
American Journal of Computational Mathematics, 2021, 11, 31-41 
https://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

 

DOI: 10.4236/ajcm.2021.111003  Mar. 17, 2021 31 American Journal of Computational Mathematics 
 

 
 
 

On a Dual to the Properties of Hurwitz 
Polynomials I 

Gastón Vergara-Hermosilla 

Université de Bordeaux, Talence, France  

 
 
 

Abstract 

In this work we develop necessary and sufficient conditions for describing the 
family of anti-Hurwitz polynomials, introduced by Vergara-Hermosilla et al. 
in [1]. Specifically, we studied a dual version of the Theorem of Routh-Hurwitz 
and present explicit criteria for polynomials of low order and derivatives. 
Another contribution of this work is establishing a dual version of the Her-
mite-Biehler Theorem. To this aim, we give extensions of the boundary 
crossing Theorems and a zero exclusion principle for anti-Hurwitz polyno-
mials. 
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1. Introduction 

In this paper we present the first part, of a series of three works, on a new ap-
proach about the classification of the roots of real polynomials in one variable in 
the right half complex plane. This new idea arises from the need to obtain simple 
explicit criteria for the area of the complex plane not covered by the theory of 
Hurwitz polynomials (also known as stable polynomials). In fact, our results are 
natural extensions of the classical Theorems of Routh-Hurwitz and Her-
mite-Biehler for the complement zone; ( ){ }: Re 0z z+ = ∈ >  . 

In the literature we highlight as main references for the study of roots of real 
polynomials on the left half complex plane and its applications to system theory 
in a general framework the books of Gantmacher [2] [3], and the book of Iooss 
and Joseph [4]. Chappellat, Mansour and Brattacharyya present classic stability 
criteria with elementary demonstrations in their article [5] while new and inter-
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esting ideas about the demonstration of these results have been developed by 
Holtz in [6]. For a generalization to real polynomials in several variables we 
mention the work of Fettweis in [7]. The approach introduced in this work con-
sist of a systematic use of the linear transformation z z− , on the properties 
that define the Hurwitz polynomials, which leads us to use and explore the no-
tion originally introduced by Vergara-Hermosilla et al. in [1] about anti-Hurwitz 
polynomials. This notion can be recast as a dual result to the main necessary and 
sufficient conditions on stable polynomials. What is more, our Theorems and 
Propositions also depend on the coefficients of the polynomial in question which 
makes it more manipulable for applications in science and engineering. To this 
end, in Section 5 we will apply our results to a family of polynomials associated 
with a system of PDE's that describe interactions fluid-structure, for details see 
[1] or Vergara-Hermosilla [8]. With this preamble,, we are in a position of estab-
lish our first main result, which read as:  

Proposition. Let ( ) [ ]1
0 1 1

n n
n nf X a X a X a X a X−
−= + + + + ∈   of degree 

3≥ . Then ( )f X  is an anti-Hurwitz polynomial, if and only if it satisfies the 
conditions: 

1) ( )1 0i
ia− > , for all { }0, ,i n∈  . 

2) ( )
1

21 0
i

i

+ 
  − ∆ > , for all { }1, ,i n∈  . 

As the practical use of of the Routh-Hurwitz criterion is usually limited, in the 
context of direct computations, to polynomials of low degrees (3rd, 4th, or 5th), 
we develop an alternatives result, which is more versatile and, as in the previous 
case, this extends to the dual zone the classical Boundary Crossing Theorems. 
More precisely, we will prove our second main result which is dual version of the 
Zero Exclusion Principle. Our second main result reads as: 

Theorem. Let   the set of the real anti-Hurwitz polynomials. Suppose 
( ){ },f X

λ
λ

∈Ω
 is a family of real polinomials in the variable X wich depends 

continuously on the λ ∈Ω ⊂  , with Ω  pathwise connected. Suppose more-
over that the family ( ),f Xλ  is of degree constant and there is at least one an-
ti-Hurwitz polynomial. Then, the family ( ){ },f X

λ
λ

∈Ω
⊂  , if and only if 

( ), 0p iwλ ≠ , for all w∈  and λ ∈Ω . 
With this result, and by defining an appropriate property of anti-alternancy, 

we will demonstrate the third main result in this paper, which is a dual version 
of the Theorem of Hermite-Biehler. This third main result reads as: 

Theorem. A real polinomial ( )p X  is Anti-Hurwitz, if and only if satisfies 
the anti-alternancy property. 

The outline of the paper is organized as follow. In Section 2 we state the main 
definitions and properties that describe the Hurwitz polynomials emphasizing 
the Hurwitz matrix and the Theorem of Routh-Hurwitz. In Section 3 we define 
the anti-Hurwitz polynomials, demonstrate our first main result, and establish 
explicit criteria for real polynomials of less than or equal order 4 and derivatives. 
In Section 4 we introduce the dual versions of the classical Boundary Crossing 
results and we proof our second and third main results. Finally, in Section 5 we 
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apply our results for obtaining information about the behavior of the roots of the 
family of viscous polynomials defined in [1]. 

2. Hurwitz Polynomials 

For n∈  we denote by n  the set of all degree n polynomials with real coef-
ficients. 

Definition 2.1. A polynomial ( ) [ ]f X X∈  is Hurwitz if the real part of all 
its complex roots is negative i.e., ( )Re 0u <  for any u∈  satisfying 
( ) 0f u = . 
Let   denote the set of all Hurwitz polynomials, and we set n n=    . 

The set of all Hurwitz polynomials in n  with positive coefficients is denoted 
by n

+ . 
Theorem 1 (Stodola condition). If a polynomial ( ) [ ]f X X∈  is Hurwitz, 

then all its coefficients are of the same sign. 
Proof. The roots of a real polynomial are symmetric with respect to the real 

line. For ( )f X , we can write  

( ) ( ) ( ) ( )0 ,k j j j j
k j j

f X a X s X i X iα β α β= − − − − +∏ ∏ ∏        (2.1) 

where each ks  are real roots, and j jiα β±  are complex roots of ( )f X  with 
nonzero imaginary part. Note that ,j js α  are negative. Since the expressions 
( )kX s−  and ( )2 2 22 j j jX Xα α β− + +  have positive coefficients, their product 
has the same property. 

Let ( ) 0 1
n

n n nf X a X a X a−= + + + ∈   be a polynomial. The Hurwitz ma-
trix of a polynomial, denoted as ( )( )H f X , is the square matrix of size n de-
fined as follows: 

1 3 5

0 2 4

1 3

0 2

1

0

2

3 1

4 2

0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0

n n

n n

n n n

a a a
a a a

a a
a a

a
a

a a
a a
a a a

−

− −

− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 













      







               (2.2) 

For every { }1, ,k n∈  , let ( )( )kH f X  denote the square matrix of size k 
obtained from the first k rows and columns of ( )( )H f X , and we set:  

( )( )( )det ,k kH f X∆ =                     (2.3) 

where ( )det kH  denotes the determinant of the square matrix kH .  
Theorem 2 (Routh-Hurwitz). A polynomial  
( ) 0 1

n
n n nf X a X a X a−= + + + ∈   with 0 0a >  is Hurwitz if and only if 

0k∆ >  for all { }1, ,k n∈  . 
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For a proof of this result see for instance [2] [4] or [6]. 

3. Anti-Hurwitz Polynomials 

In this section we establish the definition of anti-Hurwitz polynomials and a 
dual criterion to the Theorem of Routh-Hurwitz. To this end, we introduce the 
following definition. 

Definition 3.1. A polynomial ( ) nf X ∈  is said to be anti-Hurwitz if the 
real part of all its complex roots is positive, i.e., ( )Re 0u >  for all u∈  satis-
fying ( ) 0f u = .  

Lemma 3. A polynomial ( ) nf X ∈  is anti-Hurwitz if and only if ( )f X−  
is Hurwitz. 

Proof. Let ( )f X  be an anti-Hurwitz polynomial and u a complex root of 
( )f X− . Then ( ) 0f u− =  and ( )Re 0u− > , i.e., ( )Re 0u < . Therefore ( )f X−  

is Hurwitz. On the other hand, if ( )f X−  is a Hurwitz polynomial and u a 
complex root of ( )f X , then ( ) ( )( ) 0f u f u= − − = . In this case, ( )Re 0u− < , 
i.e., ( )Re 0u > . Hence, ( )f X  is anti-Hurwitz.  

Lemma 4. Let ( ) [ ]f X X∈  be a polynomial of degree n and i∆  the de-
terminant of the Hurwitz submatrix ( )( )iH f X , for 1 i n≤ ≤ . Then we have 

( )
1

21 ,
i

i i

+ 
−   ∆ = − ∆                        (3.1) 

where i
−∆  is the determinant of i-th Hurwitz submatrix ( )( )iH f X− . 

Proof. The matrix for ( )( )iH f X−  is written as  

1 3 5

0 2 4

1 3

0 2

1

0

2

3 1

4 2

0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0

.
0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0

n n

n n

n n n

a a a
a a a

a a
a a

a
a

a a
a a

a a a

−

− −

− −

− − − 
 
 
 − −
 
 
 −
 
 
 
 
 
 − − 
 
 













      







            (3.2) 

Comparing it with the matrix of ( )( )iH f X , we immediately see that  

( )
1

21 .
i

i i

+ 
−   ∆ = − ∆                        (3.3) 

Proposition 5. Let ( ) [ ]1
0 1 1

n n
n nf X a X a X a X a X−
−= + + + + ∈   of de-

gree 3≥ . Then ( )f X  is an anti-Hurwitz polynomial, if and only if it satisfies 
the conditions: 

1) ( )1 0i
ia− > , for all { }0, ,i n∈  .  

2) ( )
1

21 0
i

i

+ 
  − ∆ > , for all { }1, ,i n∈  .  

Proof. By lemma (3), we know that ( )f X  is an anti-Hurwitz polynomial if 
and only if ( )f X−  is a Hurwitz polynomial. In this case, the coefficient of iX  
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in ( )f X−  is ( )1 i
n ia −− . Without loss of generality, we may suppose that 

0 0a > . Now the Stodola Condition (1) and Theorem (2), gives us that  
( )1 0i

n ia −− > , for { }0,1, ,i n∈   and 0i
−∆ > . Hence, we conclude by Lemma 

(4).  
In the following we establish simple criteria on the property of anti-Hurwitz, 

applicable to real polynomials of less than or equal order 4 and derivatives of 
polynomials. To this end we consider a polynomial ( ) [ ]p X X∈  and the ne-
cessary and sufficient conditions developed in the Proposition 5. The criteria 
read as: 
 The polynomial ( ) 2

1 2p X X a X a= + +  is an anti-Hurwitz polynomial, if 
and only if 

1 2, 0.a a− >                           (3.4) 

 The polynomial ( ) 3 2
1 2 3p X X a X a X a= + + +  is an anti-Hurwitz poly-

nomial, if and only if  

1 2 3 2 1 2, , 0 and 0.a a a a a a− − > − >                 (3.5) 

 The polynomial ( ) 4 3 2
1 2 3 4p X X a X a X a X a= + + + +  is an anti-Hurwitz 

polynomial, if and only if  
2 2

1 2 3 4 1 2 3 3 1 4, , , 0 and 0.a a a a a a a a a a− − > − − >            (3.6) 

 Let ( )p X  be an anti-Hurwitz polynomial of degree n and let ( )P X′  de-
note the first-order derivative of ( )p X  with respect to X. Then ( )p X′−  
is again an anti-Hurwitz polynomial. 

4. A Dual Version of the Theorem of Hermite-Biehler 

In this Section we establish a dual version of the Theorem of Hermite-Biehler for 
anti-Hurwitz polynomials. To this end, we need to introduce dual versions of 
Boundary Crossing Theorems. We begin the Section with the following defini-
tion. 

Definition 4.1. Let ( ) [ ]p X X∈  and w∈ . The argument of ( )p iw  is 
called the phase of ( )p iw . 

Lemma 6. Let ( ) 1 0
n
Xp X a a X a= + + +  be an anti-Hurwitz polynomial of 

degree n. Then, ( )arg p iw  is a strictly decreasing function. Moreover, the net 
change in the phase from −∞  to +∞  is  

( ) ( )lim lim .
w w

p iw p iw n
→+∞ →−∞

= π−                  (4.1) 

Proof. By the fundamental theorem of algebra, we can write ( )p X  as a 
product of its roots  

( ) ( )( ) ( )1 1 2 2 .n n np X a X i X i X iα β α β α β= − − − − − −  

Plugging X iw= , we get 

( ) ( )( ) ( )( ) ( )( )1 1 2 2 ,n n np iw a i w i w i wα β α β α β= − + − − + − − + −
 

and so, we obtain 
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( ) ( ) 1

1

arg arg arctan arctan .n
n

n

wwp iw a
ββ

α α
   −−

= + + +   − −   


     (4.2) 

Differentiating the above expression with respect to w, we get 

( ) 2 2
11 1

1

d 1 1 1 1arg .
d

1 1
n

n

p iw
w w wα αβ β

α α

  
= − + + −  

      − −
+ +   − −   


 

Since ( )p X  is an anti-Hurwitz polynomial, we have that 0kα >  for 
{ }1, ,k n∈  . Therefore, ( )arg p iw  is decreasing is a decreasing function in w. 

Now, from Equation (4.2), we have 

( ) ( )lim arg arg ;
2nw

np iw α
→+∞

= −
π

 

( ) ( )lim arg arg .
2nw

np iw α
→−∞

= +
π

 

The claim now follows. 
In the following we enunciate two classic results on stability, whose demon-

strations can be consulted in the article of Chappellat et al. [5]. 
Proposition 7. Let 0na ≠ , ( ) ( )1 0 1

jtmn
n n jjp X a X a X a a X ω

=
= + + + = −∏ , 

and ( ) ( ) ( ) ( )1 1 0 0
n

n nq X a X a X aε ε ε= + + + + + + . Consider the circle kC  
of radius kr  centered at kω . Let kr  be fixed such that 0 mink k jr ω ω≤ < − , 
for { }1,2, , 1, 1, ,j k k m∈ − +  . Then, there exists an 0ε >  such that for all 

1 2, , , nε ε ε ε< , ( )q X  has precisely kt  zeros inside the circle kC . 
Corollary 1. Fix m circles 1, , mC C  that are pairwise disjoint and centered 

at 1 2, , , mω ω ω  respectively. Then, by repeatedly applying Theorem (7), it is 
always possible to find an 0ε >  such that for any 1 2, , , nε ε ε ε< , ( )q X  
has precisely kt  zeros inside each of the circles kC . 

Remark. In the previous Corollary, we note that ( )q X  always has 

1 2 mt t t n+ + + =  zeros and must therefore remain of degree n, so necessarily 
we have naε < . 

In the following we denote the set of anti-Hurwitz polynomials of degree n by 

n . 
Remark. By Proposition (7), Corollary (1) and Remark (4), we see that if 
( ) 1 0

n
n np X a X a X a= + + + ∈  , then there exists an 0ε >  such that for all 

1 2, , , nε ε ε ε< , the polynomial  
( ) ( ) ( ) ( )1 1 0 0

n
n n nq X a X a X aε ε ε= + + + + + + ∈  . 

Boundary Crossing Theorems 

Let ( ),p Xλ  be a family of degree n polynomials with real coefficients, which 
is continuous with respect to [ ],a bλ ∈ . In other words, ( ),p Xλ  can be writ-
ten as  

( ) ( ) ( ) ( )1 0, ,n
np X a X a X aλ λ λ λ= + + +  

where ( ) ( ) ( )0 1, , , na a aλ λ λ  are continuous functions in λ  and ( ) 0na λ ≠  
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for all λ . 
Theorem 8. Suppose that ( ),p a X  has all its roots in S ⊂  , where 
( ),p b X  has at leat one root in \U S=  . Then, there exist at least one 
( ],a bρ ∈  such that 

1) ( ),p Xρ  has all its roots in S S∂ . 
2) ( ),p Xρ  has at least one root in S∂ . 
The proof of the Theorem above can be see in [5]. A direct consequence of the 

last Theorem relevant for the case of Families of anti-Hurwitz polinomials is 
given in the following Corollary: 

Corollary 2. Suppose ( ){ } [ ],
,

a b
f X

λ
λ

∈
 is a family of real polinomials in the 

variable X which depends continuously on the [ , ]a bλ∈  and that the family 
is of degree constant. If ( ),p a X  has all its roots on +  and ( ),p b X  has at 
least one root on − , then there exist ( ],a bρ ∈  such that 

1) ( ),p Xρ  has all its roots in i−
  . 

2) ( ),p Xρ  has at least one root in i . 
Theorem 9. Let ( ){ }n n

f X
∈

 be a sequence of anti-Hurwitz polynomials of 
degree least or equal to N such that ( ) ( )nf X q X→ . Then, the roots of ( )q X  
remain in i+

  . 
Proof. We consider the polynomials ( ) 0 1

N
nq X a a X a X= + + + , and 

( ) 0 1
m m m N

m Nf X a a X a X= + + + . We suppose that ( )q X  has a root X −∈ . 
We know that there is a circle C with center X  such that C −⊂  . Then, by 
Theorem 7 there is 0ε >  such that if iε ε< , for all 0,1, ,i N=  , then  

( ) ( ) ( ) ( )0 0 1 1
N

N Np X b b X b Xε ε ε= + + + + + +  

has at least one root inside of C. How ( ) ( )nf X q X→ , then there is  
( ) 0 1

k k k N
k Nf X a a X a X= + + +  such that 0 0 1 1, , ,k k k

N Nb a b a b a ε− − − <
. 

Then, the following polynomial  

( ) ( ) ( ) ( )0 0 0 1 1 1 ,k k k N
k N N Nf X b a b b a b X b a b X   = + − + + − + + + −     

has a root in − , which is a contradiction with the fact that ( ){ }n n
f X

∈
 is a 

sequence of anti-Hurwitz polynomials. 
Theorem 10 (Zero exclusion principle). Let   the set of the real an-

ti-Hurwitz polynomials. Suppose ( ){ },f X
λ

λ
∈Ω

 is a family of real polinomials 
in the variable X wich depends continuously on the nλ ∈Ω ⊂  , with Ω  
pathwise connected. Suppose moreover that the family ( ),f Xλ  is of degree 
constant and there is at least one anti-Hurwitz polynomial. Then, the family 

( ){ },f X
λ

λ
∈Ω

⊂  , if and only if ( ), 0p iwλ ≠ , for all w∈  and λ ∈Ω . 
Proof. 

 This is a direct consequence of Theorem 6. 
 Let ( ) ( ){ }, ,f X f X

λ
λ λ

∈Ω
∈  an arbitrary polynomial and ( )0 ,f Xλ  the 

anti-Hurwitz polynomial on ( ) ( ){ }0 , ,f X f X
λ

λ λ
∈Ω

∈ . We conside the path 
[ ]: ,a bγ →Ω  such that ( ) 0aγ λ=  and ( )bγ λ=  and the subfamily: 
( )( ) ( ), ,f X X p Xγ λ= . We can see that ( ) ( )0, ,p a X f Xλ=  is an-

ti-Hurwitz. Suppose that ( ) ( )0, ,p b X f Xλ=  does not an anti-Hurwitz 
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polynomial, and hence has a root in i−
  . If ( ) ( )0, , 0p b iw f iwλ= =  is 

a contradiction. If ( ),p b X  has a root in − , then by Theorem 8 there is 
( ],a bρ ∈  such that  

1) ( ),p Xρ  has all its roots in i−
  .  

2) ( ),p Xρ  has at least one root in i .  
By 2) there is 0w  such that ( ) ( )( )0 0, , 0p iw f iwρ γ ρ= = , but this is a con-

tradiction. Therefore ( ) ( ), ,p b X f Xλ=  is anti-Hurwitz for all λ ∈Ω .  
Given a real polinomial ( ) 0 1

n
np X a a X a X= + + + , we note that  

( ) ( ) ( )2 4 2 4
0 2 4 1 3 5 .p X a a X a X X a a X a X= + + + + + + + 

 

By evaluate iw , we obtain  

( ) ( ) ( )2 4 2 4
0 2 4 1 3 5 .p iw a a w a w iw a a w a X= − + + + − − + 

 

Considering this, we consider the following notations 
 ( ) 2 4

0 2 4
ep X a a X a X= − + + . 

 ( ) 2 4
1 3 5

op X a a X a X= − − + . 
 ( ) 2 4

0 2 4
evenp X a a X a X= + + + . 

 ( ) 2 4
1 3 5

oddp X a a X a X= + + + . 
Definition 4.2. A real polynomial ( ) 0 1

n
np X a a X a X= + + +  satisfies the 

anti-alternancy property if and only if 
1) The principal coeffients of ( )evenp X  and ( )oddp X  has different sign.  
2) All the roots of ( )ep X  and ( )op X  are reals and its negatives roots are 

interspersed, i.e. 

,1 ,1 ,2 ,20 .e o e oX X X X> > > > >  

Theorem 11 (Dual version of the Theorem of Hermite-Biehler). A real po-
linomial ( )p X  is Anti-Hurwitz, if and only if satisfies the anti-alternancy 
property. 

Proof. By Theorem 6 that the phase of ( )p iw  strictly decreases for w∈  

from 
2

nπ
 to 

2
n

−
π

 and the change in the phase is 2mπ , which is equivalent  

to m turns in ( ),w∈ −∞ +∞ , or m/2 turns on ( ),0w∈ −∞ . We note that for 
( ),0w∈ −∞  the roots of ( )ep w  and ( )op w  must be ordering in the follow-

ing manner: 

,1 ,1 ,2 ,2 , 1 ,0 .e o e o o m e mX X X X X X−> > > > > > >           (4.3) 

In fact, in every turn it goes through by two roots of ( )ep w , and by two roots 
of ( )op w . Then, in m/2 turns it goes through by m roots of of ( )ep w  and by 
m roots of ( )op w . We note that, everyone is real and negative, and then, we 
obtain part (2) of property of anti-alternancy. For the converse, assume that 
( )p X  satisfies the anti-intelacing property, and suposes without loss of gene-

rality of p is of degree 2n m=  and that the coefficient 2ma  is positive. Let us 
consider the roots of ( )evenp X  and ( )oddP X  in the form  

,1 ,1 ,2 ,2 , 1 ,0 .p p p p p p
R L R L L m R mX X X X X X−> > > > > > >           (4.4) 
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Now, let us consider a polynomial ( ) 2
0 2

m
mq X q q X= + +  that is known to 

be anti-Hurwitz, of the same degree 2m, and with its leader coefficients positive. 
With this assumption on ( )q X , we know from the first part of that ( )q X  sa-
tisfies the anti-interlacing Theorem so that ( )evenq X  has m negatives roots and 

oddq  has 1m −  negative roots, both set of roots such that  

,1 ,1 ,2 ,2 , 1 ,0 .q q q q q q
R L R L L m R mX X X X X X−> > > > > > >             (4.5) 

We note that for ( )q iw , it has no imaginary roots, then for any w∈ , 
( ) 0f iw ≠ . By taking ( )0,1λ ∈ , we have  

( ) ( ) ( ),1 ,1 ,1 ,1 , 1 ,0 1 1 1 .p q p q p q
e e o o e m e mX X X X X Xλ λ λ λ λ λ−> + − > + − > > + −  

Consider now the polynomial ( )p Xλ  given by  

( ) ( )( ) ( )( )( )22
2 2 , ,

1
: 1 1 ,

m
e q p

m m e i e i
i

p X q p X X Xλ λ λ λ λ
=

= − + − − +∏  

( ) ( )( ) ( )( )( )1 22
2 1 2 1 , ,

1
: 1 1 .

m
o q p

m m o i o i
i

p X q p X X Xλ λ λ λ λ
−

− −
=

= − + − − +∏  

We can see that the coefficients of pλ  are a family of polynomial functions 
in λ , wich are continuous on [ ]0,1 . Moreover, the coefficient of the leader de-
gree term of ( )p Xλ  remains positive as [ ]0,1λ ∈ . Moreover, we note that for 

0λ = , we have ( ) ( )0p X q X= . Then, how q is an anti-Hurwitz polynomial. 
This implies that the family ( )p Xλ  has al least an element that is anti-Hurwitz. 
Hence, by the principle of exclusion of zero all the elements of the family are an-
ti-Hurwitz polynomials, in particular ( ) ( )1p X p X= .  

5. Applications 

In this section we consider a family of reals polynomials called viscous polyno-
mials introduced by Vergara-Hermosilla et al. in [1].  

( )
3 3

4 2 3 2

2 3

2

21 1
12 12

1 1 ,
12

T
l lP l l

l l

λ λ µλ µ λ
µ

λ
µµ

    
= + + + − +         

 
− + + 

 

       (5.1) 

where l and µ  are free parameters in + . The viscous polynomials arises na-
turally when considering the transfer function of a system that models the ver-
tical movement of a solid floating in a viscous fluid, studied by Verga-
ra-Hermosilla et al. in [9] and [1], in fact, the name of the family of polynomials 
is originally due to the fact that the parameters l and µ  represent a measure 
associated with the size of the floating structure and the viscosity coefficient, re-
spectively. Our objective in this section is to use the criteria developed in Section 
2 to obtain information on the location of the roots. 

To this end, we can check easily that: 
1) When dividing ( )TP λ  by the coefficient of the term with exponent 4, we 

obtain the equivalent polynomial. 
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Figure 1. Evolution of the four roots iλ  in the complex plane, as a function of µ . (a): 

global picture with 4 trajectories; (b): zoom in the right-half plane ( )Re 0σ > , here 2 

trajectories are crossing the segment ( ) ( )Re λ λ= ℑ  for a critical value of µ  referent 

to the viscosity coefficient. 
 

( )

3

2 2
4 3 2

23 3 3

2 1
12 1 .

1 1 1
12 12 12

T

ll
l lQ

l l l

µ
µµ

λ λ λ λ λ
µ

µ

  
− +     = + + − +

     
+ + +     

     

 (5.2) 

In this polynomial we can see that the coefficients of the terms with exponents 
3 and 2 have the same sign, by considering the criteria developed in Section 3, 
we can conclude that the viscous polynomial is not anti-Hurwitz. 

2) In a similar form, we can see that the there are coefficients in ( )TP λ  with 
different sign, then using the Stodola condition give in Theorem 1, we conclude 
that the viscous polynomial is not Hurwitz. 

In conclusion, due to the polynomial ( )TP λ  have degree 4, is not Hurwitz 
and is not anti-Hurwitz, we will always have two roots in the right complex half 
plane and two roots in the left complex half plane. In fact, in the Figure 1 we can 
see numerical evidence about the behavior of the roots of the viscous polynomial 
with suitable parameters. 

6. Conclusions 

In this paper we present simple explicit criteria for determining the classification 
of the roots of real polynomials in one variable in the right half complex plane. 
These results appear as natural extensions of the classical theory of Hurwitz po-
lynomials over the family of anti-Hurwitz polynomials introduced in [1]. More 
precisely, the results introduced in this work follow an implicit use of the linear 
transformation z z→ −  into the properties that define the theory of Hurwitz 
polynomials, and define our notion of duality. Considering this, we can sum-
marize our contribution in two important results: A dual version of the Theorem 
of Routh-Hurwitz and a version dual of the Boundary Crossing Theorems. 
These ideas are applied on a family of polynomials associated to a system that 
describes the vertical movement of a solid floating in a viscous fluid, called 
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viscous polynomials. 
In a subsequent work we will extend the ideas developed in this paper in order 

to explore the classification of roots of real polynomials on subregions of the 
complex plane limited for the intersection of finite number of graphs of convex 
functions. 
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