squaring the decom-
position coefficients of each layer, then all are summed up. 
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Ej ¼

PNj
k¼0 ðCj;kÞ

2

Nj
(24) 

Where the number of the decomposition layers is denoted by j and Nj 
represents the distance of the coefficients of the wavelets in the j -th layer. 
(3) The mean energy in each layer is picked. Then, the attribute vector was 
formed.

Because 100 Hz is picked as the frequency of the sampling of the EPG signal 
and the frequencies of varied waveforms of EPG are generally condensed 
between 2 and 20 Hz, the wavelet decomposition of the EPG signal is denoted 
by the 6-layer “sym4” conducted in the experiment. Figure 3 depicts that the 
mean energy of the high and low-frequency coefficients between 2 and 5 layers 
is derived. The 100 samples having the average wavelet energy concerning 
seven kinds of EPG are presented between A2 through A5 graphs that char-
acterize the low-frequency coefficients of the wavelet decomposition between 
the second through fifth ones. Thus, the high-frequency coefficients of 
the second- and fifth-layer wavelet decomposition are represented between 
D2 through D5. Thus, the LFE part has various EPG waveforms altering to 
a great extent. However, the high-frequency energy section has much less 
varying EPG waveforms. Accordingly, other attributes are fused with the low 
frequency mean energy part to construct the attribute vector.

The Features of a Fractal Dimension
The word fractal is termed to be used to represent the class of structures having 
large complexness and no defined distance for the attribute but self-similarity. 
A significant index called fractal dimension is employed to measure fractal, 

Figure 3. Average energy contrast of wavelet coefficients in layers 2~5.
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which is extensively employed to quantitatively describe the behavior of non- 
linearity (Xiong, Zhang, and Yang 2012).

The signal of EPG is described as a type of time series data. So, the FD could 
efficiently represent its alterations, complex structure of the distribution, and 
abnormalities. Then, both the BD and the HE are picked as the attributes of the 
fractal dimension to reduce the complexity of the computations.

Box Dimension (BD). Suppose that X denotes any non-empty bounded subset 
in Rn, and Nδ(X) denotes the smallest number of covering X classes with the 
maximum radius δ. Equation 33 represents the BD of X by 

FB ¼ lim
δ!1

log NδðXÞ
logð1=δÞ

(25) 

Resolving the limit presented in Equation 33 is practically difficult. Therefore, 
an approximation methodology is adopted to compute. A series of square 
grids are utilized to cover the scale-free area of the discrete signal represented 
by X(n),

The utilization of the x-grid leads a scale to be incrementally expanded to 
a grid denoted by kδ to attain grid numbers Nkδ covered by each scale. 
Afterward, the LS approach is employed to attain the estimated function of 
logkδ−logNkδ. So, its inclination shows the FBD FB of the discrete signal 
denoted by X(n).

The BD of the EPG signal ranging between 1 and 2 is found. So, the more 
complicated the waveform is, the greater the BD would be

The Hurst Exponent (HE). H, called the HE, is an estimation of the self- 
similarity measurement with no dimension (Lahmiri 2018), which is generally 
utilized to designate the correlated time series in a long run. When H is 
assigned to 0.5, it is characterized as inapplicable or pertinent to a very short 
run. When H is larger than 0.5, it represents a substantial positive correlation 
and is sturdy. When H is less than 0.5, it represents a long-run correlation. 
However, the whole trend is in the reverse direction, namely, anti-persistence 
exists.

Once the HE is estimated, the generally applied approach is called the R/S 
procedure, which is also called rescaled range analysis. X(n) denotes time 
series whose domain is split into subintervals with equal length N, and the 
HE series is attained by running calculations repeatedly for each subinterval. 
Thus, Equation 33 is used to compute the Hurst exponent. 

log
R Nð Þ
S Nð Þ

¼ H log N þ C (26) 
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where C and R/S denote a constant and a rescaled interval. The inclination 
coefficient of the function called regression is equal to the predicted score of 
the HE whenlog R Nð Þ

S Nð Þ and logN are regressed by utilizing the LS approach (Ma 
et al. 2018).

The experimentation computes both BD and HE of the waveforms of EPG 
based on one hundred samples as their attributes with nonlinearity property. 
Table 2 presents the mean BD and the HE that utilizes 100 samples for 
presentational purposes.

Table 2 presents the scores of both E2 and the C waves that are suchlike 
in the BD attribute. The scores of both E1 and the C waves are also not 
much distinct in the HE attributes. Thus, the characteristics of the fractal 
dimension for other waveforms are distinct and can be employed as group-
ing attributes.

The Features of the Hilbert – Huang Transformation (HHT)
The HHT comprises both EMD and HT and primarily conducts the EMD 
employing signals to attain the addition of many IMF. Afterward, both instant 
frequency and amplitude of the signal are attained by conducting the HT on 
each IMF constituent. Finally, the Hilbert spectrum of the signal is attained 
(Nalband et al. 2018; Yan and Lu 2014). To decrease the complexness of the 
computation, the SC is implemented as an HHT attribute in the attribute 
derivation of EPG.

Equation 33 defines the SC which is called the epicenter of the frequency 
constituent distribution of the signal. 

Table 2. The attributes of the FD of the waveforms in EPG.
Waveforms Box dimensions Hurst exponents

np 1.566 0.063
pd 1.343 0.672
E1 1.44 0.261
E2 1.506 0.141
G 1.64 0.723
C 1.514 0.247
F 1.689 0.494

Table 3. The HHT attributes of the EPG waveforms.
Characteristic 
values

The spectral centroid 
of the first layer

The spectral centroid 
of the second layer

The spectral centroid 
of the third layer

The spectral centroid 
of the fourth layer

np 0.296 0.135 0.059 0.025
pd 0.156 0.074 0.038 0.021
E1 0.099 0.065 0.046 0.029
E2 0.166 0.072 0.043 0.022
G 0.140 0.052 0.035 0.019
C 0.162 0.076 0.044 0.021
F 0.136 0.081 0.049 0.023
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SCi ¼

PM
j¼1 fi jð ÞEi jð Þ
PM

j¼1 Ei jð Þ
(27) 

Where the signal length is denoted by M, and fi(j) and Ei(j) denote the 
immediate frequency and energy scores at the jth sampling datum of the ith 
IMF constituent.

Since the immanent attributes of the signal are generally presented in the 
first few IMF constituents, and the latter ones mainly include less information, 
the spectral centroids of the first two IMF constituents are derived as attributes 
of the HHT. So, Table 3 summarizes the average spectral centroid of the first 
four layers of the EPG waveforms having 100 data.

Table 3 depicts the various outcomes between different waveforms such as 
E2, C, G, and F waves that were 0.04 when the values related to the first layer 
spectral centroid characteristics are under consideration. There exists 
a difference between the pd and E2 waves, which is 0.02 in spectral centroid 
representation scores of the second layer. When spectral characteristics of the 
third layer are under consideration, there exists a difference between the E2 
and C waves, which is 0.001; there exists a difference between the pd and 
C waves in the fourth one, which is zero. While the disparity between wave-
forms tends to decrease, the number of layers increases. The third and fourth 
layers having the HHT attributes are not found useful to classify the EPG 
waveforms.

The Attribute Vector of the EPG Waveforms
The combinations of five distinct attribute vectors are employed to make the 
comparison. The first class of attributes, S1, consists of LFWE in both 
the second and fifth layers, the BD, and the HE, and contains six attributes 
in total. The second class of attribute vectors, S2, consists of the same WE in 
both second and the fifth layers as S1 and SC in the first two layers of the HHT 
and contains six attributes in total. The third class of attribute vectors, S3, 
consists of the same wavelet energy in the second and the fifth layers, the BD, 
the HE, and the spectral centroid in the first two layers of the HHT and 
includes eight attributes in total. The fourth class of attributes vectors, S4, 
consists of the same wavelet energy in the second and the third layers, the BD, 
the HE, and the SC in the first two layers of the HHT and includes six 

Table 4. Comparing detection rates of decision trees with the distinct attribute vector.

Recognition rates（%）

Attribute vector

S1 S2 S3 S4 S5

Group 1 85.00 81.43 90.00 91.43 90.00
Group 2 87.14 80.71 90.00 90.00 89.29
Group 3 97.14 93.57 93.57 93.57 93.57
Group 4 94.29 90.71 91.43 91.43 92.86
Mean（%） 90.90 86.61 91.25 91.61 91.43
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attributes in total. Finally, the fifth class of attribute vectors, S5, consists of the 
same wavelet energy in the fourth and the fifth layers, the BD, the HE, and the 
SC in the first two layers of the HHT and contains six attributes in total.

Wu et al. employed both the same training and test samples and classifiers 
to make comparisons with the outcomes of the prior studies. Table 4 sum-
marizes the outcomes of combining various attributes.

Table 4 presents that the mean recognition ratio attained by employing the 
combination of the S4 attribute vector is found to be the maximum at 91.61%. 
The mean recognition ratio attained by the combination of the S5 attribute 
vector is the same as that of the previously conducted experiments with 

Figure 4. Features distribution of EPG waveforms.
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91.43% (Wu et al. 2018). Accordingly, the combination of S4 is employed as 
the attribute vector of the WKELM classifier in the manuscript.

Figure 4 depicts the attribute distribution of 7 different types of EPG 
waveforms with 100 samples. The WE in both second and the third layers, 
BD, and the second layer SC of the G wave was found to be relatively 
condensed, sturdy, less bisecting with other attributes, and simple to separate. 
The spectral centroid is defined as a metric to characterize a spectrum in the 
processing of digital signals, characterizing the location of the mass center of 
the spectrum, having a sensible perceptual connection with the perception of 
the brightness of a sound, and is also known as the center of spectral mass. The 
BD and the second layer SC of the F wave were found to be consistent.

Hence, the Hurst exponent attributes of the pd are condensed. The HE 
exponent is employed as a magnitude for the long-run memory of time 
series. It concerns time series autocorrelations and how they reduce as the 
latency between data pairs grows. The Hurst exponent was first used in 
hydrology to determine the size of the best dam for the varying rain and 
drought requirements of the Nile River, which were researched in the 
long run. Besides, the second layer SC attributes of the np do not 
intersect with others and were simple to segregate, which could be 
employed for the WKELM classifier as input vectors and its result is 
7-kind waveforms of EPG. It must be noted that a wavelet is an oscillat-
ing structure with a wave-like amplitude whose starting point is zero, 
then increases or decreases, and afterward goes back to zero once or more 
than once.

Wavelets as “brief oscillations” have a taxonomy depending on the number 
and direction of their pulses and also have unique features that make them 
valuable for signal processing.

The Classification of the EPG Waveforms Utilizing the WKELM

Seven types of waveforms, namely, np, pd, C, E1, E2, F, and G waves available 
in the signal of EPG are clustered in the experiment. The S4 is employed as the 
attribute vector for the WKELM classifier to input, and four groups of 
experiments conducted are the same as the samples in the literature (Wu 
et al. 2018). Once the WKELM as a classifier is employed, the first affinity 
weights and the thresholds of the hidden layer are assigned randomly. To 
assure the stable outcome of each grouping, the weights and thresholds are 
kept constant, and the same random scores are implemented in each process. 
The number of hidden layers has a considerable impact on the results of the 
grouping. Figure 5 depicts the detection ratio of the classification concerning 
the four groups of the experimental data when the neuron numbers altered 
between 20 and 400. Neuron numbers are not the more the better situation. 
While neuron number goes up, the detection ratio lowers.
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How many neurons are needed to attain the best classification outcomes 
regarding the hidden layer of the WKELM is still an open issue that needs 
theoretical treatment. To attain the best recognition ratio, the incremental 
method is implemented to choose the number of neurons in the hidden layer 
adaptively when the experiment is run. Hence, the optimized network edifice 
is found by raising the number of neurons in the hidden layers one at a time 
(Huang and Chen 2008). After each iteration accepts new neurons, the 
updated weights and anticipated errors of the available neurons in hidden 
layers are recalculated until the residuals converge to the preset scores.

The term “preset scores” refer to a predetermined threshold or criteria used 
to determine when the algorithm has converged to an acceptable solution. For 
example, the algorithm is set to continue adding new neurons to the hidden 
layer until the residual errors fall below a certain threshold or until a certain 
number of neurons have been added. The precise method for setting these 
preset scores depends on the specific ELM, dataset, and the application’s goals.

Figure 5. The impact of the neuron numbers in the hidden layer on the achievement of the ELM 
Classification.
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In the context of the proposed ELM, the term “preset scores” refer to the 
threshold value for the training error and the norm of the output weights. We 
set the value of this threshold as a stopping criterion for the ELM algorithm.

The training error threshold is typically defined as the maximum allowable 
difference between the desired output and the actual output of the ELM. This 
value is usually set based on the desired accuracy of the model and the 
available computational resources. Once the training error falls below this 
threshold, the algorithm is stopped and the resulting model is considered 
trained.

The norm of the output weights threshold is another stopping criterion that 
can be used to terminate the ELM algorithm. In this case, the algorithm is 
stopped when the norm of the output weights exceeds a certain threshold 
value. This criterion is typically used to prevent overfitting of the ELM model, 
where the model becomes too complex and begins to fit the training data too 
closely.

In both cases, the threshold values are set by the user and are considered to 
be “preset scores” that determine when the algorithm has converged to an 
acceptable solution. The precise values of these thresholds may depend on the 
specific application and the goals of the ELM model.

Hence, the smallest number of neurons in the hidden layer and the para-
meters of the neurons in each hidden layer are attained.

Adversarial Examples

By conducting several transformations, intelligent models cause problem- 
solving, for example, pattern recognition. Most of these transformations are 
very delicate to small perturbations in the input, so exploiting this delicateness 
could cause them to modify their behavior under these circumstances. In 
addition, each learning algorithm has some specific bias, such as in the 
hyperparameters it uses, the methodology of separating and ranking the 
classes, or the ways of representing the information. Accordingly, the training 
data used, because it is finite, does not precisely designate reality, as its 
selection process and assumption on the data set having the same distribution 
as the set of unknown cases lead to another level of bias. Hence, intelligent 
algorithms could be vulnerable to specialized offenses.

Therefore, designing suitable inputs in a certain way leads the learning 
algorithm to wrong transformations, producing bad results. These attacks 
are called adversarial attacks and are a significant issue in the dependability 
of artificial intelligence approaches. The learning methods were proposed by 
assuming that training and test datasets are drawn from the same distribution, 
which is unknown in advance. For instance, a trained neural network char-
acterizes a long-range decision boundary that corresponds to a standard class. 
This bound is not perfect, and a properly devised and utilized attack, which 
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corresponds to an altered input that generally comes from slightly different 
data, could cause the method to classify wrongly (wrong class).

Completely connected neural networks consist of layers of artificial neu-
rons. Neurons receive input from prior layers, crunch it by using an activation 
mapping and transfer it to the next one at each layer. While sample x denotes 
the input of the first layer, and the result F xð Þ is the outcome of the last layer. 
A fully connected m-level neural network could be constructed based on the 
equation: 

z 0ð Þ ¼ x; z lþ1ð Þ ¼ σ Wlzl þ bl� �
(28) 

The classifier is defined by the attack to describe the objective of the function 
as follows: 

f : ½0; 1�d ! R K (29) 

Scenario 1
The aim of this offense is defined by 

argmaxk¼1;...;Kfk x̂ð Þ�y; k x̂ � xkp � P and x̂ 2 ½0; 1�d (30) 

Scenario 2
The objective of this offense is defined by 

Targeted : minx0d x0; xð Þsubject toC x0ð Þ ¼ c� (31) 

Untargeted : minx0d x0; xð Þsubject toC x0ð Þ�C xð Þ (32) 

The Outcomes of the Experiment and the Analysis

The motivation behind this paper is to improve the security of machine 
learning algorithms, especially in scenarios where authorized implementers 
and eavesdroppers are close to each other, which can lead to errors in 
beamforming and beam leakages. The paper aims to address this issue by 
proposing a framework called the WEPF, which incorporates non- 
orthogonality into the physical layer signal waveform.

The paper focuses on the categorization of the EPG for insects, which is 
used in the study of insect feeding behavior and the transmission of viruses 
between insects. The proposed framework was tested using a six-dimensional 
attribute vector, which included features such as low-frequency wavelet 
energy, fractal box dimension, Hurst exponent, and spectral centroid. The 
results showed that the WEPF was effective in preventing eavesdropping or 
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tampering with the waveforms used in advanced machine learning methods in 
two adversarial scenarios.

Overall, the motivation of this paper is to provide a solution to the 
difficulty in performing secure beamforming in waveform applications 
and to enhance the security of machine learning algorithms against 
adversarial attacks.

To exemplify the efficacy of the WKELM when the EPG waveforms are 
classified, distinct classifiers are employed to compare the outcomes. A DC, 
probabilistic NNs, the ELM, radial basis function ELM, polynomial kernel 
ELM, and the classifier called WKELM employ the same samples as input. 
Table 5 finally summarizes the recognition outcomes.

The mean classification outcomes derived from utilizing the 4 group 
data sets are depicted in Table 5. While the recognition ratio of PNN is 
found to be the smallest at 90.72%, and the recognition ratio of the 
WKELM is found to be the maximum at 94.47%. The multi-scale 
approximation features of the wavelet function are inherited from the 
wavelet kernel function, so a better impact on the outcomes of the 
classification is achieved.

While the recognition ratios of groups 1 and 2 are found to be lower, the 
recognition ratios of groups 3 are found to be higher when no matter which 
classifier is employed based on single group experiment data set. Why large 
differences in the classification outcomes are reached can be summarized as 
follows:

(1) Outside interference and the insects corrupt EPG signals, which are 
biological signals. Even though they come from the exact waveform, 
both amplitude and frequency would alter. The C wave particularly 
presents this situation. There exists a difference between the wave-
form directions between the first and the next hours, which results in 
the dissipation of the derived attribute scores and misjudgments in 
classification outcomes.

(2) The experiment utilizes a method that classifies objects employing 
a framework, which is called supervised learning. If the model is not 
trained with large samples, the recognition rate will be lower when both 
training and test samples differ largely.

Table 5. Comparing the recognition outcomes of the diverse classifiers.

Distinct Classifiers No.1 group No.2 group No.3 group No.4 group
Mean 
（%）

Recognition rate（%） Decision Tree 91.43 90.00 93.57 91.43 91.61
PNN 85.71 82.86 97.86 96.43 90.72
ELM 90.71 87.86 97.86 97.86 93.57
RBFELM 90.00 88.57 97.86 97.86 93.57
PKELM 90.71 87.14 97.86 97.86 93.39
WKELM 90.71 91.43 97.86 97.86 94.47
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It must be said that this thorough research and the context in which the 
experiments were carried out is the first of its kind, and there is no equivalent 
to conducting comparisons.

Conclusion

This investigation took place during the first phase of this project. During this 
effort, our research and study concentrated on studying a specialized assault 
scenario and determining how resistant it would be too universal counterex-
ample detection approaches based on the suggested WEPF. During the second 
stage of this research project, we used the second scenario to investigate the 
power and efficiency of combined assault methods. The fact that the methodol-
ogy produced very high outcomes in both examples, as was shown through the 
use of experiments, demonstrates its usefulness and efficiency.

In the past, recognizing waveforms in investigations into insects and plants 
that involved using EPG equipment was always done by hand. This practice 
continues today. Due to the complex waveforms of the electroencephalogram, 
ECG, and other techniques of processing bioelectrical signals, the application 
of machine learning to detect the waveforms of the electroencephalogram runs 
more slowly than those other methods.

The attribute derivation and grouping methodologies of the EPG wave-
forms of aphids are investigated in the study. It has been determined how to 
construct the attribute vector that combines WE, FD, and HHT. After that, 
a classifier that is based on WKELM is utilized. Following that, a mean 
recognition ratio of 94.47% is achieved, which is 3.04% higher than the 
previous research carried out, and its mean recognition ratio is 91.43%. 
Then, the mean recognition ratio of 91.43% is achieved (Wu et al. 2018). 
The results of the studies indicate that the proposed WKELM classifier is 
a more workable method for classifying the EPG waveforms.

Because of the convergence of data, algorithms, and computation, the 
suggested framework enjoys high trust. This is because it demonstrated out-
standing performance on a variety of experiments that were carried out, each 
including specifically outlined scenarios.

The following is a condensed summary of the constraints and the potential 
next steps for this line of research: The only topic covered in this publication is 
the automatic classification of EPG waveforms; nevertheless, several study 
fields still need to be developed further.

(1) There are only seven different kinds of waveforms known.
(2) While thinking about the transmission of a virus, it is necessary to consider 

the recognition of the waveform represented by E1 + E2. This allows for the 
derivation of the characteristics essential to the time-frequency domain and 
nonlinearity. It should be noted that other characteristics associated with 
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time and frequency domains could probably improve the ratio of the 
recognition rates, which necessitates more verifications.

(3) More experimental research is required to assess whether or if the 
random forest method, an example of an integrated learning classifier, 
could yield a higher recognition ratio.

Some possible future directions for this work and related research in this field 
could be:

(1) Extension of the proposed framework to other machine learning appli-
cations and scenarios, such as image or speech recognition, natural 
language processing, and autonomous systems.

(2) Investigating the performance of the proposed framework under differ-
ent types of adversarial attacks, including those specifically designed to 
bypass the non-orthogonality idea in the physical layer signal waveform.

(3) Exploring the potential impact of the proposed framework on the 
accuracy and efficiency of machine learning algorithms.

(4) Developing methods to improve the interpretability and transparency 
of machine learning algorithms while maintaining their security.

(5) Investigating the trade-offs between security, accuracy, interpretability, 
and efficiency in machine learning algorithms, and identifying optimal 
solutions for different applications and scenarios.

(6) Integrating the proposed framework with other security mechanisms, 
such as encryption and authentication, to provide a more comprehen-
sive security solution for machine learning algorithms.

Overall, the proposed framework and related research in this field have the 
potential to make significant contributions to the development of secure and 
trustworthy machine learning algorithms, which are essential for many critical 
applications in today’s society.

In conclusion, in this paper, we proposed a WEPF to improve the security of 
machine learning algorithms in scenarios where eavesdropping and manipula-
tion of waveform signals are possible. The framework incorporates a non- 
orthogonality idea into the physical layer signal waveform, which was able to 
successfully secure all waveform signals in two adversarial scenarios. The pro-
posed framework was tested using an attribute vector with 6 dimensions in the 
application scenario of classifying EPG signals for insects. However, future 
research is needed to extend the framework to other machine learning applica-
tions and scenarios and investigate its performance under different types of 
adversarial attacks. The development of secure and trustworthy machine learn-
ing algorithms is essential for many critical applications in today’s society, and 
the proposed framework and related research in this field have the potential to 
make significant contributions to this goal.
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