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ABSTRACT

In this paper, we have presented the bilinear form, a generalized double Wronskian
solution of a non-autonomous Schrédinger equation. Furthermore, we found rational-like
solutions by taking special case in general solutions.
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1. INTRODUCTION

In the process of searching for explicit exact solutions, various methods have been
developed to the non- linear evolution equations (NLEES), such as the inverse scattering
transform [1,2], Backlund and Darboux transformations [3,4], Hirota bilinear method [5], the
Wronskian technique [6], Lie symmetry method [7] and so on. Among them, the Wronskian
technique provides us with a powerful tool to construct exact solutions for many NLEEs.
Once we construct the entries of the determination of Wronskian, we are able to give direct
and simple verificatio- ns of the solutions. What's more, one can utilize Wronskian technique
to find rational solutions, positons, negatons, complexitons and interaction solutions for the
integrable equations in Wronskian form [6,10,16,17].

This work is supported by the Foundation of Zhejiang Educational Committee (No. Y201018244).
*Corresponding author: E-mail: fhw5645@163.com;



British Journal of Applied Science & Technology, 4(19): 2784-2795, 2014

As we know, the Wronskian technique has been proved very effective in obtaining explicit
solutions to classic integrable equations, such as KdV, mKdV, KP, Boussinesq, nonlinear
Schradinger (NLS), derivative NLS equations etc [7-15]. Recently, some authors have begun
to use this technique to other non-isospect-ral equations and variable-coefficient models.
Sun et al. [18] have researched on double Wronskian solution of the non-isospectral AKNS
equation; He et al. [5] have considered on the double Wronskian solution of a non-isospectral
KP equation; Lv et al. [10] have presented on Wronskian solution of a generalized variable-
coefficient nonlinear Schrédinger equation; Tian et al. [19] have discussed on the double
Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrédinger equation
in an inhomogeneous plasma. Pishkoo A et al. [20] have researched on G-Function solutions
for Schrédinger equation in cylindrical coordinates system.

In this paper, we would like to apply the Wronskian technique to a generalized
nonautonomous NLS equation [21,22]

. 1
IQ +Qu~2¢" QP Q+2 A%X*Q =0 &)
its Lax pair is as follows [21,22,23]:

& =M@ @ =Ng 2
where
( -A(1) q(x,t)]
=1 . . (3a)
—q (xt)  At)
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and q(x,t)=e2 4 Q,/\j(t) satisfies /A\j ¢ =/V\j. Moreover, equation (1) can be

reduced to the following equation:

iut+uxx—2e2/“|u|2u—i/1qu=O, 4)
by the transformation
dt—idx2
Q=e2 4 u, ®)

so we only consider the equation above.

This paper is organized as follows. In Section 2, based on the Lax pair (3), the deduction of
double Wronskian solution of (1) are obtained. In Section 3, rational-like solutions of (1) are
presented by taking special case in general solutions. Section 4 is devoted to conclusions.

2. DEDUCTION OF DOUBLE WRONSKIAN SOLUTION OF (1)

In this section, we derive the bilinear form of (4) and obtain the deduction of double
Wronskian solution of (1).Through the dependent variable transformation
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G
=2, (6)
where F and G are both complex, equation(4) is transformed into the following equations:
(iD; + D2 —iAXD,)G[F =0, (7a)
F'D2F [F = -2¢MFGG’, (7b)
where D is well-known Hirota bilinear operator defned by
DDy f [ =(0,-9,)" (0, —9,)" F(t,X)9(t", X) f= = -
Let us observe the matrix equations
@ =-iAp, @ =(-IAx-2iA")g (8a)
Wy =iAY, gy = (IAX+2AA%)Y, (8b)
where
= (A&, ®N) W =W o) ©9)
and A=(a;) isan 2N x2N arbitrary function matrix of independent of x satisfying
A =AA (10)

To use the Wronskian technique, we adopt the compact notation introduced by Freeman and
Nimmo [10].

WM (0 = det(@ 0,03 Tgw.0.p,--0) Tw) AN-L M -1}, (11)
where @= (4, %, ", N+M )T and ¥ = (.2, WN+M )T . Define

F=[N-1N-1|, (12a)

G=2|N:N-2|, (12b)

Where ¢J andl//j satisfy the conditions (8). Let
G=ie MG, (13)

then we can deduce

G* =2| [\T—\Z; /N\ |,
F =(-D)"F, G =(-)N2e™|N-2N]|. (14)

Noting
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G =2ie M |IN-2N].

equation (7) can be transformed into the following equations:
(iD; + D2 —iAxD,)GF =0,

D2F [F = -2eMGG,.

In what follows we prove that (16) has the double Wronskian solution

F=wNN@y),
G= 2|e_/]tWN+l'N_1(m(//),

GO - 2|e_/1tWN_11N+1((0,l//)

(15)

(16a)

(16b)

(17a)

(17b)

(17¢)

For convenience of proof, we first give the following required lemmas which their proofs can

be seen in Chen et al. [2]:

Lemma 2.1

|D,a,b||D,c,d|-|D,ac||D,bd|+|D,ad]|D,b,cl=0,

where Dis an N x (N — 2) matrix and a, b, c, d represent N column vectors.

Lemma 2.2

N N
Dlaypmg,ajagan 1= 2y layan |,
j=1 j=1

where & (1< j £N) are N -dimensional column vectors

— T
and jarj denotes Jarj = (401, V202, YNON;) -

(18)

(19)

Lemma 2.3 Assume that P =(p; j) is an | x| operator matrix and its entries P are

differential operators.

B=(h j)is an | x| function matrix with column vector set b j and row vector set

b (1=121;j=12--1),

then
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by
e

| :
2. lb-- i, = D0 b (20)
i=1

=1 .

Bt

where
b = (pyibyi s Paibzi - Pk )
Pibj = (pj1bj1 . Pj2bj2 . Py by )T

Lemma 2.4 Suppose A= (g j) isan 2N x2N arbitrary function matrix of independent of x
satisfying A =AA then, under the condition (8), we have
tr(A)|N-LN-1|
=—|N-2,N;N-1|+|N-LN-2N|, (21a)

[tr(A)?IN-LN-1]
= N-3N-1 N;l\/l?1|+|ﬁ—\2,N+];N/—\1|,
2IN-2,N;N-2,N|+|N-LN-3N-LN|
+|N-LN-2N+1] (21b)

tr(A)|N;N-2|
=—IN-LN+LN-2|+|N;N-3N-1] (21c)

[tr(A]%|N;N -2
=[N-2,N,N+LN-2|+|N-LN+2N-2|
—2|[N-LN+LN-3N-1|+|N:N-3,N|

+|N;N-4,N-2,N-1], (21d)
in general, we obtain
{erm? IN=EN=1}1R;N =2

:{(trA)m; '\/"\2|}{(“A) IN-1 ﬁjll}
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:{(trA)2|N;N/—\2|}|N/—\J;N/—\1I

{(t (A2 [N -1 NA—1|} IN=1 N -1
:{(t rA)[N-1 N/—\1|}{(t (A [N-1 N/—\1|} .

The proofs of lemmas mentioned above can be seen in Chen et al. [2].

(21e)

(21f)

Theorem 2.1 Equation (16) has double Wronskian solution (17), where wj ,l//j are satisfied

by (8). Thus, with the transformation (5), the corresponding double Wronskain solution of (1)

can be expressed as

. _ A, Ao
_ AWM ) S

wWNN(@y)

Proof. Note A= 2ie_/1t,the derivatives of F, G can be easily computed

Fox SIN=-3N-1,N;N-1|+|N-2,N+1;N-1]
+2|[N=2,N;N-2N|+|N-LN-3N-LN|
+|N-LN-2N+1],

Gy =A(N-LN+LN-2|+|N;N-3N-3]),
Gyyx =A(N=-2,N,N+LN-2|
+|N-LN+2N-2|+|N:N-3N|
+2|N-LN+LN-3N-1]
+|N:N-4N-2,N-1]).

From the condition (8), we have

R =N(N-1AF
+AX(| ﬂ—\Z,N;I\T—\1|+|ﬁ?l' N/—\Z,N )
+2((N-LN-3N-1N]|

(22)

(23a)

(23b)

(23c)

(23d)
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~IN-3,N-LN;N-1[+|N-2,N;N-1]
~IN-LN-2N +1)), (24a)

G, =[-2iax+(N?-N+1)A]G
+AX(N-LN+LN-2|+|N:N-3N -1
~AG+2i(IN;N-4N-2,N-1]
—|N/—\2,N,N+]; N/—\2|+|N/—\LN+2;N/—\2|
~IN;N=-3N. (24b)
Substituting (23) and (24) into the left-hand side of (16a) and making use of (21e), we get
i(G{F —GFy) + (GyxF — 2G,F, +GFyy) —iAX(GyF - GF,)
=A(N-LN-1||[N-2,N,N+LN-2]
+|N-LN-1||[N:N-3N|
+|N;N-2||IN-2,N+1 N -1
+|N:N-2||[N-ZN-3N-LN|
+|ﬂ—\lN+]; N/—\2|| N/—\Z,N;ﬁ—\l|
+|N;N-3N-1||[N-LN-2N|. (25)

According to Lemma 2.1, (25) is equal to zero. So the proof of (16a) is finished. Similarly, we
have

2(Fy o F —F2) +2e*MGG,
=2[[N-LN-1|(|N-3N-1LN;N-1]
+|N-2N+LN-1|+2|N-2,N;N-2N |
+IN-LN-3N-LN|+|N-LN-2N+1])
~IN=2N:N=1[+|N=ZN-2N 2]
~8|N:N-2||[N-2N|. (26)
Utilizing the identities (21f), the right-hand side of (26) is reduced as
8[IN-LN-1||[N-2,N;N-2N|-[[N-LZN-2N|[N-2,N;N-1]|
~[IN;N-2||[N-2N)). (27)
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Using Lemma 2.1, (27) is equal to zero. Thus we have proved (16b).Therefore, with the
transformation (5), the corresponding double Wronskain solution of (1) can be expressed as

(22).

3. RATIONAL-LIKE SOLUTIONS OF (1)

In this section, rational-like solutions, which can be seen as the rational function of x after
discarding the exponential part, are presented for (1) in the generalized double Wronskian

form (22).
From (8), we get the general solution _
@= exp(=iAX - 2i j(') AZdt)C,
W = exp(iAx+ 2ij(')A2dt)D,
where
— T _ T
C=(cy,Co:Con) » D =(dg,dp--doy)

are constant vectors. Substituting A= e"tﬂo into (28) and expanding it leads

s-2|

[S
(-iax)S? (-iay)
o= ZZ (s—2)! |!2 AC,

— © 2 (ia_I_X)S_ZI (ia2)| .
w_sgogo (s=2)1 I AoD,
2t _q

where a1=e/‘t,a2: I

If

A0: . . )

0 10 2Nx2N

it is obvious to know that A?™ = 0. Therefore, (29) can be truncated as
s
2N —1 2

s-2l I
0= Z Z( 189X) (-iap) ASC,

S & (s-2)y

2N-1

p=y i(ualx)s‘z' (iay) ASD

S & (s-2) 1

(28a)

(28b)

(29a)

(29b)

(30)

(31a)

(31b)

2791



British Journal of Applied Science & Technology, 4(19): 2784-2795, 2014

The components of @ and { are
2
. X .
@ =lcj +(_|alx)cj—1+(__a12 —iap)cj 2

=

2 . i-1-2 I
Fotg I;) (=i)i 1 ((?f)l_zm (alz!) ! 32
2

@ =1dj + (ap)djq + (- +iap)d)

j —
3 j-1-2!

2 . |
e (@01 (ay)
¥ +d1|§0(') (j-1-2) I J

(j=12,-2N). (32b)

Taking ¢ =01 =1, ¢ =dy =0(k=2,3---,2N), then (32) becomes

=

2 _ j=1-21 |
_ 2 e @ () .
i ;0( ) (j-1-2) 1’ (332
= _
2 . j-1-2l |
= N j-1-1 (2X) (ap)
vi ;O O =y (330)

Thus, we obtain the rational-like solutions, which can be seen as the rational function of x
after discarding the exponential part, with Wronskian form of (1) from (22).The first three of
lower order are

A
Q=-—e 2 4, (342)
X
P ara
_2)Ixe’]t(—3+3e2’“+i)lx2e2’”) ‘3"% 34
B _3+ 62t —3eMt 4 12,440 € ' (34b)
+Q, +
Q:—Ql gz % (34¢)
A
where
M AxX2

_7—|7
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at_ A
Q2 =135|(1_462/1t +6e4/1t +68/1t 6/1t)e 2 4 ,
At Ax?

-t
_X(/]4 8 8At 18/12 4 8At 18/12 4 4/1t

+36/12x4e‘“t ~1356%M + 54065t — 8106t +54062" ~135).

These solutions can be verified by direct substitution into (1). If we set , A — O, the solutions
(34) turn out to be

Q=--, (35a)
X
12t + 2ix°
=7 .2 (35b)
X" =12t
-48x5t - 3ix8 + 360ix*t —i2160t*
Q= , (35¢)

X2 - 72x°t? - 2160xt*
which are the rational solutions to the standard NLS equation (dark case).
4. CONCLUSION

In summary, we have given the double Wronskian solutions which satisfy matrix equation of
a non-autonomous Schrédinger equation through the Hirota method and the Wronskian
technique. Moreover, rational-- like solutions of the equation are obtained by taking special
case in general solutions. It is believed that the methods used in the paper may be applied
for some integrable non-autonomous models and several other variable-coefficient NLEES.
An open problem is whether there exist the multisoliton solutions in the Wronskian form for
dark case of NLS-type equations, what the conditions if they exist and how to construct the
entries in the Wronskian determinant. We expect to discuss this problem elsewhere.
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