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An Effective Approach for Noise Robust and Rotation 
Invariant Handwritten Character Recognition Using Zernike 
Moments Features and Optimal Similarity Measure
Chandan Singha and Ashutosh Aggarwala,b

aDepartment of Computer Science, Punjabi University, Patiala, India; bDepartment of Computer Science 
and Engineering, Thapar Institute of Engineering and Technology, Patiala

ABSTRACT
Zernike moments (ZMs) are very effective orthogonal rotation 
invariant moments. Conventionally, the magnitudes of ZMs are 
used as feature descriptors and the Euclidean distance is used as 
a classifier. Recently, a few classifiers based on ZM magnitude 
and phase have been developed which are reported to be very 
effective in pattern matching problems. One such a recently 
developed similarity measure, known as optimal similarity mea-
sure, is known to provide very good performance over the ZM 
magnitude-based Euclidean distance measure in pattern recog-
nition problems, especially under noisy conditions. In this paper, 
we investigate the conventional magnitude-based similarity 
measure and the new similarity measures including the optimal 
similarity measure and compare their performance on segmen-
ted handwritten characters and numerals. It is observed that the 
performance of optimal similarity measure is far better than all 
other similarity measures. Its performance is very much better 
than other similarity measures even under very high noisy con-
dition. However, it is slow owing to the optimization of the 
process involved in its computation. Therefore, we also propose 
a fast algorithm for its computation and reduce its time com-
plexity. Detailed experimental results are provided to support 
the above observations.

Introduction

Orthogonal rotation invariant moments (ORIMs) are a class of rotation 
invariant moments (RIMs) whose kernel functions are orthogonal, meaning 
thereby that given a set of ORIMs a signal can be reconstructed. The ortho-
gonality property is an important characteristic for describing the image 
features uniquely. This leads to minimum information redundancy and a set 
of few ORIMs coefficients are sufficient to represent the image uniquely.

There are many ORIMs in the literature, prominent among them are the 
Zernike moments (ZMs) (Teague 1980), pseudo-Zernike moments (PZMs) 
(Bhatia and Wolf 1954), orthogonal Fourier-Mellin moments (OFMMs) 
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(Sheng and Shen 1994), radial harmonic Fourier moments (RHRMs) (Ren 
et al. 2007), and Chebyshev–Fourier moments (CHFMs) (Ping, Wu, and Sheng 
2002). A family of these moments has recently been derived from generic 
Fourier moments (Hoang and Tabbone 2013; Ping et al. 2007). There are 
many useful characteristics of the ORIMs which make them widely used in 
numerous image processing applications including printed and handwritten 
optical character recognition (OCR) system (Bailey and Srinath 1996; 
Broumandnia and Shanbehzadeh 2007; Kan and Srinath 2002; Khotanzad 
and Hong 1990; Patil and Sontakke 2007; Ramteke and Mehrotra 2006; 
Trier, Jain, and Taxt 1996). Khotanzad and Hong (Khotanzad and Hong 
1990) are perhaps the first to introduce ZM features to character recognition. 
They observed that the ZM features are very effective not only for the recogni-
tion of the printed characters but also for the recognition of handwritten 
alphanumeric Roman characters. An exhaustive analysis has been performed 
by Bailey and Srinath (Bailey and Srinath 1996) on the performance of ZMs 
and PZMs on the handwritten characters using different classifiers. 
Experimental results conducted on large databases for unconstrained hand-
written numerals reveal that the different variability due to writing style, 
shape, stroke, and orientation can be handled successfully by their proposed 
features. Kan and Srinath (Kan and Srinath 2002) have conducted extensive 
experiments on handwritten characters using ZMs and OFMMs as features 
and observed that OFMMs provide better recognition performance for small 
character images. Ramteke and Mehrotra (Ramteke and Mehrotra 2006) 
evaluated the performance of various techniques based on moment invariants 
on handwritten Devanagari numerals and observed that the performance of 
the ZM features is far better than other invariants. Patil and Sontakke (Patil 
and Sontakke 2007) have used ZM features and fuzzy neural network classi-
fiers for the recognition of Devanagari numerals achieving a very high recog-
nition rate.

The above discussion reveals that ORIMs based feature extraction methods 
are very useful for orientation invariant handwritten character recognition. 
They provide robust features against geometric transformation, illumination 
variation, and noisy conditions. They are used successfully to deal with various 
issues that are peculiar to handwritten text such as writing style, stroke, 
orientation, and size. They need little effort for image normalization as 
compared to other techniques because they are computed on a unit disk and 
provide global characteristics of the character shape.

Among the various ORIMs the performance of ZMs has proven to be the 
best in many pattern recognition problems. It has been observed recently by 
Singh and Upneja (Singh and Upneja 2013) that ZMs are more robust than 
PZMs and OFMMs. The existing approaches based on ZM, PZM, and OFMM 
features consider the magnitude of moments for the similarity measure 
because the magnitude of the moment is invariant under rotation. The 
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phase of the moments is not rotation invariant and hence it is not included in 
the comparison of features. It is shown by Oppenheim and Lim (Oppenheim 
and Lim 1981) that the phase information is more important than the magni-
tude of moments during signal reconstruction. Keeping this in view, recently, 
many attempts have been made to incorporate phase information in the 
similarity measure for the comparison of two patterns. By doing so, consider-
able improvements in the performance of ORIMs have been reported by many 
authors in various pattern recognition problems. A new similarity measure 
called optimal similarity measure involving both magnitude and phase has 
been developed by Revaud et al. (2009). The method is developed for the 
orthogonal rotation invariant moments. Motivated by the superior perfor-
mance of the optimal similarity measure, Singh and Aggarwal (Singh and 
Aggarwal 2014), recently extended the approach to radial moments which are 
non-orthogonal. It is shown by them that the performance of the optimal 
similarity measure even for the non-orthogonal radial moments is very high as 
compared to the other similarity measures, especially under noisy condition. 
The optimal similarity measure minimizes a distance function which is 
defined in terms of magnitude and phase angle of ZMs of two patterns. The 
distance is very small (ideally zero but because of digital nature, it is non-zero) 
if the two images are similar. If the two images are different, then the distance 
value is high. A comparison with the classical ZM magnitude-based similarity 
measure and many other state-of-the-art techniques have been proposed for 
image retrieval, and sketch-based 2D and 3D object recognition problem. The 
performance of the new similarity measure has been observed to be far super-
ior for these applications. The optimal similarity measure is particularly robust 
against geometric deformation and noise. Chen and Sun (Chen and Sun 2010) 
have developed a ZMs phase-based descriptor for image matching. Instead of 
using ZMs magnitude as features, they use phase angles of moments as 
features. Since the phase is not rotation invariant, their approach first esti-
mates rotation angle between two images and then the relationship between 
phases of two images is used for the comparison purpose. The success of this 
method depends upon the accuracy of the estimated rotation angle, if any, 
between two images. If two images are similar but rotated versions of each 
other, then the phase distance is zero. If the two images are dissimilar then 
a fictitious rotation angle will be estimated which will lead to a larger distance 
between two images. The approach developed by Li et al. (Li, Lee, and Pun 
2009) uses both magnitude and phase distances of moments. The phase 
distance is obtained by estimating the rotation angle between two images 
from the phase relationship. In the approach developed by Singh et al. 
(Singh, Walia, and Mittal 2011), the real and imaginary components of ZMs 
of two images are compared. Their approach does not require the estimation 
of the rotation angle. They use the phase relationship of ZMs of two images to 
correct the moments of one of the two images before comparing their real and 
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imaginary components. L1-norm is used as a distance measure. Experimental 
results on face recognition and printed character recognition problems 
demonstrate the superiority of their proposed method.

In view of the above newly developed ZMs based similarity measures, the 
purpose of the present work is to analyze their performance on the handwritten 
character recognition problem. It is shown that the optimal similarity measure 
developed by Revaud et al. (Revaud, Lavoue, and Baskurt 2009) outperforms all 
other similarity measures based on ZM magnitude and phase. We observe that 
the improvement in the performance using their approach is much more 
significant than the authors have reported in their paper for the comparison 
of objects, especially under noisy condition. There are two computational 
frameworks for the derivation of ZMs: the outer unit disk and the inner unit 
disk. The outer unit disk encloses the complete image when a transformation is 
performed for converting a square digital image into a unit disk. In the inner 
unit disk mapping, the circular disk is contained within the image. It has been 
observed (Singh and Upneja 2013) that the outer unit disk framework provides 
more accurate, robust, and stable values of moments compared to its inner unit 
disk counterpart. We further enhance the performance of the optimal similarity 
measure using outer unit disk mapping for the computation of ZMs. The major 
problem with the method of (Revaud, Lavoue, and Baskurt 2009) is its high 
computation time which is needed for the estimation of the rotation angle. The 
authors have presented methods for its fast computation. We propose a very 
fast algorithm that reduces the time complexity of the algorithm. This is 
supported by a time complexity analysis. A detailed performance analysis has 
been carried out on the recognition of handwritten characters using various 
ZM-based similarity measures under the two computational frameworks. In 
addition to the superior performance under rotation, the proposed method 
provides excellent recognition results under noisy condition.

The rest of the paper is organized as follows. An overview of the ZMs and its 
computational framework is provided in Section 2. Section 3 presents the 
various similarity measures based on ZMs. Fast computation of the optimal 
similarity measure is developed in Section 4. Detailed experimental results 
performed on three handwritten character databases, MNIST numeral data-
base, Gurumukhi character database, and Gurumukhi numeral database, are 
discussed in Section 5. Conclusions and future work are presented in Section 6.

The Zernike Moments (ZMs)

The ZMs of a two-dimensional image function f x; yð Þ with an order p and 
repetition q are defined on a unit disk as follows. 

1014 C. SINGH AND A. AGGARWAL



Zpq ¼
pþ 1

π

ðð

x2þy2�1
f x; yð ÞV�pq x; yð Þ dx dy (1) 

where p; qð Þ 2 S ¼ p; qð Þ 0 � p � 1 ; qj j � p ; p � qj j ¼ evenjf g :

The kernel function V�pq x; yð Þ is the complex conjugate of the Zernike 
function Vpq x; yð Þwhich itself is 

Vpq x; yð Þ ¼ Rpq x; yð Þejqθ (2) 

where 

Rpqðx; yÞ ¼
Xp� qj jð Þ=2

s¼0
� 1ð Þ

s ðp � sÞ !

s! pþ qj j
2 � s

� �
!

p� qj j
2 � s

� �
!
rp� 2s (3) 

with j ¼
ffiffiffiffiffiffiffi
� 1
p

, and θ ¼ tan� 1 y=xð Þ ; θ 2 0; 2π½ �. The Zernike functions are 
orthogonal on a unit disk, that is, 

ðð

x2þy2�1
Vpq x; yð ÞV�p̂q̂ðx; yÞdxdy ¼

π
pþ 1

δpp̂δqq̂ (4) 

where δab is Kronecker delta defined by 

δab ¼
1; a ¼ b
0; otherwise

�

The orthogonality of the kernel functions is a very important property which 
leads to minimum information redundancy among the moment values. 
Consequently, given a set of moments up to a given order pmax, the image 
function can be reconstructed as follows. 

f̂ ðx; yÞ ¼
Ppmax

p¼0

Pp

q¼� p
Zpq Vpq x; yð Þ

p � qj j ¼ even
(5) 

Invariant Properties of ZMs

If an image is rotated by an angle θ0, the ZMs of the original image Zpq and 
rotated image Zr

pq are related by (Khotanzad and Hong 1990) 

Zr
pq ¼ Zpq e� jqθ0 (6) 

The phase angles φpq and φr
pq are related by 

φr
pq ¼ φpq � qθ0 (7) 
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It is observed from Equation (6) that Zr
pq

�
�
�

�
�
� ¼ Zpq

�
�

�
�, meaning thereby that the 

magnitude of moments is rotation invariant. However, the phases are not 
rotation invariant as shown in Equation (7). Therefore, the classical pattern 
matching problems based on ZM use the magnitude of moments as features. 
The scaling invariance is achieved because the ZMs are computed over a unit 
disk after performing a mapping process which is explained in the following 
sub-section. The translation invariance is achieved when the center of the unit 
disk is placed at the center of mass of the image.

ZMs for Digital Images

The ZMs defined by Equation (1) pertain to a continuous signal f x; yð Þ. In digital 
image processing, the image function is discrete. If the image function is repre-
sented by f i; kð Þ, then i represent the row number and k represents the column 
number of a pixel i; kð Þ. Let the size of the image be N � N, then the following 
transformation converts a N � N digital square domain into a unit disk: 

xi ¼
2iþ 1 � N

D
; yk ¼

2kþ 1 � N
D

; i ; k ¼ 0; 1; . . . ; N � 1 (8) 

where D is the digital diameter of the disk given by 

D ¼ N for inner unit disk
N

ffiffiffi
2
p

for outer unit disk

�

(9) 

The coordinate xi; ykð Þ provides the center of the pixel i; kð Þ which itself 

occupies the area xi �
Δx
2 ; xi þ

Δx
2

� �
� yk �

Δy
2 ; yk þ

Δy
2

h i
,

where 

Δx ¼ Δy ¼
2
D

(10) 

The above mapping process leads to a simple form of ZMs which are based on 
zeroth-order approximation of the double integration of Equation (1) 

Zpq ¼
4 pþ1ð Þ

πD2

PN� 1

i¼0

PN� 1

k¼0
f i ; kð Þ V�pq xi ; ykð Þ

x2 þ y2 � 1
(11) 

The condition x2 þ y2 � 1 in Equation (11) is redundant if we compute the 
moments with the outer unit disk. This mapping of image data over unit disk 
makes the ZMs to be invariant to scale and rotation.
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Similarity Measures

ZMs are complex numbers that comprise two values: magnitude and phase. 
The classical techniques for character recognition using ZMs consider the 
magnitude of moments as features as they are invariant to rotation. The phase 
component of the complex moments is not rotation invariant; therefore, it is 
not considered during the matching process. Similarly, the real and imaginary 
components of the moments cannot be equated as the magnitude of their 
individual components changes under image rotation. The loss of information 
due to neglecting the phase component reduces the performance of the 
similarity measure in a matching process. It is shown by Shao and Celenk 
(Shao and Celenk 2001) that the performance of a shape descriptor increases 
significantly if both phase and magnitude components are included in the 
feature set. In view of the importance of the phase information, recently 
several researchers have attempted to develop similarity measures which are 
either based on magnitude and phase (Li, Lee, and Pun 2009; Revaud, Lavoue, 
and Baskurt 2009; Singh and Aggarwal 2014; Singh, Walia, and Mittal 2011) or 
solely on phase (Chen and Sun 2010). An overview of these measures is 
discussed in this section.

ZMs Magnitude Based Measure: The Classical Approach

The ZM magnitude-based similarity measure is the classical approach which is 
widely used for matching of two images. Normally, in the classical approach, 
Euclidean distance between the magnitudes of ZMs of two images is computed 
as follows: 

de ¼
Xpmax

p¼0

Xp

q¼0
ZT

pq

�
�
�

�
�
� � ZD

pq

�
�
�

�
�
�

� �2
" #1=2

(12) 

p � qj j ¼ even
where the subscripts T and D are used, respectively, for the test (query) image 
and the training image in a database. The major drawback of this measure is 
that it does not include the phase component of the moments. However, it is 
very simple to use and computationally very fast.

ZMs Phase-Based Measure

Chen and Sun (Chen and Sun 2010) have derived a phase-based descriptor by 
estimating the rotation angle between two images using a more accurate 
method as compared to the simple approach adopted by Li et al. (Li, Lee, 
and Pun 2009). In their approach, the rotation angle θ0 is obtained by using the 
adjacent phase relationship: 
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θ0 ¼ φp;q � φp;q� 1

� �
mod 2π ; q�0 (13) 

Since q ¼ 1; 2; 3; . . . ; pmax ; p ¼ 1; 2; 3; . . . ; pmax ; p � q ¼ even, there are 
Ppmax

q¼1
pmax � q=2b c þ 1ð Þ ways to compute the rotation angle θ0. A more accu-

rate and robust estimation of the rotation angle is to weigh the estimated 
angles by the magnitude of ZMs. The complete procedure is described in 
(Chen and Sun 2010). After estimating rotation angle the phase-based distance 
is obtained as 

dφ ¼
1
π

Xpmax

p¼0

Xp

q¼0
wpq �min φC

pq � φD
pq

�
�
�

�
�
� ; 2π � φC

pq � φD
pq

�
�
�

�
�
�

� �
(14) 

where wpq is the ZM-based weights 

wpq ¼
ZD

pq

�
�
�

�
�
�þ ZT

pq

�
�
�

�
�
�

Ppmax

p¼0

Pp

q¼0
ZD

pq

�
�
�

�
�
�þ ZT

pq

�
�
�

�
�
�

� � (15) 

and φC
pq is the corrected phase of the test image, φC

pq ¼ φT
pq þ qθ0 ; and φD

pq 
represents the phase of the database image. The method provides a significant 
improvement in image retrieval as reported in (Chen and Sun 2010).

ZM Magnitude- and Phase-Based Measure

The magnitude- and phase-based descriptor is developed by Li et al. (Li, Lee, 
and Pun 2009). Their distance measure is a weighted sum of Euclidean 
distances of magnitude and phase. The Euclidean distance for ZM magnitude, 
denoted by dm is obtained by 

dm ¼
Xpmax

p¼0

Xp

q¼0

ZT
pq

�
�
�

�
�
� � ZD

pq

�
�
�

�
�
�

max ZT
pq;ZD

pq

� �

0

@

1

A

22

6
4

3

7
5

1=2

(16) 

In order to compute Euclidean distance of phases, the phase relationship given 
by Equation (7) is used. For this purpose, it is assumed that the two patterns 
being matched are rotated versions of each other. The rotation angle is 
estimated by using Equation (7) by fixing q ¼ 1 and taking an odd value of 
p � 3 as shown below 

θ0 ¼ φD
p;1 � φT

p;1 ; p 2 1; 3; 5; . . . ; pmaxf g : (17) 
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Before matching the phases of two images, the phase of the test image is 
corrected. Let the corrected phase be denoted by φC, then 

φC
pq ¼ φT

pq þ qθ0 ; ðp; qÞ 2 S; φC
pq 2 ½0; 2π� (18) 

The corrected phase φC
pq of the image T and the phase of the image D φD

pq have 
the following relationship 

φC
pq � φD

pq ¼
0 if T and D are similar
non � zero if T and D are dissimilar

�

(19) 

Therefore, the Euclidean distance of the phases of the database image φD
pq and 

the corrected phase of the test image φC
pq is obtained by 

dφ ¼
Xpmax

p¼0

Xp

q¼0

φC
pq � φD

pq

� �

π

0

@

1

A

22

6
4

3

7
5

1=2

(20) 

The weighted Euclidean distance of the magnitude and the phase is given by 

dmφ ¼ ðw1dm þ w2dφÞ
�
ðw1 þ w2Þ (21) 

where w1 and w2 are weights to be set empirically. Equal weights have been set 
in their experimental results (Li, Lee, and Pun 2009).

Similarity Measure Based on Real and Imaginary Components of ZMs

ZMs are complex numbers. Two complex numbers are equal if their real and 
imaginary components are equal. This fact has been used by Singh et al. 
(Singh, Walia, and Mittal 2011) while deriving L1-norm-based similarity 
measure between two images. Since only the magnitude of ZMs remains 
invariant under image rotation and the phase undergoes a change, they correct 
the phase before applying the similarity measure. They use Equation (6) to 
correct the ZMs of the test images ZT

pq. Let the corrected ZMs of the image T be 
denoted by ZC

pq, then ZC
pq can be derived as 

ZC
pq ¼ ZT

pqejqθ0 (22) 

where from Equation (7) qθ0 ¼ φD
pq � φT

pq. Therefore, the relationships 
between the ZMs of the database image D and the corrected ZMs of the test 
image T are given by 

ZD
pq ¼ ZC

pq if two images are similar

ZD
pq�ZC

pq if two images are dissimilar
(23) 

The L1-norm based distance is 
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dL 1 ¼
X

p

X

q
Re ZD

pq

� �
� Re ZC

pq

� ��
�
�

�
�
�þ Im ZD

pq

� �
� Im ZC

pq

� ��
�
�

�
�
�

� �
(24) 

It is interesting to observe that if L2-norm was used in place of L1-norm in the 
above equation, then the equation would have turned out to be the same as the 
Euclidean distance between their magnitudes. This approach has a distinct 
advantage over the other techniques involving both the magnitude and phase, 
because it does not require the estimation of the rotation angle between two 
images.

Optimal Similarity -Based Measure

The optimal similarity-based measure is a new similarity-based measure 
developed by Revaud et al. (Revaud, Lavoue, and Baskurt 2009). It assumes 
that the two images being matched are similar but rotated versions of each 
other. Let ZD

pq and ZT
pq denote the ZMs of the two images. The Euclidean 

distance between the images D and T can be expressed as a function of rotation 
angle θ as follows (Revaud, Lavoue, and Baskurt 2009). 

dðθÞ ¼
Xpmax

p¼0

Xp

q¼� p

π
pþ 1

ZD
pq

�
�
�

�
�
�

2
þ ZT

pq

�
�
�

�
�
�

2
� 2 ZD

pqZT
pq

�
�
�

�
�
� cosðqθþ φT

pq � φD
pqÞ

� �

(25) 

The rotation angle θ is estimated by minimizing the function d θð Þ. Let θ ¼ θ0 
be a solution to the minimization problem. If the two images are similar, then 
the value of d θ0ð Þ is much smaller than its value for the two dissimilar images.

Fast Computation of Optimal Similarity Based Measure

The optimal similarity-based measure provides a significant improvement in 
performance over the classical ZM magnitude-based similarity measure as 
demonstrated in (Revaud, Lavoue, and Baskurt 2009). However, it suffers 
from a high computation cost. The main reason for the high time complexity 
is due to the process of minimization of the distance function d θð Þ given by 
Equation (25). For a given pmax, there are pmax local minima and pmax local 
maxima in the interval 0; 2π½ �. The method requires the global minimum 
which is computation intensive if the conventional approaches are used. 
Thus, in order to find the global minimum with less time, a simple and 
effective solution is given in (Revaud, Lavoue, and Baskurt 2009). The authors 
have outlined a few steps for its fast computation. We have observed that the 
algorithm still takes considerable time for the solution of the minimization 
problem. Here, we present a fast method for its computation, and later, in the 
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experimental section, we shall present the time complexity analysis. For 
computational efficiency, we rewrite Equation (25) 

d φð Þ ¼ C � 4π
Xpmax

q¼1
Aq cos qφð Þ � Bq sin qφð Þ
� �

(26) 

where 

C ¼ π
Xpmax

p¼0
p¼even

1
pþ 1

ZD
p0

�
�
�

�
�
�

2
þ ZT

p0

�
�
�

�
�
�

2
� 2 ZD

p0ZT
p0

�
�
�

�
�
� cosðφT

p0 � φD
p0Þ

� �

þ 2π
Xpmax

q¼1

Xpmax

p¼q
p� q¼even

1
pþ 1

ZD
pq

�
�
�

�
�
�

2
þ ZT

pq

�
�
�

�
�
�

2
� �

;

(27) 

Aq ¼
Xpmax

p¼q

1
pþ 1

Re ZT
pq

� �
Re ZD

pq

� �
þ Im ZT

pq

� �
Im ZD

pq

� �h i
(28) 

Bq ¼
Xpmax

p¼q

1
pþ 1

Re ZD
pq

� �
Im ZT

pq

� �
� Re ZT

pq

� �
Im ZD

pq

� �h i
(29) 

The global optimum is obtained by finding all zero of the derivative of the 
function dðφÞ, that is 

d
0

φð Þ ¼ 4π
Xpmax

q¼1
q Aq sin qφð Þ þ Bq cos qφð Þ
� �

¼ 0 : (30) 

As discussed earlier, there are at most 2pmax solutions to Equation (30), 
pmax solutions each pertaining to local maxima and minima. The minima 
or maxima lie in the equally spaced intervals xn; xnþ1½ � where 
xn ¼

nπ
2pmax

; 0 � n< 4pmax. A local minimum or the maximum lies in the 

interval xn; xnþ1½ � if d0 ðxnÞd
0

ðxnþ1Þ � 0. Otherwise, the solution does not lie 
in this interval. We have observed in actual practice that the number of 
intervals satisfying this condition is much less than the upper limit for the 
number of zeros which is 2pmax. We carried out experiments by matching 
7000 binary and 5000 gray scale images for this purpose. The average 
number of roots for pmax ¼ 12 is 7, and 8, for the binary and grayscale 
images, respectively, out of a possible value of 24. A root of the function 
f(x) in the interval xn; xnþ1½ � is obtained by Regula-Falsi iterative method 
which is given by: 
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xroot ¼ xn þ
π

2pmax
�

f 0 ðxnÞ

f 0 ðxnÞ � f 0 ðxnþ1Þð Þ
(31) 

Only one iteration is sufficient to approximate the value of the root. More 
refinements in the root lead to high time complexity without much gain in the 
accuracy of the root. We have tried Newton-Raphson method which is 
a higher order method for finding the root of an equation, but its accuracy 
in the present case, is not better than the Regula–Falsi method. It is probably 
because of the sinusoidal behavior of the function for which the Regula–Falsi 
method is better suited. Let the total number of roots in the interval 0; 2π½ � be 
L. Keeping in view the fact that L< < 4pmax, the high computation complexity 
arises because of the computation of the derivative function d0 ðφÞ at 
xn ¼

nπ
2pmax

; 0 � n< 4pmax. Based on the above discussion, we propose a fast 

algorithm for the computation of the functions dðφÞ and d0 ðφÞ. 

The algorithm:
(1) Compute C from Equation (27). Its time complexity is Oðp2

maxÞ.
(2) Compute Aq and Bq ; q ¼ 1; 2; 3; . . . ; pmax from Equations (28) and (29) 

and save them in two tables, Aq and Bq. The time complexity is OðpmaxÞ.
(3) Compute cosðqiφjÞ and sinðqiφjÞ once and for all experiments and 

save them in two tables, Cij and Sij ; i ¼ 0; 1; 2; . . . ; pmax ; j ¼
0; 1; 2; . . . ; 4pmax � 1 and φj ¼ jπ=2pmax. The trigonometric func-
tions are very expensive to compute using library functions. The 
following recurrence relation is used to compute them more effi-
ciently for q > 1.

cos qþ 1ð Þφð Þ ¼ a cos qφð Þ � b sin qφð Þ ; (32) 

sin qþ 1ð Þφð Þ ¼ a sin qφð Þ þ b cos qφð Þ (33) 

where q ¼ 0; 1; . . . ; pmax � 1 ; a ¼ cos φð Þ and b ¼ sin φð Þ. Therefore, the 
library functions are used only once to compute the trigonometric functions 
and these functions for 1 � q< pmax are obtained by using one addition/ 
subtraction and 2 multiplications. The space requirement is 8pmax pmax þ 1ð Þ

words. Since the function dðφÞ and its derivative d0 ðφÞ are evaluated at 4pmax 

locations (for derivative function d0 ðφÞ) and L locations (for function dðφÞ) 
and L< < pmax, the time complexity of the algorithm turns out to be of the 
order Oðp2

maxÞ.
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Experimental Analysis

The five similarity measures have been implemented in Microsoft’s Visual C+ 
+ 6.0 under Windows environment on a PC with 2.13 GHz CPU and 3GB 
RAM. The experiments are conducted on three databases (DBs) comprising 
handwritten numerals and characters. The three DBs are MNIST numerals in 
Roman, Gurumukhi characters (GurChar), and Gurumukhi numerals 
(GurNum). The Gurumukhi characters and numerals are written in 
Gurumukhi script, a script of Punjabi language which is the world’s 14th 

largest spoken language. The characteristics of all three test DBs are described 
briefly as follows.

(1) MNIST DB: MNIST numeral DB is a standard database of handwritten 
digits created by NIST (National Institute of Standards and 
Technology) (MNIST database 1998). It consists of 70,000 grayscale 
images of numerals of size 28 × 28, and 7,000 images per class. The total 
number of classes is 10. We have used a subset of the DB consisting of 
10,000 images, 1,000 images per class. This is done to reduce the time 
required for conducting various experiments.

(2) GurChar DB: This database consists of 35 classes of major Gurumukhi 
characters, each class comprises 200 binary images of size 32 × 32. The 
size of the DB is 7,000 images.

(3) GurNum DB: This DB comprises 10 numerals of Gurumukhi script. 
There are 1500 binary images of size 36 × 36 belonging to 10 classes, 
each class consisting of 150 images.

The above DBs represent different variations normally present in handwritten 
scripts, such as writing style, skew, shape, orientation, etc. Some of the hand-
written numerals and characters are shown in Figure 1a–c for MNIST, 
GurChar, and GurNum DBs, respectively. In addition to the experiments for 
the recognition of characters under normal condition (subject test DB), we 
perform experiments for rotation invariance and robustness to image noise.

During the course of experiments, we observed that the ZM phase-based 
measure (Chen and Sun 2010) does not perform well on binary images and its 
recognition rate is very low. Therefore, we do not include this similarity 
measure in our analysis. Thus, the analysis is performed using the four 
similarity measures. In addition, a powerful classifier SVM (support vector 
machine) is also used which uses ZM magnitude features. This classifier is 
selected to demonstrate the best recognition results using ZM magnitude, 
although SVM classifier is very slow and it requires retraining when a new 
image is introduced in the training DB. Also, the RBF kernel of SVM requires 
optimal values of parameters for its best performance. However, our objective 
is to demonstrate the recognition capability of the new similarity measures 
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introduced in the recent years and compare their performance with the 
conventional classifiers. This analysis is very useful to explore the potential 
of the new similarity measures in various areas where they have not yet been 
applied. We refer the ZM magnitude-based Euclidean distance measure, ZM 
magnitude- and phase-based measure, similarity measure based on real and 
imaginary components of ZMs, optimal similarity-based measure, and ZM 
magnitude-based measure using SVM classifier as ZM_MAG, 
ZM_MAG_PHASE, ZM_COMPLEX, ZM_OPT, and ZM_SVM, respectively.

Selection of Number of ZM Features

The low order moments are used to describe an image as they represent its 
gross aspect and they are more robust to image noise than the high order 
moments. The recognition performance increases as the number of moment 
increases. Generally, the increase in the recognition rate becomes more or less 
stable after a certain moment order. In fact, at high orders, the performance 
may actually decrease. The time complexity increases quadratically when 
moment order increases, even if fast recursive methods are used. Also, 
a large size of feature vector requires more space and high classification 
time. Therefore, a good tradeoff is needed between the recognition perfor-
mance and the time and space complexity. For this purpose, we conduct 
experiments on three subject DBs to examine the moment order versus 
recognition performance both for the inner unit disk mapping and outer 
unit disk mapping. The results are shown in Figure 2a,b for MNIST, in 
Figure 3a,b for GurChar, and in Figure 4a,b for GurNum DBs.

)c()b()a(

Figure 1. Sample images of three DBs (a) MNIST (Roman numerals), (b) Gurumukhi characters 
(GurChar), and (c) Gurumukhi numerals (GurNum).
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We observe from these figures that the recognition rate increases with the 
increase in moment order. The rate of increase is more at low orders than at 
high orders and the performance becomes stable after a certain stage. The 
recognition rate around the moment order 12 is a good compromise keeping 
in view the space and time complexity. This order is also used by several 
authors for image matching using ZMs (Chen and Sun 2010; Revaud, Lavoue, 
and Baskurt 2009; Singh and Aggarwal 2014). Therefore, we use moment order 
12 for our experimental analysis. The moment Z00 represents the average gray 
value of an image and Z11is zero if the center of the unit disk is at the center of 
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Figure 2. (a) Recognition rate (%) versus moment order for MNIST DB using inner unit disk 
mapping. (b) Recognition rate (%) versus moment order for MNIST DB using outer unit disk 
mapping.
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Figure 3. (a) Recognition rate (%) versus moment order for GurChar DB using inner unit disk 
mapping. (b) Recognition rate (%) versus moment order for GurChar DB using outer unit disk 
mapping.
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the image. Therefore, they are excluded from the set of the feature vector. The 
total number of moments is 47 for pmax ¼ 12 after discarding Z00 and Z11:

Subject DBs Tests

We divide the three DBs into training and test DBs. The number of images in 
training and test DBs is equal. Thus, MNIST training and test DBs comprise 
5,000 images each. The Gurumukhi character and numeral training and test 
DBs comprise 3,500 and 750 images, respectively. The selection of images in 
these DBs is done randomly. The recognition rates for MNIST numerals, 
Gurumukhi characters, and Gurumukhi numerals are shown in Table 1 for 
inner unit disk mapping and outer unit disk mapping.

The following results are obtained from these experiments.

(i) The performance of optimal similarity measure is much better than all 
other similarity measures. If we compare its performance with ZM 
magnitude-based Euclidean distance measure, then we note that its 
performance is higher by 13.18%, 26.20%, and 10.80% for MNIST, 
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Figure 4. (a) Recognition rate (%) versus moment order for GurNum DB using inner unit disk 
mapping. (b) Recognition rate (%) versus moment order for GurNum DB using outer unit disk 
mapping.

Table 1. Recognition rates (%) for three DBs for inner and outer unit disk mappings.
MNIST GurChar GurNum

Method Inner Outer Inner Outer Inner Outer

ZM_MAG 81.00 75.24 59.14 69.11 86.53 91.07
ZM_MAG_PHASE (Li, Lee, and Pun 2009) 73.00 66.96 37.66 47.54 71.87 84.53
ZM_COMPLEX (Singh, Walia, and Mittal 2011) 80.22 75.32 55.83 68.49 85.33 92.13
ZM_SVM 86.92 84.50 64.74 78.46 88.53 95.47
ZM_OPT (Revaud, Lavoue, and Baskurt 2009) 94.18 90.76 85.34 87.57 97.33 98.67
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GurChar, and GurNum DBs, respectively, for inner unit disk mapping. 
For the outer unit disk mapping, these improvements are 15.52%, 
18.46%, and 7.60%, respectively. The second best recognition rates 
are obtained by SVM classifier. When compared to SVM classifier, 
the improvements in the recognition rates using optimal similarity 
measure for the three DBs are 7.26%, 20.60%, and 8.80%, for the 
inner unit disk mapping and 6.26%, 9.11%, and 3.20%, for the outer 
unit disk mapping. The magnitude- and phase-based descriptors, 
ZM_MAG_PHASE and ZM_COMPLEX, provide recognition rates 
which are comparable to ZM_MAG similarity measure. One of the 
reasons for their low performance compared to ZM_OPT is that they 
do not provide high recognition rates for binary images, although their 
performance on the recognition of grayscale images is very significant. 
This result is based on our observation that when rotation angle is 
estimated between two images by these methods, the estimated rota-
tion angle is very close to the actual rotation angle when the images are 
gray. On the other hand, when the rotation angle is estimated on the 
binary images, then the accuracy drops significantly. The optimal 
similarity-based measure finds rotation angle after solving the global 
optimization problem, and its performance remains more or less the 
same irrespective of the fact whether the two matching images are 
binary or grayscale.

(ii) The improvement in the recognition rate on Gurumukhi character DB, 
GurChar, using ZM_OPT is very high. As compared to ZM_MAG, it 
provides 26.20% and 18.46% more recognition rates for inner unit disk 
mapping and outer unit disk mapping, respectively. This DB represents 
wide variations within a class; therefore, the improvements achieved by 
ZM_OPT are very significant. This reflects the robustness of the opti-
mal similarity measure in classifying objects with large variations 
within a class.

(iii) The outer unit disk mapping provides much higher recognition rates 
compared to the inner unit disk mapping for all DBs except for the 
MNIST DB. The reason for the low improvement in MNIST DB is 
attributed to the fact that the actual character shapes are much inside 
the image boundaries and the space between the character boundaries 
and image boundaries is filled with the background color. This is clear 
from the MNIST sample character images shown in Figure 1a. There is 
not much loss of shape information when an inner unit disk is used. 
On the other hand, when an outer unit disk is used, irrelevant infor-
mation is introduced between the character boundaries and image 
boundaries. This affects the recognition rate. The percentage drop in 
recognition rate for MNIST DB using ZM_OPT (3.42%) is less than 
that obtained by ZM_MAG (5.76%), ZM_MAG_PHASE (6.04%), and 
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ZM_COMPLEX (4.90%), but slightly higher than that obtained by 
ZM_SVM (2.42%). Since no normalization including the detection of 
character bounding box is performed in our experiments, these results 
prove the robustness of the ZM_OPT similarity measure against shape 
normalization process. In fact the performance of ZM_MAG_PHASE 
is worst in the outer unit disk mapping. It is due to the fact that the 
estimation of rotation angle is affected when the character image 
contains irrelevant information outside the bounding box of the char-
acter image which impacts its accuracy.

Rotation DBs Tests

We rotate all test images (5,000 for MNIST, 3,500 for GurChar, and 750 for 
GurNum) from 10° to 90° with an interval of 10° and also include the rotation 
at 45°. Rotation at 45° is included because of the 8-way symmetry/anti- 
symmetry of the kernel function of ZMs (Singh and Walia 2011). The trend 
in recognition rates is expected to be symmetrical about 45°, but due to 
digitization error involved during image rotation, this property is affected. 
The training DBs consist of non-rotated original images as used in the subject 
DB tests (5,000 for MNIST, 3,500 for GurChar, and 750 for GurNum). The 
recognition rates are depicted in Tables 2a and 2b for MNIST, in Tables 3a 

Table 2a. Recognition rates (%) for rotated Roman numerals (MNIST DB) using inner unit disk 
mapping.

Method

Angle of rotation

0° 10° 20° 30° 40° 45° 50° 60° 70° 80° 90°

ZM_MAG 81.00 80.34 80.08 80.04 79.84 79.56 80.28 80.32 79.96 79.70 81.00
ZM_MAG_PHASE (Li, Lee, and 

Pun 2009)
73.00 72.12 72.9 73.04 73.14 73.36 72.58 72.76 72.68 72.52 73.00

ZM_COMPLEX (Singh, Walia, 
and Mittal 2011)

80.22 79.72 79.1 79.80 79.32 79.18 79.78 79.90 79.26 78.96 80.22

ZM_SVM 86.92 86.52 86.38 86.34 86.52 85.82 86.48 86.40 86.34 86.06 86.92
ZM_OPT (Revaud, Lavoue, and 

Baskurt 2009)
94.18 93.96 93.98 94.20 93.92 93.80 93.84 93.88 94.02 94.00 94.18

Table 2b. Recognition rates (%) for rotated Roman numerals (MNIST DB) using outer unit disk 
mapping.

Method

Angle of rotation

0° 10° 20° 30° 40° 45° 50° 60° 70° 80° 90°

ZM_MAG 75.24 74.44 74.54 73.94 74.34 73.62 73.86 74.40 74.52 74.44 75.24
ZM_MAG_PHASE (Li, Lee, and 

Pun 2009)
66.96 66.60 66.98 67.28 66.30 66.54 66.14 66.68 66.14 66.92 66.96

ZM_COMPLEX (Singh, Walia, 
and Mittal 2011)

75.32 74.40 74.78 73.84 74.62 73.26 74.02 74.80 74.44 74.34 75.32

ZM_SVM 84.50 84.04 84.02 84.00 83.98 82.68 83.68 83.86 84.20 83.84 84.50
ZM_OPT (Revaud, Lavoue, and 

Baskurt 2009)
90.76 89.98 90.46 89.98 90.40 90.14 89.78 89.90 90.58 90.50 90.76
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and 3b for GurChar, and in Tables 4a and 4b for GurNum DBs for inner and 
outer unit disk mappings.

It is observed from these tables that the recognition rates achieved by 
optimal similarity measure ZM_OPT are much more than the other four 
similarity measures. The outer unit disk mapping provides better rotation 
invariance results than the inner unit disk mapping for GurChar and GurNum 
DBs while its performance for MNIST is poor, the reason for which has 
already been explained under Section Subject DBs Tests. It is also observed 
from the tables that sometimes in a few cases the recognition rate for rotated 
images is better than the non-rotated images. For instance, a recognition rate 
of 94.20% at 30° for MNIST DB is better than the recognition rate of 94.18% at 

Table 3a. Recognition rates (%) for rotated Gurumukhi characters (GurChar DB) using inner unit 
disk mapping.

Method

Angle of rotation

0° 10° 20° 30° 40° 45° 50° 60° 70° 80° 90°

ZM_MAG 59.14 57.49 57.69 58.20 57.14 57.51 58.03 57.34 57.34 57.46 59.14
ZM_MAG_PHASE (Li, Lee, and 

Pun 2009)
37.66 35.94 37.37 36.91 36.60 37.26 36.60 38.03 36.94 37.06 37.66

ZM_COMPLEX (Singh, Walia, 
and Mittal 2011)

55.83 54.31 54.09 53.69 53.66 54.20 53.43 53.86 54.03 53.86 55.83

ZM_SVM 64.74 64.06 63.49 63.11 63.83 63.91 64.09 63.97 63.69 63.71 64.74
ZM_OPT (Revaud, Lavoue, and 

Baskurt 2009)
85.34 85.06 85.20 85.60 85.09 85.31 85.00 85.20 85.11 85.17 85.34

Table 3b. Recognition rates (%) for rotated Gurumukhi characters (GurChar DB) using outer unit 
disk mapping.

Method

Angle of rotation

0° 10° 20° 30° 40° 45° 50° 60° 70° 80° 90°

ZM_MAG 69.11 68.94 69.37 68.71 68.97 68.83 68.77 69.06 69.63 68.94 69.11
ZM_MAG_PHASE (Li, Lee, and 

Pun 2009)
47.54 47.20 47.49 46.77 46.14 47.03 46.74 47.80 47.09 48.43 47.54

ZM_COMPLEX (Singh, Walia, 
and Mittal 2011)

68.49 69.09 68.49 68.26 67.94 68.40 67.89 68.60 68.31 68.71 68.49

ZM_SVM 78.46 77.80 77.71 77.66 77.40 77.14 77.31 77.63 77.83 77.26 78.46
ZM_OPT (Revaud, Lavoue, and 

Baskurt 2009)
87.57 87.23 87.14 87.40 87.43 86.91 87.09 87.20 87.46 87.37 87.57

Table 4a. Recognition rates (%) for rotated Gurumukhi numerals (GurNum DB) using inner unit 
disk mapping.

Method

Angle of rotation

0° 10° 20° 30° 40° 45° 50° 60° 70° 80° 90°

ZM_MAG 86.53 87.20 86.93 87.47 86.13 86.40 86.80 87.07 86.67 86.93 86.53
ZM_MAG_PHASE (Li, Lee, and 

Pun 2009)
71.87 69.07 69.60 71.47 71.20 71.20 71.47 69.20 70.53 71.07 71.87

ZM_COMPLEX (Singh, Walia, 
and Mittal 2011)

85.33 83.87 84.67 84.53 83.73 83.33 83.60 84.27 83.47 84.00 85.33

ZM_SVM 88.53 87.20 87.60 87.20 87.60 87.87 88.13 87.07 86.93 87.07 88.53
ZM_OPT (Revaud, Lavoue, and 

Baskurt 2009)
97.33 97.20 97.33 97.33 97.07 97.47 97.07 97.47 97.07 97.20 97.33
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0° (non-rotated) which is evident from Table 2a. The actual number of 
correctly recognized images at 30° is 4710, whereas at 0° rotation it is 4709, 
out of a total of 5000 test images. The reason for this perceived abnormality is 
a better alignment between the test images and training images, because some 
of the non-rotated images in the training DBs appear in some degree of 
orientation and skew. The ZM_OPT similarity measure provides very high 
recognition rates on GurChar and GurNum DBs and it is least affected by 
image rotation. It is observed that the maximum and the minimum recogni-
tion rates on GurChar DB for ZM_MAG, ZM_MAG_PHASE, 
ZM_COMPLEX, ZM_SVM, and ZM_OPT for inner unit disk mapping are 
(57.14%, 59.14%), (35.94%, 38.03%), (53.43%, 55.83%), (63.11%, 64.74%), and 
(85.00%, and 85.60%), respectively. The difference between the maximum and 
the minimum recognition rates under rotation for ZM_OPT is insignificant 
which proves its robustness against rotation. The difference is only 0.60% as 
compared to the difference caused by the other similarity measures which 
ranges from 1.5% to 2.5% approximately. The trend in results is similar in the 
outer unit disk mapping. The trend in recognition results on GurNum DB is 
similar to those obtained on the GurChar DB. The recognition rates for 
GurNum are higher because the number of classes in GurNum is only 10 in 
comparison to 35 classes in the GurChar DB.

Noisy DBs Tests

All test images (5,000 for MNIST, 3,500 for GurChar, and 750 for GurNum) 
are subjected to noise test by adding salt-and-pepper noise with noise densities 
5% to 25% at an increment of 5%. A few noisy images at these levels are 
shown in Figure 5a–c, for the three DBs. The recognition rates are depicted in 
Tables 5a, 5b, and 5c. It is observed that the effect of noise on recognition rates 
is insignificant using the optimal similarity measure ZM_OPT.

It is observed from Table 5a that the drop in the recognition rates of 
ZM_OPT on MNIST DB in the case of inner unit disk mapping is 0.48%, 
1.46%, 2.16%, 3.40%, and 6.44%, for noise densities 5% through 25% which are 

Table 4b. Recognition rates (%) for rotated Gurumukhi numerals (GurNum DB) using outer unit 
disk mapping.

Method

Angle of rotation

0° 10° 20° 30° 40° 45° 50° 60° 70° 80° 90°

ZM_MAG 91.07 90.80 91.20 90.80 90.27 91.07 90.27 91.33 91.47 90.00 91.07
ZM_MAG_PHASE (Li, Lee, and 

Pun 2009)
84.53 83.20 84.93 82.13 84.53 81.47 80.93 84.27 83.73 83.33 84.53

ZM_COMPLEX (Singh, Walia, 
and Mittal 2011)

92.13 92.00 92.27 91.60 92.13 92.13 92.53 90.93 91.60 92.00 92.13

ZM_SVM 95.47 95.07 94.80 94.67 94.67 94.93 95.07 95.87 95.07 95.07 95.47
ZM_OPT (Revaud, Lavoue, and 

Baskurt 2009)
98.67 98.53 98.80 98.80 98.93 98.67 98.40 98.67 98.53 98.53 98.67
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very small. The performance of other similarity measures is very poor for these 
noise densities. Using inner disk mapping, the drops in recognition rates for 
ZM_MAG are 3.50%, 7.48%, 14.30%, 21.46%, and 29.48%. For 
ZM_MAG_PHASE, ZM_COMPLEX, and ZM_SVM these drops are (7.78%, 
14.06%, 21.94%, 27.76%, and 33.02%), (3.68%, 8.98%, 15.76%, 25.18%, and 
32.24%), and (3.82%, 10.94%, 21.18%, 27.76%, and 33.36%). A similar trend is 
observed for outer unit disk mapping for all similarity measures, although the 
drop in recognition rate for outer unit disk mapping for MNIST DB is 

Noise free 

Noise density 5% 

Noise density 10% 

Noise density 15% 

Noise density 20% 

Noise density 25%
(a) 

Noise free 

Noise density 5% 

Noise density 10% 

Noise density 15% 

Noise density 20% 

Noise density 25% 
 (b)

Noise free 

Noise density 5% 

Noise density 10% 

Noise density 15% 

Noise density 20% 

Noise density 25% 
(c) 

Figure 5. Noise samples of three DBs at different noise densities. (a) MNIST Roman numerals, (b) 
Gurumukhi characters, and (c) Gurumukhi numerals.
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significant as compared to the inner unit disk mapping. This is attributed to 
the reason as explained under Section Subject DBs Tests. When we use outer 
unit disk mapping, the optimal similarity measure ZM_OPT provides lower 
recognition rates as compared to inner unit disk mapping for MNIST DB. In 

Table 5a. Recognition rates (%) for MNIST Roman numerals DB at different noise densities.
Inner unit disk Outer unit disk

Method

Noise- 
free 
(0%)

Noise density Noise- 
free 
(0%)

Noise density

5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

ZM_MAG 81.00 77.50 73.52 66.70 59.54 51.52 75.24 72.20 65.08 56.02 43.46 35.42
ZM_MAG_PHASE 

(Li, Lee, and Pun 
2009)

73.00 65.22 58.94 51.06 45.24 39.98 66.96 47.14 38.94 32.38 28.78 24.78

ZM_COMPLEX 
(Singh, Walia, and 
Mittal 2011)

80.22 76.54 71.24 64.46 55.04 47.98 75.32 70.96 64.56 57.50 49.00 39.78

ZM_SVM 86.92 83.10 75.98 65.74 59.16 53.56 84.50 76.20 63.88 56.18 49.54 42.40
ZM_OPT (Revaud, 

Lavoue, and 
Baskurt 2009)

94.18 93.70 92.72 92.02 90.78 87.74 90.76 89.34 87.84 82.60 74.70 66.42

Table 5b. Recognition rates (%) for Gurumukhi characters DB at different noise densities.
Inner unit disk Outer unit disk

Method

Noise- 
free 
(0%)

Noise density Noise- 
free 
(0%)

Noise density

5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

ZM_MAG 59.14 57.06 54.40 50.80 44.23 37.46 69.11 68.00 64.69 61.26 54.34 46.14
ZM_MAG_PHASE 

(Li, Lee, and Pun 
2009)

37.66 36.74 35.26 33.03 32.00 28.14 47.54 45.71 44.91 43.83 40.34 38.40

ZM_COMPLEX 
(Singh, Walia, and 
Mittal 2011)

55.83 53.23 50.74 44.37 38.11 30.09 68.49 66.60 63.34 59.74 52.89 45.09

ZM_SVM 64.74 62.86 60.66 56.60 50.69 43.94 78.46 75.74 72.29 66.40 59.00 49.37
ZM_OPT (Revaud, 

Lavoue, and 
Baskurt 2009)

85.34 85.17 84.51 84.00 83.66 83.69 87.57 86.66 86.49 85.43 84.17 82.34

Table 5c. Recognition rates (%) for Gurumukhi numerals DB at different noise densities.
Inner unit disk Outer unit disk

Method

Noise- 
free 
(0%)

Noise density Noise- 
free 
(0%)

Noise density

5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

ZM_MAG 86.53 85.60 84.13 82.53 79.20 74.93 91.07 91.07 91.07 88.93 87.07 83.60
ZM_MAG_PHASE 

(Li, Lee, and Pun 
2009)

71.87 69.60 69.07 65.33 62.27 59.33 84.53 81.87 78.67 78.40 75.47 75.33

ZM_COMPLEX 
(Singh, Walia, and 
Mittal 2011)

85.33 83.60 81.20 80.13 73.20 69.07 92.13 91.73 90.27 89.87 86.53 82.00

ZM_SVM 88.53 86.53 86.00 84.93 81.33 77.47 95.47 95.20 93.20 92.40 89.60 84.80
ZM_OPT (Revaud, 

Lavoue, and 
Baskurt 2009)

97.33 97.20 97.20 97.06 96.93 96.93 98.67 98.40 98.40 98.40 98.40 98.13
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fact, the drop in the recognition rate is significant as well. Whereas the drop in 
recognition rate due to noise for inner unit disk mapping for MNIST DB is 
from 94.18% to 87.74%, the drop for the outer unit disk mapping is from 
90.76% to 66.42%. The drop in recognition rates for GurChar using the two 
mappings and ZM_OPT similarity measure do not vary much. This shows the 
high robustness of the ZM_OPT method against image noise.

Time Complexity Analysis

All similarity measures require the computation of all ZMs up to the max-
imum order pmax . Fast algorithms are used to compute ZMs as discussed by 
Singh and Walia (Singh and Walia 2011). The time complexity of the fast 
methods is O N2p2

max
� �

. The ZMs of the training images are computed offline 
and saved in the database. Hence, the time taken for testing is crucial as 
generally the testing is performed online. The total time taken during training 
and testing by the different similarity measures for pmax ¼ 12 is shown in 
Table 6. The average time taken for feature extraction and testing for one 
image is shown in brackets. It is observed that the time taken during the 
training is very small as compared to testing. During testing, the time taken for 
feature extraction for one image is the same as during training.

The average time taken for feature extraction for an image of MNIST, 
GurChar, and GurNum DBs using inner unit disk mapping is 0.00022 sec, 
0.00028 sec, and 0.00037 sec, respectively. The average time taken is different 
for the three DBs because the image sizes are different. During testing, the time 
taken for feature extraction is very less as compared to classification. In fact, 
the major part of the total time taken is due to the classification process. It is 
observed that the ZM_MAG classifier takes much less time than other simi-
larity measures. The similarity measures ZM_SVM and ZM_OPT are the 
slowest ones. For small DBs (GurChar and GurNum), the ZM_OPT classifier 
takes less time as compared to ZM_SVM. For large DB (MNIST) the trend is 
reversed. For GurChar DB, the time taken by ZM_SVM for inner and outer 
unit disk mappings is 214.36 sec and 191.02 sec, while for ZM_OPT these 
values are 166.17 sec and 160.44 sec. For GurNum DB, these values are 
17.26 sec, 15.35 sec for ZM_SVM, and 8.10 sec, 7.78 sec for ZM_OPT 
classifiers. During experiments, it is observed that the classifiers ZM_OPT 
and ZM_SVM take more time for classification in the inner unit disk mapping 
than the outer unit disk mapping. For the ZM_OPT classifier, after investiga-
tion, it was found that the optimization process using inner unit disk mapping 
is slower than the outer unit disk mapping. When we solve Equation (30) for 
finding its zeros, it provided 159115233, 116995884, and 5574910 zeros for the 
inner unit disk mapping as compared to 127235895, 97915984, and 4396884 
zeros for the outer unit disk mapping for the three DBs. It is made clear here 
that a test image is compared with all the training images and the number of 
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zeros mentioned here accounts for all test images. The average number of 
zeros is 6.365, 9.55, and 9.910 for inner unit disk mapping, and 5.089, 7.99, and 
7.817, for the outer unit disk mapping for the three DBs. For ZM_SVM, we 
optimize the parameters for the radial kernel basis function of SVM. This 
optimization process requires more number of iterations in inner unit disk 
mapping than in the outer unit disk mapping. Therefore, the outer unit disk 
mapping takes less computation time than the inner unit disk mapping.

It is clear from the performance and time complexity analysis that the 
optimal similarity measure ZM_OPT outperforms all other similarity mea-
sures and its performance is much better than the next best classifier 
ZM_SVM. It is much more robust against rotation and noise. Even at a very 
high noise density, its performance is excellent. However, it suffers from high 
computation time. The proposed method for its fast computation reduces its 
time complexity and brings it at par with the existing best classifier ZM_SVM. 
Figure 6 shows a comparative time performance analysis between a naïve 
implementation of ZM_OPT and its proposed fast method as a function of 
pmax for the GurNum DB.

Conclusion

It is observed from the experimental analysis that the optimal similarity 
measure which uses ZM magnitude and phase for finding the minimum 
distance between two images is an excellent similarity measure whose recogni-
tion performance is much better than all other similarity measures. It is very 
robust to image rotation and noise. Even at a very high noise density of 25% of 
salt-and-pepper noise, its performance is similar to the noise-free image. The 
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Figure 6. Comparison of CPU elapse time taken by a naïve implementation of ZM_OPT and its 
proposed fast method.
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high recognition rates on three segmented handwritten character databases 
reflect its robustness against writing style, skew, shape, orientation, etc. It is, 
however, computation intensive. The proposed fast algorithm reduces its time 
complexity and brings its time requirement close to the next best classifier 
which is based on the SVM. Our future work will focus on its use to other 
applications and further reduction in its time complexity.
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