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Abstract
In this paper, we study the almost paracontact, almost paracontact metric, paracontact

metric, K-paracontact and para-Sasakian Finsler structures on vector bundles and give some
characterizations for these geometric structures. Also, the curvature of a paracontact Finsler
manifold is given and some results for Ricci semi-symmetric para-Sasakian Finsler manifolds and
para-Sasakian Finsler manifolds with η-parallel Ricci tensor are obtained with the aid of Ricci tensor
and scalar curvature of Finsler structure.

Keywords: Vector Bundle; Vertical Distribution; Horizontal Distribution; Finsler Connection; Nijenhuis
Tensor Field
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1 Introduction
In [1], R. Miron has interested in the differential geometry of vector bundles and used the Finsler

geometry to simplify the theory. For this, he has seen that the Finsler connection on the total space
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E of a vector bundle ξ = (E, π,M) is fundamental. To define it, firstly he has defined the notion
of the nonlinear connection N on E and used it to obtain the algebra of Finsler tensor fields on E.
Next, he has defined the torsion and curvature of Finsler connection and he has given them with local
components.

After that, the geometry of contact and paracontact structures on vector bundles with the aid of
Finsler connections has been studied in [2,3] and [4]. In these studies, the contact and paracontact

Finsler structures on E have been given by the Finsler tensor field Φ of type
(

1 1
1 1

)
, a 1-form η

and a vector field ξ. Later the metric structure g on E has been decomposed as g = gh+gv and some
characterizations of the structure (Φ, η, ξ, g) have been given. As a conclusion, in [4] it is proved that,
the Riemannian Sasakian structures and Sasakian Finsler structures are adaptable.

In this paper, the tensors N (1), N (2), N (3) and N (4) which characterize the condition of normality
of the almost paracontact Finsler structure are defined on an almost paracontact Finsler manifold
(E,Φ, η, ξ) with the help of Nijenhuis tensor NΦ and some characterizations for these tensors are
given. Later, the paracontact metric Finsler manifolds and K-paracontact Finsler manifolds are defined
and it is shown that the necessary and sufficient condition for a paracontact metric Finsler structure to
be K-paracontact Finsler structure is N (3) = 0. Since N (3) gives important results for a paracontact
Finsler structure, we define a tensor fieldH which is a symmetric operator and anti-commutative with
Φ. The para-Sasakian Finsler manifold is defined and given the condition for an almost paracontact
metric Finsler structure to be para-Sasakian. It is proved that, the flag curvature of a plane which
contains ξ is equal to −1 at each point of E which is a K-paracontact Finsler manifold. Some
characterizations for paracontact structures with the aid of the curvature of the paracontact Finsler
manifolds and the Ricci tensor of a para-Sasakian Finsler manifold are obtained. Finally, some results
for the Ricci semi-symmetric para-Sasakian Finsler manifolds and para-Sasakian Finsler manifolds
with η-parallel Ricci tensors are given.

2 Preliminaries
Let ξ = (E, π,M) be a vector bundle of the class C∞, where E is the total space of dimension

(n+m), M is the base space of dimension n and the local fibre Ep = π−1(p), p ∈M , is a real vector
space of dimension n.

The map π : E → M induces the πT -morphism of the corresponding tangent bundles πT :
T (E)→ T (M). Then V E = KerπT is a subbundle of T (E) called the vertical bundle. V E defines a
distribution

EV : u ∈ E → EVu ,

where EVu is the fibre of V E in the point u ∈ E and EV is called the vertical distribution of ξ. On the
open set π−1(Uα), ∂

∂ya
, a = 1, ...,m, is a local basis of the vertical distribution EV . Hence, EV is

integrable.
A non-linear connection on the total space E of ξ is a differentiable distribution N : u ∈ E →

Nu ⊂ Eu, with the property
Eu = Nu ⊕ EVu ,

where Eu is the tangent space at u ∈ E to the manifold E. Here Nu is called the horizontal
distribution. So,

Proposition 2.1. If the base space M of the vector bundle ξ is paracompact, then there exist the
non-linear connections on E [1].

For every vector field X on E, there exists a unique decomposition as

X = Xh +Xv, Xuh ∈ Nu, Xuv ∈ E
V
u , ∀u ∈ E.
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Here, Xh and Xv are called the horizontal part and the vertical part of X, respectively (see [1]).
Let xi, i = 1, 2, ..., n and ya, a = 1, 2, ...,m be the coordinates of u ∈ E. The local base of Nu is

δ

δxi
=

∂

∂xi
−Na

i (x, y)
∂

∂ya

and that of EVu is ∂
∂ya

, where Na
i are coefficients of N . Their dual bases are (dxi, δya), where

δya = dya +Na
i (x, y)dxi.

Since these bases are dual, we have〈
δ

δxi
, dxj

〉
= δji ,

〈
δ

δxi
, δya

〉
= 0,

〈
∂

∂ya
, dxj

〉
= 0,

〈
∂

∂ya
, δyb

〉
= δba.

If X = Xi(x, y) δ
δxi

+ X̃a(x, y) ∂
∂ya

, ∀X ∈ Tu(E), then

Xh = Xi(x, y)
δ

δxi
, Xv = X̃a(x, y)

∂

∂ya
, X̃a = Xa +Na

i X
i

and if w = w̃idx
i + waδy

a is a 1-form, then

wh = w̃idx
i, w̃i = wi −Na

i wa, wv = waδy
a.

So it gives that, wh(Xv) = 0 and wv(Xh) = 0, where w = wh + wv [3].

Definition 2.1. A tensor field t on the total space E of the vector bundle ξ is called a Finsler tensor

field of the type
(
p r
q s

)
, if it has the property

t(w1, ..., wp, X1, ..., Xq, wp+1, ..., wp+r, Xq+1, ..., Xq+s)

= t((w1)h, ..., (wp)h, (X1)h, ..., (Xq)h, (wp+1)v, ..., (wp+r)v, (Xq+1)v, ..., (Xq+s)v),

∀wα ∈ χ∗(E), ∀Xβ ∈ χ(E) [1].

Proposition 2.2. A Finsler tensor field of the type
(
p r
q s

)
on E has the following local form [1]:

t = t
l1,...,lp,a1,...,ar
j1,...,jq,b1,...,bs

(x, y)
δ

δxl1
⊗ ...⊗ δ

δxlp
⊗ dxj1 ⊗ ...⊗ dxjq ⊗ ∂

∂ya1
⊗ ...⊗ ∂

∂yar
⊗ δyb1 ⊗ ...⊗ δybs .

Definition 2.2. A Finsler connection on E is a linear connection ∇ on E with the property that the
horizontal linear spaces Nu, u ∈ E, of the distribution N are parallel with respect to ∇ and similarly,
the vertical linear spaces EVu , u ∈ E, are parallel with respect to ∇ [1].

A Finsler connection ∇ on E is characterized by the conditions

(∇XYh)v = 0 and (∇XYv)h = 0, ∀X,Y ∈ χ(E).

Thus we have:

Theorem 2.1. The following statements are equivalent:
(a) ∇ is a Finsler connection on E,
(b) ∇XY = (∇XYh)h + (∇XYv)v, ∀X,Y ∈ χ(E),

(c) ∇Xw = (∇Xwh)h + (∇Xwv)v, ∀w ∈ χ∗(E), ∀X ∈ χ(E) [1].
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If F
F

pr
qs(E) is the F(E)-module of the Finsler tensor fields of the type

(
p r
q s

)
, then the F(E)-

module
F
F

(E) = ⊕
p,q,r,s=0,1,...

F
F

pr
qs(E)

and the product tensor is a graded algebra called the algebra of Finsler tensor fields on E.
For a Finsler connection ∇ on E

∇hXY = ∇XhY, ∇
v
XY = ∇XvY, ∀X,Y ∈ χ(E),

where∇h and∇v are the covariant derivatives in the algebra F
F

(E). Here,∇h is called the h-covariant

derivative and ∇v is called the v-covariant derivative of the Finsler connection ∇. Furthermore, we
have

(i) ∇hXf = Xh(f), (∇hXYh)v = 0, (∇hXYv)h = 0,
(ii) ∇hXY = (∇hXYh)h + (∇hXYv)v,
(iii) ∇vXf = Xv(f), (∇vXYh)v = 0, (∇vXYv)h = 0,
(iv) ∇vXY = (∇vXYh)h + (∇vXYv)v

and we have analogous formulas for ∇Xw, too (see [1]).
The torsion tensor field T of a Finsler connection ∇ on E is given by

T (X,Y ) = ∇XY −∇YX − [X,Y ] , ∀X,Y ∈ χ(E),

which is characterized by the five Finsler tensor fields:

[T (Xh, Yh)]h , [T (Xh, Yh)]v , [T (Xh, Yv)]h , [T (Xh, Yv)]v , [T (Xv, Yv)]v .

If the Finsler connection ∇ on E is without torsion, then we have

T (Xh, Yh) = 0, T (Xh, Yv) = 0, T (Xv, Yv) = 0, ∀X,Y ∈ χ(E) [3].

If we break T down into horizontal and vertical parts, we have

Th(Xh, Yh) = ∇hXYh −∇hYXh − [Xh, Yh]h , Tv(Xh, Yh) = − [Xh, Yh]v ,

Th(Xh, Yv) = −∇vYXh − [Xh, Yv]h , Tv(Xh, Yv) = ∇hXYv − [Xh, Yv]v ,

Tv(Xv, Yv) = ∇vXYv −∇vYXv − [Xv, Yv]v

and when the Finsler connection ∇ is torsion free, we get

[Xh, Yh]h = ∇hXYh −∇hYXh, [Xh, Yh]v = 0, [Xh, Yv]h = −∇vYXh,

[Xh, Yv]v = ∇hXYv, [Xv, Yv]v = ∇vXYv −∇vYXv[5].

If w is a differential r-form on E and ∇ is a linear connection on E, then the exterior differential
dw is given by

dw(X0, X1, ..., Xr) =
1

r + 1

r∑
i=0

(−1)iXi(w(X0, ..., X̂i, ..., Xr))

+
1

r + 1

∑
0≤i<j≤r

(−1)i+jw([Xi, Xj ] , X0, ..., X̂i, ..., X̂j , ..., Xr),

where X̂k means that the term Xk is omitted. If w is a 1-form, then

2dw(X,Y ) = X(w(Y ))− Y (w(X))− w([X,Y ]) [6].

Thus, if w ∈ χ∗(E) is a 1-form and ∇ is a Finsler connection on E, then for ∀X,Y ∈ χ(E) we have

2dw(Xh, Yh) = Xh(w(Yh))− Yh(w(Xh))− w([Xh, Yh]),
2dw(Xv, Yh) = Xv(w(Yh))− Yh(w(Xv))− w([Xv, Yh]),
2dw(Xv, Yv) = Xv(w(Yv))− Yv(w(Xv))− w([Xv, Yv]).

 (2.1)
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3 Almost Paracontact Finsler Structures on Vector Bundle

A (4n+2)-dimensional Finsler manifold E(4n+2) has an almost paracontact Finsler structure

(Φ, η, ξ), if it admits a tensor field Φ of type
(

1 1
1 1

)
, a vector field ξ and a 1-form η satisfying the

following conditions [2]:

Φ.Φ = In − ηh ⊗ ξh − ηv ⊗ ξv,
Φξh = 0, Φξv = 0,
ηh(ξh) + ηv(ξv) = 1,

ηh(ΦXh) = ηv(ΦXh) = ηh(ΦXv) = ηv(ΦXv) = 0.

 (3.1)

Let g be the pseudo-Riemannian Finsler metric on E. Then the metric structure g on E can be
decomposed as

g = gh + gv, (3.2)

where gh is of type
(

0 0
2 0

)
and gv is of type

(
0 0
0 2

)
. Thus, we have

g(X,Y ) = gh(X,Y ) + gv(X,Y )

= g(Xh, Yh) + g(Xv, Yv), ∀X,Y ∈ χ(E) [2]. (3.3)

Furthermore, the Finsler connection ∇ with respect to g is given by

2gh(∇hXYh, Zh) = Xhgh(Yh, Zh) + Yhgh(Xh, Zh)− Zhgh(Xh, Yh) (3.4)

+ gh([Xh, Yh] , Zh) + gh([Zh, Xh] , Yh)− gh([Yh, Zh] , Xh),

2gv(∇vXYv, Zv) = Xvgv(Yv, Zv) + Yvgv(Xv, Zv)− Zvgv(Xv, Yv) (3.5)

+ gv([Xv, Yv] , Zv) + gv([Zv, Xv] , Yv)− gv([Yv, Zv] , Xv),

2gh(∇vXYh, Zh) = Xvgh(Yh, Zh) + gh([Xv, Yh]h , Zh) + gh([Zh, Xv]h , Yh), (3.6)

2gv(∇hXYv, Zv) = Xhgv(Yv, Zv) + gv([Xh, Yv]v , Zv) + gv([Zv, Xh]v , Yv). (3.7)

If the Finsler manifold E(4n+2) with (Φ, η, ξ)-structure admits a pseudo-Riemannian Finsler metric
g such that

gh(ΦX,ΦY ) = −gh(X,Y ) + ηh(X)ηh(Y ) and gv(ΦX,ΦY ) = −gv(X,Y ) + ηv(X)ηv(Y ), (3.8)

which is equivalent to

(i) gh(X, ξ) = ηh(X), gv(X, ξ) = ηv(X),
(ii) gh(ΦX,ΦY ) = −gh(Φ2X,Y ), gv(ΦX,ΦY ) = −gv(Φ2X,Y ),

}
(3.9)

then we say thatE(4n+2) has an almost paracontact metric Finsler structure and g is called compatible
metric (see [2]).

Now, we define

Ω(X,Y ) = g(X,ΦY ); Ω(Xh, Yh) = gh(X,ΦY ), Ω(Xv, Yv) = gv(X,ΦY ) (3.10)

and call it the fundamental 2-form. Then, for ∀X,Y ∈ χ(E), the fundamental 2-form satisfies

(i) Ω(ΦXh,ΦYh) = −Ω(Xh, Yh), Ω(ΦXv,ΦYv) = −Ω(Xv, Yv),

(ii) Ω(Xh, Yh) = −Ω(Yh, Xh), Ω(Xv, Yv) = −Ω(Yv, Xv). (3.11)
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Also we have the following equations with respect to the fundamental 2-form Ω:

dΩ(Xh, Yh, Zh) = XhΩ(Yh, Zh) + YhΩ(Zh, Xh) + ZhΩ(Xh, Yh)

− Ω([Xh, Yh] , Zh)− Ω([Zh, Xh] , Yh)− Ω([Yh, Zh] , Xh), (3.12)

dΩ(Xv, Yv, Zv) = XvΩ(Yv, Zv) + YvΩ(Zv, Xv) + ZvΩ(Xv, Yv)

− Ω([Xv, Yv] , Zv)− Ω([Zv, Xv] , Yv)− Ω([Yv, Zv] , Xv), (3.13)

dΩ(Xv, Yh, Zh) = XvΩ(Yh, Zh)− Ω([Xv, Yh]h , Zh)− Ω([Zh, Xv]h , Yh), (3.14)

dΩ(Xv, Yv, Zh) = ZhΩ(Xv, Yv)− Ω([Zh, Xv]v , Yv)− Ω([Yv, Zh]v , Xv), (3.15)

dΩ(Xh, Yv, Zh) = YvΩ(Zh, Xh)− Ω([Xh, Yv]h , Zh)− Ω([Yv, Zh]h , Xh), (3.16)

dΩ(Xh, Yv, Zv) = XhΩ(Yv, Zv)− Ω([Xh, Yv]v , Zv)− Ω([Zv, Xh]v , Yv), (3.17)

dΩ(Xv, Yh, Zv) = YhΩ(Zv, Xv)− Ω([Xv, Yh]v , Zv)− Ω([Yh, Zv]v , Xv), (3.18)

dΩ(Xh, Yh, Zv) = ZvΩ(Xh, Yh)− Ω([Zv, Xh]h , Yh)− Ω([Yh, Zv]h , Xh). (3.19)

Example 3.1. Let ξ = (E, π,M) be a vector bundle of the class C∞, where E = R6 is the total space
of dimension 6 and M = R3 is the base space of dimension 3.

If x1, x2, x3 and y1, y2, y3 are the coordinates of u = (x, y) ∈ E, then the local base of Nu is
( δ
δx1

, δ
δx2

, δ
δx3

) and the local base of EVu is ( ∂
∂y1

, ∂
∂y2

, ∂
∂y3

), such that Eu = Nu ⊕ EVu .
Let the vector field X on E be

X = X h + Xv = X
δ

δx1
+ Y

δ

δx2
+ Z

δ

δx3︸ ︷︷ ︸
Xh

+ X̃
∂

∂y1
+ Ỹ

∂

∂y2
+ Z̃

∂

∂y3︸ ︷︷ ︸
Xv

,

the 1-form η be

η = ηh + ηv = x2dx1 − 2dx3 +
x2X

Y
dx2︸ ︷︷ ︸

ηh

+ y2δy1 − 2δy3 +
y2X̃

Ỹ
δy2︸ ︷︷ ︸

ηv

,

where ηh(Xv) = 0 and ηv(Xh) = 0.
The structure vector field ξ is given by

ξ = ξh + ξv =
1

2x2

δ

δx1︸ ︷︷ ︸
ξh

+
1

2y2

∂

∂y1︸ ︷︷ ︸
ξv

.

The tensor field Φ of type
(

1 1
1 1

)
by the matris form is

Φ =



0 1
x2

0 0 0 0

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1

y2
0

0 0 0 0 0 1
0 0 0 0 1 0

 , where Φh =

 0 1
x2

0

0 0 1
0 1 0

 and Φv =

 0 1
y2

0

0 0 1
0 1 0



are tensor fields of type (1, 1).
Then one can see that

Φ2X = X − ηh(Xh)ξh − ηv(Xv)ξv,

Φh(ξh) = 0, Φv(ξv) = 0,

ηh(ξh) + ηv(ξv) = 1, ηh(ξv) = 0, ηv(ξh) = 0,

ηh(Φh(Xh)) = ηv(Φv(Xv)) = 0,
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where Y 2 = x2XZ and Ỹ 2 = y2X̃Z̃.
Therefore, (Φ, η, ξ) is an almost paracontact Finsler structure on E = R6.

4 Normal Almost Paracontact Finsler Manifolds

The Nijenhuis tensor Nj of a tensor field J of type (1,1) on a manifold M is a tensor field of type
(1,2) defined by

Nj(X,Y ) = J2 [X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ] , ∀X,Y ∈ TM. (4.1)

If M admits a tensor field J of type (1,1) satisfying

J2 = I,

then it is said to be an almost product manifold equipped with an almost product structure J . An
almost product structure is integrable if its Nijenhuis tensor vanishes [7].

Let M (2n+1) be an almost paracontact manifold with structure (Φ, η, ξ) and consider the manifold
M (2n+1) × R. We denote a vector field on M (2n+1) × R by (X, f d

dt
), where X is tangent to M (2n+1),

t is coordinate on R and f is a C∞-function on M (2n+1) × R. For any two vector fields (X, f d
dt

) and
(Y, h d

dt
), one can see that [

(X, f
d

dt
), (Y, h

d

dt
)

]
= ([X,Y ] , (Xh− Y f)

d

dt
). (4.2)

An almost paracomplex structure J on M (2n+1) × R is defined by

J(X, f
d

dt
) = (ΦX + fξ, η(X)

d

dt
). (4.3)

Here one can easily see that J2 = I.
If J is integrable, we say that the almost paracontact structure (Φ, η, ξ) is normal.
As the vanishing of the Nijenhuis tensor of J is necessary and sufficient condition for integrability,

we express the condition of normality in terms of Nijenhuis tensor NΦ of Φ. Since Nj is tensor field
of type (1,2), it suffices to compute Nj((X, 0), (Y, 0)) and Nj((X, 0), (0, d

dt
)). So from (4.1), (4.2) and

(4.3), we get

Nj((X, 0), (Y, 0)) = (NΦ(X,Y )− 2dη(X,Y )ξ, ((LΦXη)Y − (LΦY η)X)
d

dt
),

Nj((X, 0), (0,
d

dt
)) = −((LξΦ)X, (Lξη)X

d

dt
).

We are thus led to define tensors N (1), N (2), N (3) and N (4) by

N (1)(X,Y ) = NΦ(X,Y )− 2dη(X,Y )ξ,

N (2)(X,Y ) = (LΦXη)Y − (LΦY η)X,

N (3)(X) = (LξΦ)X,

N (4)(X) = (Lξη)X.

 (4.4)

So, the almost paracontact structure (Φ, η, ξ) is normal if and only if these four tensors vanish (see
[8]).

Now let us define these tensors, found above, on almost paracontact Finsler manifold (E,Φ, η, ξ):
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For ∀Xh, Yh, ξh ∈ Nu and ∀Xv, Yv, ξv ∈ EVu ,

N (1)(Xh, Yh) = NΦ(Xh, Yh)− 2dηh(Xh, Yh)ξh

= [Xh, Yh] + [ΦXh,ΦYh]− Φ [ΦXh, Yh]

− Φ [Xh,ΦYh]−Xh(ηh(Yh))ξh + Yh(ηh(Xh))ξh,

N (2)(Xh, Yh) = (LΦXhηh)Yh − (LΦYhηh)Xh (4.5)

= ΦXhηh(Yh)− ηh([ΦXh, Yh])− ΦYhηh(Xh) + ηh([ΦYh, Xh]),

N (3)(Xh) = (LξhΦ)(Xh) = [ξh,ΦXh]− Φ [ξh, Xh] ,

N (4)(Xh) = (Lξhηh)(Xh) = ξhηh(Xh)− ηh([ξh, Xh]);

N (1)(Xv, Yv) = NΦ(Xv, Yv)− 2dηv(Xv, Yv)ξv,

N (2)(Xv, Yv) = (LΦXvηv)Yv − (LΦYvηv)Xv, (4.6)

N (3)(Xv) = (LξvΦ)(Xv),

N (4)(Xv) = (Lξvηv)(Xv);

N (1)(Xv, Yh) = NΦ(Xv, Yh)− 2dηh(Xv, Yh)ξh − 2dηv(Xv, Yh)ξv

= [Xv, Yh] + [ΦXv,ΦYh]− Φ [ΦXv, Yh]

− Φ [Xv,ΦYh]−Xv(ηh(Yh))ξh + Yh(ηv(Xv))ξv,

N (2)(Xv, Yh) = (LΦXvηh)Yh + (LΦXvηv)Yh − (LΦYhηh)Xv − (LΦYhηv)Xv (4.7)

= ΦXvηh(Yh)− ηh([ΦXv, Yh])− ηv([ΦXv, Yh])

+ ηh([ΦYh, Xv])− ΦYhηv(Xv) + ηv([ΦYh, Xv]),

N (3)(Xv) = (LξhΦ)(Xv), N (4)(Xv) = (Lξhηv)(Xv),

N (3)(Yh) = (LξvΦ)(Yh), N (4)(Yh) = (Lξvηh)(Yh).

So, the almost paracontact Finsler structure (Φ, η, ξ) is normal if and only if the tensorsN (1), N (2), N (3)

and N (4) vanish identically.

Proposition 4.1. Let E be an almost paracontact Finsler manifold with an almost paracontact Finsler
structure (Φ, η, ξ). Then we have,

N (1)(Xh, ξh) = −N (3)(ΦXh) = − [ξh, Xh] + Φ [ξh,ΦXh] + ξh(ηh(Xh))ξh, (4.8)

N (2)(Xh, Yh) = 2(dηh(ΦXh, Yh) + dηh(Xh,ΦYh)), (4.9)

N (4)(Xh) = 2dηh(ξh, Xh); (4.10)

N (1)(Xv, ξv) = −N (3)(ΦXv) = − [ξv, Xv] + Φ [ξv,ΦXv] + ξv(ηv(Xv))ξv, (4.11)

N (2)(Xv, Yv) = 2(dηv(ΦXv, Yv) + dηv(Xv,ΦYv)), (4.12)

N (4)(Xv) = 2dηv(ξv, Xv); (4.13)
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N (1)(Xv, ξh) = −N (3)(ΦXv) + ηv(Xv) [ξv, ξh]

= −Φ [ΦXv, ξh] + [Xv, ξh] + ξh(ηv(Xv))ξv, (4.14)

N (1)(Yh, ξv) = −N (3)(ΦYh) + ηh(Yh) [ξh, ξv]

= −Φ [ΦYh, ξv] + [Yh, ξv] + ξv(ηh(Yh))ξh, (4.15)

N (2)(Xv, Yh) = 2(dηh(ΦXv, Yh) + dηv(ΦXv, Yh)

+ dηh(Xv,ΦYh) + dηv(Xv,ΦYh)), (4.16)

N (2)(Xh, Yv) = 2(dηh(ΦXh, Yv) + dηv(ΦXh, Yv)

+ dηh(Xh,ΦYv) + dηv(Xh,ΦYv)), (4.17)

N (4)(Yh) = 2dηh(ξv, Yh), N (4)(Xv) = 2dηv(ξh, Xv). (4.18)

Proof. For ∀Xh, Yh, ξh ∈ Nu and ∀Xv, Yv, ξv ∈ EVu , from (2.1), (3.1), (4.5), (4.6) and (4.7), after
necessary calculations we obtain (4.8)-(4.18).

So, from (3.1), (4.9), (4.10), (4.12), (4.13), (4.16), (4.17) and (4.18) we have:

Corollary 4.1. If E is an almost paracontact Finsler manifold with an almost paracontact Finsler
structure (Φ, η, ξ), then for ∀Xh, Yh, ξh ∈ Nu and ∀Xv, Yv, ξv ∈ EVu , we have

N (2)(Xh,ΦYh) = 2(dηh(ΦXh,ΦYh) + dηh(Xh, Yh)) + ηh(Yh)N (4)(Xh), (4.19)

N (2)(Xv,ΦYv) = 2(dηv(ΦXv,ΦYv) + dηv(Xv, Yv)) + ηv(Yv)N (4)(Xv), (4.20)

N (2)(Xv,ΦYh) = 2(dηh(ΦXv,ΦYh) + dηv(ΦXv,ΦYh) + dηh(Xv, Yh) + dηv(Xv, Yh))

+ ηh(Yh)N (4)(Xv) + ηh(Yh)2dηh(ξh, Xv), (4.21)

N (2)(Xh,ΦYv) = 2(dηh(ΦXh,ΦYv) + dηv(ΦXh,ΦYv) + dηh(Xh, Yv) + dηv(Xh, Yv))

+ ηv(Yv)N (4)(Xh) + ηv(Yv)2dηv(ξv, Xh). (4.22)

Proposition 4.2. On an almost paracontact Finsler manifold E, N (2) vanishes if and only if

dη(ΦX,ΦY ) = −dη(X,Y ). (4.23)

Proof. Let us assume that N (2) = 0. Then from (4.10) and (4.19), for ∀Xh, Yh, ξh ∈ Nu,

0 = N (2)(Xh,ΦYh) = 2(dηh(ΦXh,ΦYh) + dηh(Xh, Yh)) + ηh(Yh)2dηh(ξh, Xh)

and for this, it must be dηh(ΦXh,ΦYh) = −dηh(Xh, Yh).
Similarly, from (4.13) and (4.20), ifN (2) = 0 for ∀Xv, Yv, ξv ∈ EVu , then it must be dηv(ΦXv,ΦYv) =

−dηv(Xv, Yv).
Furthermore, from (4.18) and (4.21), if

0 = N (2)(Xv,ΦYh) = 2(dηh(ΦXv,ΦYh) + dηv(ΦXv,ΦYh) + dηh(Xv, Yh) + dηv(Xv, Yh))

+ ηh(Yh)2dηh(ξh, Xv) + ηh(Yh)2dηv(ξh, Xv),

then dηh(ΦXv,ΦYh) = −dηh(Xv, Yh) and dηv(ΦXv,ΦYh) = −dηv(Xv, Yh). Finally, from (4.22),
if N (2)(Xh,ΦYv) = 0, then it must be dηh(ΦXh,ΦYv) = −dηh(Xh, Yv) and dηv(ΦXh,ΦYv) =
−dηv(Xh, Yv).

Conversely, let us take into account that dη(ΦX,ΦY ) = −dη(X,Y ). Then, for ∀Xh, Yh, ξh ∈ Nu,
we have

0 = dηh(Φ2Xh,Φξh) = −dηh(ΦXh, ξh).

So, from this equality and (3.1), we get

dηh(ΦXh,Φ
2Yh) = −dηh(Xh,ΦYh) =⇒ dηh(ΦXh, Yh) = −dηh(Xh,ΦYh).
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Using the last equation in (4.9), we obtain N (2)(Xh, Yh) = 0.
Similarly, for ∀Xv, Yv, ξv ∈ EVu , from 0 = dηv(Φ2Xv,Φξv) = −dηv(ΦXv, ξv) and (3.1), we have

dηv(ΦXv, Yv) = −dηv(Xv,ΦYv).

Using this expression in (4.12), we obtain that N (2)(Xv, Yv) = 0.
Now, if dηh(ΦXv,ΦYh) = −dηh(Xv, Yh), then using 0 = dηh(Φ2Xv,Φξh) = −dηh(ΦXv, ξh), we

get
dηh(ΦXv, Yh) = −dηh(Xv,ΦYh) (4.24)

and if dηv(ΦXv,ΦYh) = −dηv(Xv, Yh), then using 0 = dηv(Φ2Xv,Φξh) = −dηv(ΦXv, ξh), we get

dηv(ΦXv, Yh) = −dηv(Xv,ΦYh). (4.25)

Thus, from (4.16), (4.24) and (4.25) we obtain that N (2)(Xv, Yh) = 0.
Lastly, if we take dηh(ΦXh,ΦYv) = −dηh(Xh, Yv) and dηv(ΦXh,ΦYv) = −dηv(Xh, Yv), we get

dηh(ΦXh, Yv) = −dηh(Xh,ΦYv) and dηv(ΦXh, Yv) = −dηv(Xh,ΦYv), respectively. So, using the
last two equations in (4.17), we can see that N (2)(Xh, Yv) = 0.

Lemma 4.2. If N (1) = 0 for an almost paracontact Finsler manifold E, then N (2) = N (3) = N (4) = 0.

Proof. If N (1) = 0, from (4.5), for ∀Xh, Yh, ξh ∈ Nu, we get

− Φ [ΦXh, ξh] + [Xh, ξh] + ξh(ηh(Xh))ξh = 0 (4.26)

and applying ηh to (4.26) we obtain that

ξh(ηh(Xh))− ηh([ξh, Xh]) = (Lξhηh)(Xh) = N (4)(Xh) = 0. (4.27)

Replacing Xh by ΦXh in (4.27), we have

ηh([ξh,ΦXh]) = 0. (4.28)

Applying Φ to (4.26) and using (4.28), we obtain that N (3)(Xh) = 0.
From N (1) = 0 and (4.5),

0 = N (1)(ΦXh, Yh) = [Xh,ΦYh]− ηh(Xh) [ξh,ΦYh] + ΦYh(ηh(Xh))ξh

− Φ [Xh − ηh(Xh)ξh, Yh]− Φ [ΦXh,ΦYh] + [ΦXh, Yh]− ΦXh(ηh(Yh))ξh

and applying ηh to the last equation, we obtain that N (2)(Xh, Yh) = 0.
Analogously, for ∀Xv, Yv, ξv ∈ EVu , if N (1)(Xv, Yv) = 0, then we can see that N (2)(Xv, Yv) = 0,

N (3)(Xv) = 0 and N (4)(Xv) = 0.
If N (1)(Xv, Yh) = 0, from (4.7) we have

− Φ [ΦXv, ξh] + [Xv, ξh] + ξh(ηv(Xv))ξv = 0 (4.29)

and applying ηh and ηv to (4.29), we get

ηh([Xv, ξh]) = 0 and ηv([Xv, ξh]) = −ξh(ηv(Xv)). (4.30)

So, from (4.30) we have N (4)(Xv) = 0.
If we apply Φ to (4.29), then we have

− [ΦXv, ξh] + ηh([ΦXv, ξh])ξh + ηv([ΦXv, ξh])ξv + Φ [Xv, ξh] = 0. (4.31)

Replacing Xv by ΦXv in (4.30) and using this in (4.31), we obtain that N (3)(Xv) = 0.
Also, from (4.7) we have

0 = N (1)(ξv, Yh) = −Φ [ξv,ΦYh] + [ξv, Yh]− ξv(ηh(Yh))ξh (4.32)
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and applying ηh and ηv to (4.32), we obtain that

ηh([ξv, Yh]) = ξv(ηh(Yh)) and ηv([ξv, Yh]) = 0. (4.33)

So, from (4.33) it can be seen that N (4)(Yh) = 0.
Applying Φ to (4.32) and using (4.33), we get N (3)(Yh) = 0.
Finally, from N (1)(ΦXv, Yv) = 0, we get

[Xv,ΦYh]− ηv(Xv) [ξv,ΦYh] + ΦYh(ηv(Xv))ξv − Φ [Xv − ηv(Xv)ξv, Yh]

− Φ [ΦXv,ΦYh] + [ΦXv, Yh]− ΦXv(ηh(Yh))ξh = 0 (4.34)

and applying ηv and ηh to (4.34), we have

ηv([Xv,ΦYh]) + ΦYhηv(Xv) + ηv([ΦXv, Yh]) = 0 (4.35)

and
ηh([Xv,ΦYh]) + ηh([ΦXv, Yh])− ΦXvηh(Yh) = 0, (4.36)

respectively. So, from (4.35) and (4.36) we obtain that N (2)(Xv, Yh) = 0.

Thus we have:

Corollary 4.3. An almost paracontact Finsler structure (Φ, η, ξ) is normal if and only if N (1) = 0.

5 Paracontact Metric Finsler Manifolds
Definition 5.1. If Ω = dη, that is,

gh(X,ΦY ) = dηh(Xh, Yh) and gv(X,ΦY ) = dηv(Xv, Yv), (5.1)

then η is a paracontact form and the almost paracontact metric Finsler manifold (E,Φ, η, ξ, g) is said
to be paracontact metric Finsler manifold.

Lemma 5.1. For a paracontact metric Finsler structure (Φ, η, ξ, g),N (2) andN (4) vanish. Furthermore,
N (3) vanishes if and only if ξ is a Killing vector field.

Proof. If the structure (Φ, η, ξ, g) is paracontact metric Finsler, then from (4.5) and (5.1), for ∀Xh, Yh, ξh ∈
Nu, we get

N (4)(Xh) = (Lξhηh)(Xh) = ξh(ηh(Xh))− ηh([ξh, Xh]) = 2dηh(ξh, Xh) = 2gh(ξh,ΦXh) = 0

and similarly from (4.6), for ∀Xv, Yv, ξv ∈ EVu , we get N (4)(Xv) = 0. Furthermore, from (4.7) we have

N (4)(Xv) = (Lξhηv)(Xv) = 2dηv(ξh, Xv) = 2gv(ξh,ΦXv) = 0

and
N (4)(Yh) = (Lξvηh)(Yh) = 2dηh(ξv, Yh) = 2gh(ξv,ΦYh) = 0.

On the other hand, from (3.9), (4.5) and (5.1), we get N (2)(Xh, Yh) = 0; from (3.9), (4.6) and (5.1),
we get N (2)(Xv, Yv) = 0 and also from (4.7), we obtain that N (2)(Xv, Yh) = 0.

Since
(Lξhg)(Xh, ξh) = (Lξhηh)(Xh) = 0

and η and dη are invariant under Lie derivation, we get Lξhdηh = 0. So, for ∀Xh, Yh ∈ Nu, we get

0 = (Lξhdηh)(Xh, Yh) = ξh(dηh(Xh, Yh))− dηh([ξh, Xh] , Yh)− dηh(Xh, [ξh, Yh])
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and from (5.1)
ξh(g(Xh,ΦYh))− g([ξh, Xh] ,ΦYh)− g(Xh,Φ [ξh, Yh]) = 0. (5.2)

On the other hand, if we sum up the equations

(Lξhg)(Xh,ΦYh) = ξh(g(Xh,ΦYh))− g([ξh, Xh] ,ΦYh)− g(Xh, [ξh,ΦYh])

g(Xh, (LξhΦ)Yh) = g(Xh, [ξh,ΦYh])− g(Xh,Φ [ξh, Yh])

and use (5.2), then we get

(Lξhg)(Xh,ΦYh) + g(Xh, (LξhΦ)Yh) = 0.

Thus, if N (3) = 0, then (Lξhg)(Xh,ΦYh) = 0. Since this equation is true for ∀Xh, Yh ∈ Nu, we have
Lξhg = 0 and therefore, ξh is a Killing vector field.

Conversely, if ξh is a Killing vector field, then we have g(Xh, N
(3)(Yh)) = 0 and since it is satisfied

for ∀Xh, Yh ∈ Nu, we get N (3) = 0.
Similar computations can be done for ∀Xv, Yv, ξv ∈ EVu . So, this completes the proof.

Definition 5.2. A paracontact metric Finsler structure (Φ, η, ξ, g) with ξ Killing vector field is called a
K-paracontact Finsler structure.

So, we can give the following corollary:

Corollary 5.2. A paracontact metric Finsler structure (Φ, η, ξ, g) is K-paracontact if and only if N (3)

vanishes.

Proposition 5.1. For an almost paracontact metric Finsler structure (Φ, η, ξ, g) on E, the covariant
derivative of Φ with respect to the Finsler connection ∇ is given by

2g((∇XΦ)Y,Z) = −dΩ(X,Y, Z)− dΩ(X,ΦY,ΦZ)− g(N (1)(Y,Z),ΦX)

+N (2)(Y,Z)η(X)− 2dη(ΦZ,X)η(Y ) + 2dη(ΦY,X)η(Z), (5.3)

where Ω is the fundamental 2 form.
Furthermore, if the structure (Φ, η, ξ, g) is paracontact metric Finsler, then the equation (5.3)

simplifies to

2g((∇XΦ)Y,Z) = −g(N (1)(Y,Z),ΦX)− 2dη(ΦZ,X)η(Y ) + 2dη(ΦY,X)η(Z). (5.4)

Proof. From (3.4) and (3.10), for ∀Xh, Yh, Zh, ξh ∈ Nu we have

2gh((∇hXΦ)Yh, Zh) = ΦYhgh(Xh, Zh)− ZhΩ(Xh, Yh) + gh([Xh,ΦYh] , Zh) + Ω([Zh, Xh] , Yh)

− gh([ΦYh, Zh] , Xh) + YhΩ(Xh, Zh)− ΦZhgh(Xh, Yh)

+ Ω([Xh, Yh] , Zh) + gh([ΦZh, Xh] , Yh)− gh([Yh,ΦZh] , Xh).

Furthermore, from (3.12) we have

dΩ(Xh,ΦYh,ΦZh) = −XhΩ(Yh, Zh)− ΦYhgh(Zh, Xh) + ΦYh(ηh(Xh)ηh(Zh))

+ ΦZhgh(Xh, Yh)− ΦZh(ηh(Xh)ηh(Yh))− gh([Xh,ΦYh] , Zh) + ηh([Xh,ΦYh])ηh(Zh)

− gh([ΦZh, Xh] , Yh) + ηh([ΦZh, Xh])ηh(Yh)− Ω([ΦYh,ΦZh] , Xh); (5.5)

from (3.10) and (4.5) we get

g(N (1)(Yh, Zh),ΦXh) = Ω([ΦYh,ΦZh] , Xh) + Ω([Yh, Zh] , Xh) + gh([ΦYh, Zh] , Xh)

− ηh(Xh)ηh([ΦYh, Zh]) + gh([Yh,ΦZh] , Xh)− ηh(Xh)ηh([Yh,ΦZh]) (5.6)

3414



British Journal of Mathematics and Computer Science 4(24), 3403-3426, 2014

and

N (2)(Yh, Zh)ηh(Xh) = ΦYh(ηh(Zh))ηh(Xh)− ηh([ΦYh, Zh])ηh(Xh)

− ΦZh(ηh(Yh))ηh(Xh) + ηh([ΦZh, Yh])ηh(Xh). (5.7)

So, from (5.5), (5.6) and (5.7) we can reach to the desired equation.
Similarly, from (3.5), (3.10),(3.13) and (4.6), for ∀Xv, Yv, Zv, ξv ∈ EVu , we can see that the

equation (5.3) is satisfied.
Since

2gh((∇vXΦ)Yh, Zh) = gh([Xv,ΦYh] , Zh) + Ω([Zh, Xv]h , Yh)

+ Ω([Xv, Yh]h , Zh) + gh([ΦZh, Xv]h , Yh),

dΩ(Xv,ΦYh,ΦZh) = −XvΩ(Yh, Zh)− gh([Xv,ΦYh]h , Zh) + ηh([Xv,ΦYh]h)ηh(Zh)

− gh([ΦZh, Xv]h , Yh) + ηh([ΦZh, Xv]h)ηh(Yh),

gh(N (1)(Yh, Zh),ΦXv) = 0, N (2)(Yh, Zh)ηh(Xv) = 0

and by using (3.14), we get

2gh((∇vXΦ)Yh, Zh) = −dΩ(Xv, Yh, Zh)− dΩ(Xv,ΦYh,ΦZh)− gh(N (1)(Yh, Zh),ΦXv)

+N (2)(Yh, Zh)ηh(Xv)− 2dηh(ΦZh, Xv)ηh(Yh) + 2dηh(ΦYh, Xv)ηh(Zh).

With a similar way, we can see that

2gv((∇hXΦ)Yv, Zv) = −dΩ(Xh, Yv, Zv)− dΩ(Xh,ΦYv,ΦZv)− gh(N (1)(Yv, Zv),ΦXh)

+N (2)(Yv, Zv)ηv(Xh)− 2dηv(ΦZv, Xh)ηv(Yv) + 2dηv(ΦYv, Xh)ηv(Zv).

Finally, the equation (5.4) follows from the equation (5.3), Definition 5.1 and Lemma 5.1.

On a paracontact metric Finsler manifold, we know that, for ∀Xh, Yh, Zh, ξh ∈ Nu,

2gh((∇hXΦ)Yh, Zh) = −gh(N (1)(Yh, Zh),ΦXh)− 2dηh(ΦZh, Xh)ηh(Yh) + 2dηh(ΦYh, Xh)ηh(Zh).
(5.8)

Therefore, replacing Xh by ξh in this equation, we have

∇hξΦ = 0 (5.9)

and similarly from (5.4), for ∀Xv, Yv, Zv, ξv ∈ EVu , we have

∇vξΦ = 0. (5.10)

Furthermore, since gh(ξ, ξ) = 1 for ∀ξh ∈ Nu, we get

gh(∇hXξh, ξh) = 0, ∀Xh ∈ Nu.

Thus, gh(∇hXξh, ξh) = 0 and since the Finsler connection ∇ is a metric connection we have

0 = ∇hξ (gh(ξh, Xh)) = gh(∇hξ ξh, Xh) + gh(ξh,∇hξXh)

and so

gh(∇hξ ξh, Xh) = −gh(ξh,∇hξXh) = −gh(ξh,∇hXξh + [ξh, Xh])

= −ηh([ξh, Xh]) = 2dηh(ξ,X),

where the vector field Xh is orthogonal to ξh. Since dηh(ξ,X) = 0 on a paracontact metric Finsler
manifold, we obtain that gh(∇hξ ξh, Xh) = 0 and so

∇hξ ξh = 0. (5.11)
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Similarly for ∀ξv ∈ EVu , we can see that
∇vξξv = 0. (5.12)

From the Corollary 5.2, we know that a paracontact metric Finsler structure is K-paracontact if and
only if N (3) vanishes. Since the tensor field N (3) gives important results for a paracontact Finsler
structure, let we define a tensor field H on a paracontact Finsler manifold by

H =
1

2
LξΦ =

1

2
N (3).

Thus, we have

Hξ =
1

2
N (3)(ξ) =

1

2
(LξΦ)(ξ) =

1

2
(Lξh+ξvΦ)(ξh + ξv) = 0. (5.13)

Lemma 5.3. The tensor field H on a paracontact metric Finsler manifold is a symmetric operator.
Furthermore,

∇hXξh = −ΦXh + ΦHXh, (5.14)

∇vXξv = −ΦXv + ΦHXv, (5.15)

H is anti-commutative with Φ and trH = Hξ = 0.

Proof. On a paracontact metric Finsler manifold from (5.9) and (5.11), for ∀Xh, Yh, ξh ∈ Nu, we have

g((LξhΦ)Xh, Yh) = g(−∇hΦXξh + Φ∇hXξh, Yh)

and here if we replace Xh or Yh by ξh, then the equation vanishes.
Since N (2) = 0 for a paracontact metric Finsler manifold, if we take Xh and Yh are orthogonal to

ξh, from (4.5), we obtain that

ηh([ΦXh, Yh]) + ηh([Xh,ΦYh]) = 0.

Also, since −ΦXh(ηh(Yh)) = Xh(ηh(ΦYh)) = 0 we have

−gh(∇hΦXξh, Yh)− gh(∇hXξh,ΦYh) = gh(∇hXΦYh, ξh) + gh(∇hΦXYh, ξh).

Hence we can see that g(HXh, Yh) = g(Xh,HYh) and so H is symmetric.
Replacing Yh by ξh in (5.8), we get

2gh(−Φ∇hXξh, Zh) = −gh((LξhΦ)Xh − 2Xh + 2ηh(Xh)ξh, Zh)

and so
−Φ∇hXξh = −1

2
(LξhΦ)Xh +Xh − ηh(Xh)ξh.

Applying Φ to this equation, we obtain (5.14).
Now, let us see that H is anti-commutative with Φ:

2gh(Xh,ΦYh) = 2dηh(Xh, Yh) = gh(Xh,ΦYh) + gh(ΦHXh, Yh) + gh(Xh,ΦYh) + gh(ΦXh,HYh)

and so
gh(ΦHXh, Yh) + gh(ΦXh,HYh) = 0.

Since H is symmetric, we obtain that
ΦH+HΦ = 0. (5.16)

If HXh = λXh, then HΦXh = −ΦHXh and so HΦXh = −λΦXh. Thus, if the eigenvalues of H are
λ and −λ, then trh = 0.

With a similar way, the equation (5.15) and the same results can be obtained for ∀Xv, Yv, ξv ∈
EVu , too.
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From the Corollary 5.2, we can give the following corollary:

Corollary 5.4. Let (Φ, η, ξ, g) be a paracontact metric Finsler structure on E. Then (Φ, η, ξ, g) is a
K-paracontact Finsler structure if and only if

∇hXξh = −ΦXh, ∇vXξv = −ΦXv. (5.17)

Definition 5.3. If a paracontact metric Finsler manifold is normal, then it is called a para-Sasakian
Finsler manifold.

Theorem 5.5. An almost paracontact metric Finsler structure (Φ, η, ξ, g) is para-Sasakian if and only
if

(∇hXΦ)Yh = −gh(X,Y )ξh + ηh(Yh)Xh, (∇vXΦ)Yv = −gv(X,Y )ξv + ηv(Yv)Xv,

(∇hXΦ)Yv = 0, (∇vXΦ)Yh = 0.

}
(5.18)

Moreover, a para-Sasakian Finsler manifold is K-paracontact.

Proof. Let us assume that the almost paracontact metric Finsler structure (Φ, η, ξ, g) is para-Sasakian.
If the structure (Φ, η, ξ, g) is a normal paracontact metric Finsler structure then, we have Ω = dη,
N (1) = 0 and N (2) = 0. So from (3.8) and (5.4), for ∀Xh, Yh, Zh, ξh ∈ Nu we get

(∇hXΦ)Yh = −gh(X,Y )ξh + ηh(Yh)Xh

and similarly for ∀Xv, Yv, Zv, ξv ∈ EVu , we obtain that

(∇vXΦ)Yv = −gv(X,Y )ξv + ηv(Yv)Xv.

Furthermore, again from (3.8) and (5.4) it is clear that (∇hXΦ)Yv = 0 and (∇vXΦ)Yh = 0.
Conversely, let us suppose that the almost paracontact metric Finsler structure (Φ, η, ξ, g) satisfies

(5.18). For ∀Xh, Yh, ξh ∈ Nu replacing Yh by ξh in the equation (∇hXΦ)Yh = −gh(X,Y )ξh +
ηh(Yh)Xh, it is found that

−Φ∇hXξh = −ηh(Xh)ξh +Xh.

Applying Φ to this equation, we see that ∇hXξh = −ΦXh. Similarly, for ∀Xv, Yv, ξv ∈ EVu , we get
∇vXξv = −ΦXv. So, from (5.17) ξ is Killing vector field. Thus, from

0 = (Lξhgh)(Xh, Yh) = ξh(g(Xh, Yh))− g([ξh, Xh] , Yh)− g(Xh, [ξh, Yh])

= g(∇hXξh, Yh) + g(Xh,∇hY ξh)

we get
dηh(Xh, Yh) = g(∇hXξh, Yh) = Ω(Xh, Yh)

and similarly, dηv(Xv, Yv) = Ω(Xv, Yv). Therefore, (Φ, η, ξ, g) is a paracontact metric Finsler structure.
Furthermore, since

NΦ(Xh, Yh)− 2dηh(Xh, Yh)ξh = 2gh(ΦYh, Xh)ξh − 2dηh(Xh, Yh)ξh = 0

and

NΦ(Xv, Yv)− 2dηv(Xv, Yv)ξv = 2gv(ΦYv, Xv)ξv − 2dηv(Xv, Yv)ξv = 0

the paracontact metric Finsler structure (Φ, η, ξ, g) is a para-Sasakian Finsler structure.
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6 The Curvature of the Paracontact Finsler Manifold
The curvature of a Finsler connection ∇ is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

such that
R(X,Y )Z = Rh(X,Y )Zh +Rv(X,Y )Zv, ∀X,Y, Z ∈ χ(E)

and the operator R(X,Y ) is skew symmetric according to X and Y .
The curvature of a Finsler connection ∇ on χ(E) is defined by the following Finsler tensor fields

[5]:
R(Xh, Yh)Zh = ∇hX∇hY Zh −∇hY∇hXZh −∇[Xh,Yh]Zh,

R(Xh, Yh)Zv = ∇hX∇hY Zv −∇hY∇hXZv −∇[Xh,Yh]Zv,

R(Xv, Yh)Zh = ∇vX∇hY Zh −∇hY∇vXZh −∇[Xv,Yh]Zh,

R(Xv, Yh)Zv = ∇vX∇hY Zv −∇hY∇vXZv −∇[Xv,Yh]Zv,
R(Xv, Yv)Zh = ∇vX∇vY Zh −∇vY∇vXZh −∇[Xv,Yv ]Zh,
R(Xv, Yv)Zv = ∇vX∇vY Zv −∇vY∇vXZv −∇[Xv,Yv ]Zv.


(6.1)

Theorem 6.1. Let E be a K-paracontact Finsler manifold of dimension (4n+2). Then, the flag
curvature of a plane which contains ξ is equal to −1 at each point of E.

Proof. If E is a K-paracontact Finsler manifold, then from (5.9), (5.17) and (6.1) we get

gh(R(Xh, ξh)ξh, Xh) = −gh(Xh, Xh) = −1,

where Xh is a unit vector field orthogonal to ξh.
Similarly, if Xv is a unit vector field orthogonal to ξv, we get

gv(R(Xv, ξv)ξv, Xv) = −gv(Xv, Xv) = −1.

Thus, we obtain the flag curvature of E as

K(X, ξ) =
gh(R(Xh, ξh)ξh, Xh) + gv(R(Xv, ξv)ξv, Xv)

gh(Xh, Xh)gh(ξh, ξh) + gv(Xv, Xv)gv(ξv, ξv)
= −1.

Proposition 6.1. On a paracontact metric Finsler manifold E, we have

(∇hξH)Xh + (∇vξH)Xv = −ΦX +H2ΦX + ΦR(ξ,X)ξ,
R(ξ,X)ξ + ΦR(ξ,ΦX)ξ = 2Φ2X − 2H2X.

}
(6.2)

Proof. Let E be a paracontact metric Finsler manifold. Then, from (5.9), (5.11), (5.14), (5.16) and
(6.1), for ∀Xh, ξh ∈ Nu, we have

R(ξh, Xh)ξh = Φ∇hξ (HXh)− Φ∇hξXh − ΦH [ξh, Xh] + Φ [ξh, Xh] (6.3)

and applying Φ to this equation, we get

ΦR(ξh, Xh)ξh = (∇hξH)Xh +H∇hXξh −∇hXξh (6.4)

= (∇hξH)Xh −H2ΦXh + ΦXh. (6.5)

Replacing X by ΦX in (6.5) and using (5.9), (5.13), (5.16), we obtain

ΦR(ξh,ΦXh)ξh = −Φ(∇hξH)Xh −H2Xh + Φ2Xh. (6.6)
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Furthermore, from (6.3) we have

R(ξh, Xh)ξh = Φ(∇hξH)Xh −H2Xh + Φ2Xh. (6.7)

Thus, summing up (6.6) and (6.7) we get

R(ξh, Xh)ξh + ΦR(ξh,ΦXh)ξh = 2Φ2Xh − 2H2Xh.

Similarly, for ∀Xv, ξv ∈ EVu , we can obtain that

ΦR(ξv, Xv)ξv = (∇vξH)Xv −H2ΦXv + ΦXv and R(ξv, Xv)ξv + ΦR(ξv,ΦXv)ξv = 2Φ2Xv − 2H2Xv.

Hence, from the last equations we get

ΦR(ξ,X)ξ = ΦRh(ξ,X)ξh + ΦRv(ξ,X)ξv = (∇hξH)Xh + (∇vξH)Xv + ΦX −H2ΦX,

which is the first equation of (6.2) and

R(ξ,X)ξ + ΦR(ξ,ΦX)ξ = Rh(ξ,X)ξh +Rv(ξ,X)ξv + ΦRh(ξ,ΦX)ξh + ΦRv(ξ,ΦX)ξv

= 2Φ2X − 2H2X,

which is the second equation of (6.2).

Proposition 6.2. On a para-Sasakian Finsler manifold, we have

R(X,Y )ξ = ηh(Xh)Yh + ηv(Xv)Yv − ηh(Yh)Xh − ηv(Yv)Xv. (6.8)

Proof. On a para-Sasakian Finsler manifold from (5.17) and (5.18), for ∀Xh, Yh, ξh ∈ Nu, we get

R(Xh, Yh)ξh = ∇hX∇hY ξh −∇hY∇hXξh −∇[Xh,Yh]ξh

= −(∇hXΦ)Yh + (∇hY Φ)Xh

= ηh(Xh)Yh − ηh(Yh)Xh (6.9)

and similarly, for ∀Xv, Yv, ξv ∈ EVu , we get

R(Xv, Yv)ξv = ηv(Xv)Yv − ηv(Yv)Xv. (6.10)

Thus, from (6.9) and (6.10), the equation (6.8) is obtained.

Theorem 6.2. Let ξ be a Killing vector field on a Finsler manifold E of dimension (4n+2). Then, E is
a para-Sasakian Finsler manifold if and only if

R(X, ξ)Y = gh(X,Y )ξh + gv(X,Y )ξv − ηh(Yh)Xh − ηv(Yv)Xv. (6.11)

Proof. For ∀Xh, Yh, ξh ∈ Nu, we get

g(Rh(Xh, ξh)Yh, Xh) = g(Rh(Xh, Yh)ξh, Xh)

= g(∇hX∇hY ξh −∇h∇h
X
Yh
ξh, Xh)− g(∇hY∇hXξh −∇h∇h

Y
Xh
ξh, Xh). (6.12)

Since ξ is a Killing vector field

0 = (Lξhgh)(Xh, Yh) = g(∇hXξh, Yh) + g(Xh,∇hY ξh)

and from here we have g(∇hXξh, Xh) = 0. Differentiating this equation with respect to Yh, we have

gh(∇hY∇hXξh, Xh) + gh(∇hXξh,∇hYXh) = 0. (6.13)
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Again since ξ is a Killing vector field, we get

g(∇h∇h
Y
Xh
ξh, Xh) + gh(∇hYXh,∇hXξh) = 0

and so the equation (6.13) is

gh(∇hY∇hXξh −∇h∇h
Y
Xh
ξh, Xh) = 0.

By using the last equation in (6.12), from (5.17) and (5.18) we obtain that

Rh(X, ξ)Yh = R(Xh, ξh)Yh = −(∇hXΦ)Yh

= gh(Xh, Yh)ξh − ηh(Yh)Xh. (6.14)

Similarly, for ∀Xv, Yv, ξv ∈ EVu , we get

Rv(X, ξ)Yv = R(Xv, ξv)Yv = gv(Xv, Yv)ξv − ηv(Yv)Xv. (6.15)

Taking into account (6.14) and (6.15), we have the desired equation.

Therefore, we can give the following corollary:

Corollary 6.3. On a para-Sasakian Finsler manifold, we have

R(X, ξ)X = ξ,

where Xh and Xv are unit vector fields orthogonal to ξh and ξv, respectively.

Let {E1
h, E

2
h, ..., E

2n
h , ξh} and {E1

v , E
2
v , ..., E

2n
v , ξv} be the local orthogonal frames of Nu and EVu ,

respectively. Then, the Ricci tensor of a para-Sasakian Finsler manifold E of dimension (4n+2) is
defined by

S(X,Y ) = Sh(X,Y ) + Sv(X,Y ) = S(Xh, Yh) + S(Xv, Yv)

=

2n∑
i=1

g(R(Xh, E
i
h)Eih, Yh) + g(R(Xh, ξh)ξh, Yh)

+

2n∑
i=1

g(R(Xv, E
i
v)Eiv, Yv) + g(R(Xv, ξv)ξv, Yv), (6.16)

where Sh and Sv denotes the horizontal Ricci tensor and the vertical Ricci tensor of E, respectively.

Lemma 6.4. On a para-Sasakian Finsler manifold E of dimension (4n+2), we have

S(X, ξ) = −2nη(X). (6.17)

Proof. From (6.9), (6.10) and (6.16), for ∀Xh, ξh ∈ Nu, ∀Xv, ξv ∈ EVu we have

S(X, ξ) = Sh(X, ξ) + Sv(X, ξ) =

2n∑
i=1

g(R(Xh, E
i
h)Eih, ξh) + g(R(Xh, ξh)ξh, ξh)

+

2n∑
i=1

g(R(Xv, E
i
v)Eiv, ξv) + g(R(Xv, ξv)ξv, ξv)

= −2nη(Xh)− 2nη(Xv) = −2nη(X).
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Corollary 6.5. On a (4n+2)-dimensional Finsler manifold E, a paracontact metric Finsler structure
(Φ, η, ξ, g) is K-paracontact if and only if S(ξ, ξ) = −2n.

From (6.17), we have

Qξ = Qξh +Qξv = −2nξh − 2nξv = −2nξ, (6.18)

where Q is the Ricci operator, such that S(X,Y ) = g(QX,Y ).
From (3.1), (3.9), (6.17) and the fact that QΦ = ΦQ, for a para-Sasakian Finsler manifold E, we

have

S(ΦX,ΦY ) = Sh(ΦX,ΦY ) + Sv(ΦX,ΦY )

= g(QΦXh,ΦYh) + g(QΦXv,ΦYv)

= −g(QXh, Yh) + ηh(Yh)g(QXh, ξh)− g(QXv, Yv) + ηv(Yv)g(QXv, ξv)

= −S(X,Y )− 2n{ηh(Xh)ηh(Yh) + ηv(Xv)ηv(Yv)}. (6.19)

Proposition 6.3. The curvature tensor of a paracontact metric Finsler manifold E satisfies

R(ξ,X, Y, Z) = −(∇hXΩ)(Yh, Zh) + g(Xh, (∇hY ΦH)Zh)− g(Xh, (∇hZΦH)Yh)

− (∇vXΩ)(Yv, Zv) + g(Xv, (∇vY ΦH)Zv)− g(Xv, (∇vZΦH)Yv). (6.20)

Proof. From (5.14), for ∀Xh, Yh, Zh, ξh ∈ Nu, we have

Rh(Y,Z)ξh = R(Yh, Zh)ξh = ∇hY∇hZξh −∇hZ∇hY ξh −∇[Yh,Zh]ξh

= (∇hY ΦH)Zh − (∇hZΦH)Yh − (∇hY Φ)Zh + (∇hZΦ)Yh

and from (3.10) and (5.18), we have

(∇hXΩ)(Yh, Zh) = ∇hX(Ω(Yh, Zh))− Ω(∇hXYh, Zh)− Ω(Yh,∇hXZh)

= g(Yh, (∇hXΦ)Zh) = −ηh(Yh)g(Xh, Zh) + ηh(Zh)g(Xh, Yh).

Thus, from (5.18), we obtain that

R(ξh, Xh, Yh, Zh) = g(R(ξh, Xh)Yh, Zh) = g(R(Yh, Zh)ξh, Xh)

= g((∇hY ΦH)Zh, Xh)− g((∇hZΦH)Yh, Xh)− (∇hXΩ)(Yh, Zh).

Similarly, for ∀Xv, Yv, Zv, ξv ∈ EVu , we have

R(ξv, Xv, Yv, Zv) = g((∇vY ΦH)Zv, Xv)− g((∇vZΦH)Yv, Xv)− (∇vXΩ)(Yv, Zv).

Hence, from

R(ξ,X, Y, Z) = g(R(ξ,X)Y,Z) = g(R(Y,Z)ξ,X)

= g(Rh(Y,Z)ξh, Xh) + g(Rv(Y,Z)ξv, Xv)

we have the equation (6.20).

Proposition 6.4. On a para-Sasakian Finsler manifold E

R(X,Y,ΦZ,W ) +R(X,Y, Z,ΦW )

=g(Yh, Zh)g(ΦXh,Wh)− g(Yh,Wh)g(ΦXh, Zh)− g(Xh, Zh)g(ΦYh,Wh)

+ g(Xh,Wh)g(ΦYh, Zh) + g(Yv, Zv)g(ΦXv,Wv)− g(Yv,Wv)g(ΦXv, Zv)

− g(Xv, Zv)g(ΦYv,Wv) + g(Xv,Wv)g(ΦYv, Zv) (6.21)
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and

R(ΦX,ΦY,ΦZ,ΦW )−R(X,Y, Z,W )

=ηh(Xh)ηh(Wh)g(Yh, Zh) + ηh(Yh)ηh(Zh)g(Xh,Wh)− ηh(Yh)ηh(Wh)g(Xh, Zh)

− ηh(Xh)ηh(Zh)g(Yh,Wh) + ηv(Xv)ηv(Wv)g(Yv, Zv) + ηv(Yv)ηv(Zv)g(Xv,Wv)

− ηv(Yv)ηv(Wv)g(Xv, Zv)− ηv(Xv)ηv(Zv)g(Yv,Wv). (6.22)

Proof. For ∀Xh, Yh, Zh,Wh, ξh ∈ Nu

R(Xh, Yh,ΦZh,Wh) +R(Xh, Yh, Zh,ΦWh) = g(R(Xh, Yh)ΦZh,Wh)− g(R(Xh, Yh)ΦWh, Zh).

From (5.17) and (5.18), we have

R(Xh, Yh)ΦZh = g(Yh, Zh)ΦXh − g(Zh,ΦXh)Yh − g(Xh, Zh)ΦYh

+ g(Zh,ΦYh)Xh + ΦR(Xh, Yh)Zh (6.23)

and

R(Xh, Yh)ΦWh = g(Yh,Wh)ΦXh − g(Wh,ΦXh)Yh − g(Xh,Wh)ΦYh

+ g(Wh,ΦYh)Xh + ΦR(Xh, Yh)Wh.

Thus we get

R(Xh, Yh,ΦZh,Wh) +R(Xh, Yh, Zh,ΦWh) = g(Yh, Zh)g(ΦXh,Wh)

−g(Yh,Wh)g(ΦXh, Zh)− g(Xh, Zh)g(ΦYh,Wh) + g(Xh,Wh)g(ΦYh, Zh)

and similarly, for ∀Xv, Yv, Zv,Wv, ξv ∈ EVu , we get

R(Xv, Yv,ΦZv,Wv) +R(Xv, Yv, Zv,ΦWv) = g(Yv, Zv)g(ΦXv,Wv)

− g(Yv,Wv)g(ΦXv, Zv)− g(Xv, Zv)g(ΦYv,Wv) + g(Xv,Wv)g(ΦYv, Zv).

From the last two equations and

R(X,Y,ΦZ,W ) +R(X,Y, Z,ΦW ) = g(R(X,Y )ΦZ,W ) + g(R(X,Y )Z,ΦW )

= g(R(Xh, Yh)ΦZh,Wh) + g(R(Xv, Yv)ΦZv,Wv)

+ g(R(Xh, Yh)Zh,ΦWh) + g(R(Xv, Yv)Zv,ΦWv),

(6.21) yields.
From (6.21), for ∀Xh, Yh, Zh,Wh ∈ Nu,

R(ΦXh,ΦYh,ΦZh,ΦWh) +R(ΦXh,ΦYh, Zh,Φ
2Wh)

= −g(ΦXh,Φ
2Wh)g(ΦYh, Zh) + g(ΦXh,ΦZh)g(ΦYh,ΦWh)

− g(ΦYh,ΦZh)g(ΦXh,ΦWh) + g(ΦYh,Φ
2Wh)g(ΦXh, Zh)

and from the last equation, (3.1), (3.8),(6.9) and (6.23), we have

R(ΦXh,ΦYh,ΦZh,ΦWh)−R(Xh, Yh, Zh,Wh)

= ηh(Yh)ηh(Zh)g(Xh,Wh)− ηh(Yh)ηh(Wh)g(Xh, Zh)

− ηh(Xh)ηh(Zh)g(Yh,Wh) + ηh(Xh)ηh(Wh)g(Yh, Zh). (6.24)

Similarly, for ∀Xv, Yv, Zv,Wv ∈ EVu we get

R(ΦXv,ΦYv,ΦZv,ΦWv)−R(Xv, Yv, Zv,Wv)

= ηv(Yv)ηv(Zv)g(Xv,Wv)− ηv(Yv)ηv(Wv)g(Xv, Zv)

− ηv(Xv)ηv(Zv)g(Yv,Wv) + ηv(Xv)ηv(Wv)g(Yv, Zv). (6.25)

Taking into account (6.24) and (6.25), we obtain the equation (6.22).
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7 Ricci Semi-Symmetric Para-Sasakian Finsler Manifolds
Definition 7.1. A (4n+2)-dimensional Finsler manifold is called horizontal Ricci semi-symmetric (resp.
vertical Ricci semi-symmetric), if the horizontal Ricci tensor Sh (resp. vertical Ricci tensor Sv) satisfies

Rh(X,Y )Sh = 0, ∀Xh, Yh ∈ Nu (resp. Rv(X,Y )Sv = 0, ∀Xv, Yv ∈ EVu ). (7.1)

A Finsler manifold is said to be Ricci semi-symmetric if it is both horizontal and vertical Ricci semi-
symmetric.

Definition 7.2. A Finsler manifold is said to be Einstein Finsler manifold if its Ricci tensor S is of the
form

S(X,Y ) = Sh(X,Y ) + Sv(X,Y ) = λ(gh(X,Y ) + gv(X,Y )) = λg(X,Y ), (7.2)

where λ is a constant.

Theorem 7.1. A Ricci semi-symmetric para-Sasakian Finsler manifold is an Einstein Finsler manifold.

Proof. Let us suppose that Rh(X,Y )Sh = 0 for ∀Xh, Yh ∈ Nu. Then, from

(Rh(X,Y )Sh)(Uh, Vh) = −Sh(Rh(X,Y )Uh, Vh)− Sh(Uh, Rh(X,Y )Vh), ∀Uh, Vh ∈ Nu

we have
Sh(Rh(X,Y )Uh, Vh) + Sh(Uh, Rh(X,Y )Vh) = 0.

Replacing Uh by ξh ∈ Nu in this equation, from (6.9) and (6.17), we get

ηh(Xh)Sh(Yh, Vh)− ηh(Yh)Sh(Xh, Vh)− 2n(ηh(Yh)g(Xh, Vh)− ηh(Xh)g(Yh, Vh)) = 0. (7.3)

Putting Xh = ξh in (7.3) and using (6.17), we obtain that

Sh(Yh, Vh) = −2ng(Yh, Vh).

Similarly, if we suppose that Rv(X,Y )Sv = 0 for ∀Xv, Yv ∈ EVu , then we have

Sv(Rv(X,Y )Uv, Vv) + Sv(Uv, Rv(X,Y )Vv) = 0

and after the necessary calculations we obtain that

Sv(Yv, Vv) = −2ng(Yv, Vv).

So, we have

S(Y, V ) = Sh(Y, V ) + Sv(Y, V ) = −2n(gh(Y, V ) + gv(Y, V )) = −2ng(Y.V )

and therefore, a Ricci semi-symmetric para-Sasakian Finsler manifold is an Einstein Finsler manifold.

8 Para-Sasakian Finsler Manifold with η-Parallel Ricci Tensor
Definition 8.1. The Ricci tensor S of a Finsler manifold E is called η-parallel, if it satisfies

(∇XS)(ΦY,ΦZ) = 0, (8.1)

for all X,Y, Z ∈ χ(E).
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Proposition 8.1. A para-Sasakian Finsler manifold E has η-parallel Ricci tensor if and only if

(∇XS)(Y,Z)

= 2n{g(Yh,ΦXh)ηh(Zh) + g(Zh,ΦXh)ηh(Yh) + g(Yv,ΦXv)ηv(Zv) + g(Zv,ΦXv)ηv(Yv)}
− ηh(Yh)Sh(Xh,ΦZh)− ηh(Zh)Sh(ΦYh, Xh)− ηv(Yv)Sv(Xv,ΦZv)− ηv(Zv)Sv(ΦYv, Xv).

Proof. Let us suppose that the para-Sasakian Finsler manifold E has η-parallel Ricci tensor. Then,
from (5.18), (6.17), (6.19) and (8.1), after long computations, we have

0 = (∇XS)(ΦY,ΦZ) = (∇hXSh)(ΦYh,ΦZh) + (∇vXSh)(ΦYh,ΦZh)

+ (∇hXSv)(ΦYv,ΦZv) + (∇vXSv)(ΦYv,ΦZv)

= ∇hX(Sh(ΦYh,ΦZh))− Sh(∇hX(ΦYh),ΦZh)− Sh(ΦYh,∇hX(ΦZh))

+∇vX(Sh(ΦYh,ΦZh))− Sh(∇vX(ΦYh),ΦZh)− Sh(ΦYh,∇vX(ΦZh))

+∇hX(Sv(ΦYv,ΦZv))− Sv(∇hX(ΦYv),ΦZv)− Sv(ΦYv,∇hX(ΦZv))

+∇vX(Sv(ΦYv,ΦZv))− Sv(∇vX(ΦYv),ΦZv)− Sv(ΦYv,∇vX(ΦZv))

= −(∇hXSh)(Yh, Zh) + 2ngh(Yh,ΦXh)ηh(Zh) + 2nηh(Yh)gh(Zh,ΦXh)

− ηh(Yh)Sh(Xh,ΦZh)− ηh(Zh)Sh(ΦYh, Xh)

− (∇vXSh)(Yh, Zh)− (∇hXSv)(Yv, Zv)

− (∇vXSv)(Yv, Zv) + 2ngv(Yv,ΦXv)ηv(Zv) + 2nηv(Yv)gv(Zv,ΦXv)

− ηv(Yv)Sv(Xv,ΦZv)− ηv(Zv)Sv(ΦYv, Xv)

and thus, we obtain that

(∇hXSh)(Yh, Zh) + (∇vXSh)(Yh, Zh) + (∇hXSv)(Yv, Zv) + (∇vXSv)(Yv, Zv)

= 2n{g(Yh,ΦXh)ηh(Zh) + g(Zh,ΦXh)ηh(Yh) + g(Yv,ΦXv)ηv(Zv) + g(Zv,ΦXv)ηv(Yv)}
− ηh(Yh)Sh(Xh,ΦZh)− ηh(Zh)Sh(ΦYh, Xh)− ηv(Yv)Sv(Xv,ΦZv)− ηv(Zv)Sv(ΦYv, Xv), (8.2)

which completes the proof.

Now, let {Eih, Eiv} be an orthonormal basis of χ(E). Putting Y = Z = Ei in (8.2) and taking
summation over the index i, we get

2n+1∑
i=1

{(∇hXSh)(Eih, E
i
h) + (∇vXSh)(Eih, E

i
h) + (∇hXSv)(Eiv, E

i
v) + (∇vXSv)(Eiv, E

i
v)} = 0. (8.3)

Furthermore, the scalar curvature of a Finsler manifold is given by

r =

4n+2∑
i=1

S(Ei, Ei) =

2n+1∑
i=1

{Sh(Ei, Ei) + Sv(Ei, Ei)}.

Thus, from (8.3) we get

dr(X) = ∇Xr =

2n+1∑
i=1

{∇X(Sh(Ei, Ei)) +∇X(Sv(Ei, Ei))}

=

2n+1∑
i=1

{∇hX(Sh(Ei, Ei)) +∇vX(Sh(Ei, Ei)) +∇hX(Sv(Ei, Ei)) +∇vX(Sv(Ei, Ei))}

=

2n+1∑
i=1

{(∇hXSh)(Eih, E
i
h) + (∇vXSh)(Eih, E

i
h) + (∇hXSv)(Eiv, E

i
v) + (∇vXSv)(Eiv, E

i
v)}

= 0.
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Hence, we have

Theorem 8.1. The scalar curvature of para-Sasakian Finsler manifold E with η-parallel Ricci tensor
is constant.

9 Conclusion
Here, we give some characterizations about almost paracontact, almost paracontact metric,

paracontact metric, K-paracontact and para-Sasakian Finsler structures on vector bundles and we
give two classifications for para-Sasakian Finsler manifolds, which are useful for contact geometry.
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