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Optimal control is seen by researchers from a different perspective than that from which
the industry practitioners see it. Either type of user can easily become confounded when
deciding which manner of optimal control should be used for guidance and control of
mechanics. Such optimization methods are useful for autonomous navigation, guidance,
and control, but their performance is hampered by noisy multi-sensor technologies and
poorly modeled system equations, and real-time on-board utilization is generally
computationally burdensome. Some methods proposed here use noisy sensor data to
learn the optimal guidance and control solutions in real-time (online), where non-iterative
instantiations are preferred to reduce computational burdens. This study aimed to highlight
the efficacy and limitations of several common methods for optimizing guidance and
control while proposing a few more, where all methods are applied to the full, nonlinear,
coupled equations of motion including cross-products of motion from the transport
theorem. While the reviewed literature introduces quantitative studies that include
parametric uncertainty in nonlinear terms, this article proposes accommodating such
uncertainty with time-varying solutions to Hamiltonian systems of equations solved in real-
time. Five disparate types of optimum guidance and control algorithms are presented and
compared to a classical benchmark. Comparative analysis is based on tracking errors
(both states and rates), fuel usage, and computational burden. Real-time optimization with
singular switching plus nonlinear transport theorem decoupling is newly introduced and
proves superior by matching open-loop solutions to the constrained optimization problem
(in terms of state and rate errors and fuel usage), while robustness is validated in the
utilization of mixed, noisy state and rate sensors and uniformly varying mass and mass
moments of inertia. Compared to benchmark, state-of-the-art methods state tracking
errors are reduced one-hundred ten percent. Rate tracking errors are reduced one-
hundred thirteen percent. Control utilization (fuel) is reduced eighty-four percent, while
computational burden is reduced ten percent, simultaneously, where the proposed
methods have no control gains and no linearization.
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1 INTRODUCTION

Considering intermittent coverage and communication
delays with typical stellar satellites like those illustrated in
Figure 1, autonomous guidance and control necessitates
real-time on-board computation with demanding accuracy
and robustness requirements, despite potentially coarsely
known system characteristics, varying environmental
conditions, and mission-related constraints. Many
solutions have been developed, including optimal analytic
methods for simple cases (Chai et al., 2019), while optimal
methods for guiding and controlling realistic nonlinear
systems ubiquitously necessitate either computational
solutions or linearization to achieve analytical solutions.
This manuscript proposes new techniques for utilizing
optimization techniques applied to the full, nonlinear,
coupled equations of mechanical motion, and the
techniques are analytic as opposed to numeric. Rao
proposed numerical trajectory optimization applied to
orbital transfer problems (Rao et al., 2002) and also
produced a survey of numerical methods for optimal
control (Rao, 2009). Numerical methods are very quickly
resorted to as researchers grapple with six nonlinear, coupled
equations of mechanical motion (both translation and
rotation). A generalized treatment method (again numerical)
for optimization problems was proposed by Ross and Karpenko
(2012) for such orbital transfer problems, spacecraft rendezvous
and docking (Gao et al., 2009; Pontani and Conway, 2013; Bonnans
and Festa, 2017), and planetary entry and hypersonic space planes
(Windhorst et al., 1997; Arora, 2002; Chen et al., 2005; Ivanov et al.,
2007; Zhang and Chen, 2011). Arguably, following the publication
of Ross (2015), numerical optimization in general form realized the
current dominance of numerical methods: for example, Tian et al.
(2015) and Sagliano et al. (2017) for real-time (numerical)
trajectory optimization and Chai et al. (2018a) and Chai et al.
(2018b) for aero-assisted optimal tracking guidance.

Lacking ubiquitous analytic methods to treat the nonlinear,
coupled systems of equations, linearization followed by least-
squares optimization leads to the so-called Ricatti equations
(NASA, 2021a) to produce optimal control gains (Kwakernaak

and Sivan, 1972) with presumed error feedback (Kelly, 2005) in
both continuous and discrete form (Flugge-Lotz, 1953).
Optimization is sometimes sought after first implementing
adaptive (Sands et al., 2009) methods to use feedback
achieving predictability (Sands, 2019). Duprez et al. (2017)
sought to tackle the nonlinear transport theorem terms by
proposing control being a Lipschitz vector field on a fixed
control set angular velocity, ω. This manuscript seeks to
extend the notion of tacking nonlinear transport theorem
to include time-varying angular velocities. Arguchintsev and
Poplevko (2021) proposed an optimal control for linear
hyperbolic systems of ordinary differential equations by
estimating the residuals in terms of the value that
characterizes the smallness of the measure of the domain
of the needle variation of control. Emphasis was placed on
problem formulation by Srochko et al. (2021), but the focus
was parameterizing the cost functional rather than the
nonlinear constraint function as done in this work.

Championed by Lorenz, physics-based methods (Sands and
Ghadawala, 2011) were proposed to instantiate “self-sensing
machines methods”, where the sensing functions are fully
integrated on a drive to detect key operating characteristics
including rotor position, torque, speed, temperature, and
motor/load diagnostics” (Malecek, 2021). The physics-based
methods codified optimal feedforward forms, which were later
augmented with optimal feedback (Smeresky et al., 2020),
instantiating the relatively new method referred to as
deterministic artificial intelligence (D.A.I.). D.A.I. necessitates
analytic forms of desired state trajectories (Baker et al., 2018) for
the feedforward control and state observers (Heidlauf and
Cooper, 2017; Willems, 1971) for the feedback control. In
2021, the utilization of Pontryagin’s approach (Pontryagin
et al., 1962; Boltyanskii, 1971) to impose necessary conditions
of optimality as a first step led to boundary-value problems that
produce optimal controls, but also optimal trajectories (Sands,
2021) as alternatives to the sinusoidal trajectories recommended
by Baker et al. (2018). These optimal trajectories are utilized in
this manuscript as prescriptions for the coupled motion cross-
products resulting from the inclusion of the transport theorem of
motion.

FIGURE 1 | (A) NASA’s FASTSAT microsatellite readied to share ride to space (NASA, 2021a). (B) NASA ejects nanosatellite from microsatellite in space. Image
used consistent with NASA policy, “NASA content (images, videos, and audios) are generally not copyrighted andmay be used for educational or informational purposes
without needing explicit permissions” (NASA, 2021b).
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Thus, the reader may consider the use of classical control
methods (proportional plus velocity will be evaluated here) and
seek to optimize control gains or use the Ricatti equation to seek
linear-quadratic optimal classical control gains. Alternatively,
time-optimal control may be considered a feedback form or
control-minimizing control in an open-loop feedforward
topology. Furthermore, real-time optimal controls could be
derived that utilize feedback of state and rate in a matrix-
inverse to enforce optimality in a closed-loop. Several different
options for matrix inversion are available, generating subsets of
the broader category of real-time optimal control. A key
limitation of all the methods described so far is the inability to
deal with nonlinear, coupled equations generated by the transport
theorem in both translational and rotational mechanics.

Parametric uncertainty is another challenging aspect of
nonlinear systems. Hu, et al. (2015) investigated nonlinear
regression including parameter uncertainty estimates using the
Monte Carlo and bootstrap methods to estimate nonlinear
parameter uncertainties with a Microsoft Excel spreadsheet.
Similarly, Monte Carlo statistical analysis is utilized here in
MATLAB/SIMULINK and presented in section 3 Results. A
modified James–Stein State Estimator (JSSE), named Modified
James–Stein State Estimator (JSSE-M) was proposed by Meda-
Campana (2018) as an alternative to filtering the states of
nonlinear systems within a control scheme. Ferreres and
Fromion (2010) studied the existence of limit-cycles in a
closed-loop, which simultaneously contains nonlinearities and
parametric uncertainties, addressed using three methods: 1) using
a necessary condition of oscillation embodies in a graphical
method, 2) checking the absence of limit-cycles despite
parametric uncertainties using a sufficient condition of non-
oscillation, and 3) using the necessary condition of oscillation
to synthesize a controller which modifies the characteristics
(magnitude and frequency) of the limit-cycle. A generically
similar approach is used here, where necessary conditions of
optimality are used to yield a nonlinear controller that can
accommodate uncertainties in nonlinear systems. Arguably, a
much more common approach to stability robustness of
uncertain nonlinear multivariable systems under input-output
feedback linearization is to allow plant uncertainty to be
propagated through the control design, yielding an uncertainty
description of the closed-loop in polytopic form, as presented by
Botto et al. (2001).

Recently, Taghieh and Shafiei (2021a) proposed an observer-
based robust model predictive control scheme to control a class of
switched nonlinear systems in the presence of time delay and
parametric uncertainties under arbitrary switching in addition to
proposing a static output feedback controller (Taghieh and
Shafiei, 2021b) for a class of switched nonlinear systems
subject to time-varying delay and uncertainties under
asynchronous switching. Zhang et al. (2022) addressed
nonlinear systems with mismatched uncertainties under input/
output quantization proposing adaptive output feedback control.
Fractional parametric uncertainties and distributed delays in
nonlinear systems together with time delay, parametric
uncertainties and actuator faults were just addressed by
Sweetha et al. using a non-fragile fault-tolerant controller,

which makes the system asymptotically stable with the
specified mixed H∞ and passive performance index (Sweetha
et al., 2022). Wei et al. (2022) sought to control uncertain
nonlinear processes using neural networks incorporating into
the control loop an adaptive neural network embedded
contraction-based controller (to ensure convergence to time-
varying references) and an online parameter identification
module coupled with reference generation (to ensure modeled
parameters converge those of the physical system). Wang et al.
(2009) investigated quasi-Hamiltonian systems with parametric
uncertainty using the stochastic averaging method and stochastic
dynamical programming principle. A particular strength of the
work lies in two examples given to illustrate the proposed control
procedure and its robustness. Mahmoodabadi and Andalib
Sahnehsaraei (2021) introduced a new online optimal control
based on the input–output feedback linearization and a multi-
crossover genetic algorithm for under-actuated nonlinear systems
having parametric uncertainties. Optimal control problems with
bounded uncertainties on parameters were addressed using
interval arithmetics by Etienne et al. where an interval method
based on Pontryagin’s Minimum Principle (as proposed here) is
proposed in Bertin et al. (2021) to enclose the solutions of an
optimal control problem with embedded bounded uncertainties.
This method is used to compute an enclosure of all optimal
trajectories of the problem and open-loop and closed-loop
enclosures meant to validate an optimal guidance algorithm
on a concrete system with inaccurate knowledge of the
parameters.

Next-generation methods are required that apply
mathematically optimal results yet retain the simplicity of
analytics solutions obfuscating numerical (or otherwise
more complicated) methods and providing further
advancements in autonomous navigation. The current
movement toward the utilization of very small vehicles is
accompanied by very limited computational resources while
maintaining autonomy, robustness, and accuracy. Newly
proposed methods and algorithms for autonomous guidance
and control are presented in direct, critical comparison to the
recent research trends of both academia and industry,
presuming utilization of noisy sensors, for example, star
trackers, rate gyroscopes, inertial measurement units, and
global navigation systems, amongst other sensors in multi-
sensor-based architectures for vehicle navigation. Intelligence
methods permitting systems to learn real-time optimal
solutions (analytically) are preferred.

Proposed novelties:

1. A brief methodological recitation of five disparate incarnations
of optimal control and their direct comparison to classical
feedback control as a benchmark (the P + V proportional plus
velocity controller): 1) control-minimizing open-loop optimal,
2) linear-quadratic optimal regulator, 3) time-optimal, 4) real-
time optimal, and 5) real-time optimal with singular
switching. Methods 3, 4, and 5 involve no feedback control
gains tuning.

2. Direct comparison of the efficacy of each of the five methods
listed in item #1 controlling linear double-integrator plants,
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where comparison is made using state accuracy, rate accuracy,
control (fuel) usage, and computational runtime (as a
manifestation of computational burden).

3. Direct comparison of the efficacy of each of the five methods
listed in item #1 controlling double-integrator plants,
including nonlinear transport theorem cross-products of
motion induced by measurement in rotating reference
frames, where comparison is made using state accuracy,
rate accuracy, control (fuel) usage, and computational
runtime (as a manifestation of computational burden). In
item #3, the linear control designs are used on the nonlinear
plants to evaluate the error resulting from using linear control
designs in the real-world on nonlinear systems.

4. Direct comparison of the efficacy of each of the five methods
listed in item #1 controlling double-integrator plants, including
nonlinear transport theorem cross-products of motion induced by
measurement in rotating reference frames, where comparison is
made using state accuracy, rate accuracy, control (fuel) usage, and
computational runtime (as a manifestation of computational
burden). Unlike item #3 above, nonlinear decoupling control
stemming from the solution to the minimum-control
optimization problem is introduced to each control
methodology by utilizing the optimal rate trajectories that
result from the original open-loop optimization problem that
minimizes control effort. This nonlinear control utilizing the
constrained optimization problem results (linear control and
nonlinear combinations of the optimal trajectories) may be
considered the largest contribution to the article.

5. Items #3 and #4 are both repeated to evaluate the deleterious
effects on each method of noisy sensors and random uniformly
varying system mass and mass moments of inertia.

Motivated to develop simplemethods that flow from the solution
of constrained optimization problems yet do not necessitate
numerical solutions leads to arguably, the most interesting
proposal: Utilization of analytic solutions to the constrained
optimization problem in either a feedforward or feedback sense
applied to full nonlinear, coupled guidance and control problems,
specifically including the transport theorem coupling cross-products
for rotation and translation, respectively. This method is
mathematically developed in section 2, resulting in proposals for
both feedforward and feedback methods.

Section 2 includes brief derivations of each respective approach
as briefly as practicable, while section 3 provides the results of
implementing each disparate methodology. Tables of variable
definitions and nomenclature have been placed throughout the
manuscript: Tables 1-6, while Table 5 articulates necessary
methods for repeating the presented work. Table 7 summarizes
Monte Carlos analysis of parameter variations from Figure 2, while
Table 8 summarizes percent performance improvements for each
of the six evaluated techniques.

2 MATERIALS AND METHODS

Motion (both translational and rotational) is governed by so-
called double-integrator dynamics where the integral of the

applied forces vector (inversely scaled by the mass or mass
moments, respectively) is the velocity vector and the integral of
the velocity vector (translational or rotational) is the displacement
vector. Each vector is relative to an inertial (non-rotating) reference
frame, while the expression of the vectors in the coordinates of the
basis vectors of rotating reference frames necessitates the inclusion
of the transport theorem, which articulates the induced motion of
the rotating reference frame in cross-products that make the results
nonlinear and coupled. The three degrees of rotational motion are
coupled to each other by the transport theorem, and the three
degrees of translational motion are coupled to each other as well.
Furthermore, the three degrees of translation are coupled
nonlinearly to the three degrees of rotation, particularly through
the angular velocity vector. Especially since this nonlinear coupling
is a foremost challenge that is often deemed insurmountable by
analytic methods, the foremost subsections of this part of the
manuscript begin so. The Materials and Methods section of the
manuscript is described with sufficient details to allow readers to
replicate and build on the published results.

2.1 Double-Integrator Based Plant
Equations
Eq. 1 illustrates the fundamental relationships of both
translational and rotational motion may be expressed as so-
called double-integrators, meant to mean the twice integration
of the applied force or torques produces the respective
translational or rotational displacement.

�F � �m�a � �m€�x � �m
d2�x

dt2
↔ �T � �J�α � �J _�ω � �J€�θ � �J

d2�θ

dt2
, (1)

Eq. 1 comprises two sets of three equations each for
translation and rotation combining for six equations of
mechanical motion. For simplicity of expression, states
referred to generically as x can represent rotations (θ) with
regards to the basic, shared motion described by the double-
integrator. The transport theorem described next will generate
differences in the governing equations for translation and
rotation.

2.2 Transport Theorem Cross-Product
Coupled Motion Expressed in Rotating
Reference Frames
Attach three mutually perpendicular unit vectors to each frame:
the non-rotating inertial frame and body-fixed frame. The
meaning of differentiation of vectors when specification is
made of differentiation with respect to a specific frame. Both
rotational and translational motion relative to the non-rotating
reference frame may be represented by double-integrators in
accordance with Eq. 2.

�m�a|relative � �m€x|relative� �m
d2x

dt2

∣∣∣∣∣∣∣∣relative, (2)

Theorem 1. Transport Theorem. The derivative of any vector
expressed in the coordinates of a rotating reference frame equals
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the sum of the derivative relative to a non-rotating reference frame
plus the cross-product of the angular velocity and the vector.

Proof of Theorem 1. The proof of this well-known theorem
is provided by Kinematics Handout - MIT OpenCourseWare,
2021. The tedious process may be summarized as follows: 1)
express the position vector with respect to the non-rotating
inertial reference frame; 2) differentiate to find the expression
for velocity remembering to differentiate both the component
measurements and the unit vectors; 3) simplify and substitute
the defined unit vectors, define the angular velocity in the
direction perpendicular to the two-dimensional space of
rotation; and 4) substitute the newly defined angular
velocity to arrive at the transport theorem as expressed in
Eq. 3. □

�J
d�ω

dt
� �J

d�ω

dt

∣∣∣∣∣∣∣relative + �ω × J�ω, (3)

The inclusion of theorem 1, despite being very well-known, is
purposely performed to emphasize the most novel proposals
presented. In particular, Eqs. 2 and 3 are ubiquitously
approximated first by Eq. 1 and also often by linearization of
Taylor’s Series of each equation, respectively.

2.2.1 Euler’sMoment Equations of Rotation Expressed
in a Rotating Reference Frame
Externally applied torques, �T change angular momentum �J d �ω

dt
permitting the substitution into Eq. 3, resulting in Euler’s
nonlinear moment equation in Eq. 4. A system is called linear
if it has two mathematical properties: homogeneity and
additivity in accordance with the principle of superposition.
If two or more solutions to an equation or set of equations can
be added together so that their sum is also a solution, linearity
may be asserted. In other words, two or more states of the
system must be added together to create an additional state.
Adding two single-channel angles cannot also be a solution
without accounting for the presence of the other two channels’
states.

An easy way to understand the nonlinear nature of each
motion channel induced by the linear cross-product
transformation is to recall the mathematical definition:
a × b � ab|sinθ|, while f (x + y) = f(x) + f(y) is a simple
counterexample showing that this function f is not linear:
sin(θ1 + θ2) ≠ sin(θ1) + sin(θ2). An often-confused notion is
the fact that the cross-product is a linear transformation, but

nonetheless, each motion channel is evidently nonlinear in the
states (evidenced by the presence of multiplicative state pairs and
cross-coupled states in each channel. From the perspective of
linear algebra, the matrix representation of the cross-product is
skew-symmetric and has determinant zero, so it will not always
have a solution.

�T � �J _�ω + �ω × �J�ω

⎡⎢⎢⎢⎢⎢⎣ τxτy
τz

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Jxx _ωx + Jxy _ωy + Jxz _ωz − Jxyωxωz − Jyyωyωz − Jyzω

2
z + Jxzωxωy + Jzzωzωy + Jyzω

2
y

Jyx _ωx + Jyy _ωy + Jyz _ωz − Jyzωxωy − Jzzωxωz − Jxzω
2
x + Jxxωxωz + Jxyωzωy + Jxzω

2
z

Jzx _ωx + Jzy _ωy + Jzz _ωz − Jxxωxωy − Jxzωyωz − Jxyω
2
y + Jyyωxωy + Jyzωzωx + Jxyω

2
x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (4)

It should be noted the dominant double-integrator
dynamics are embodied in J _ω in Eq. 4, while the
additional accelerations due to the transport theorem are
embodied in the coupling cross-product term �ω × �J�ω.
Control designs based on the double-integrator dynamics
alone are hypothesized to have less efficacy than proposed
techniques that utilize optimization and the transport
theorem terms.

2.2.2 Newton’s Equations of Translation Expressed in
a Rotating Reference Frame
Performing similar expression of translational motion in non-
rotating inertial frames as just performed in section 2.2.1 for
rotational motion leads to Eq. 5 for Newton’s equations of
translational motion.

�F � �m�a︸
︷︷
︸
Relative

+ �m
d�ω

dt︸

︷︷

︸
Euler

× �r + 2 �m�ω × �v︸


︷︷


︸
Coriolis

+ �m�ω × �ω × �r︸




︷︷




︸
Centrifigual

, (5)

Notice the dominant double-integrator dynamics relative to the
rotating reference frame in Eq. 5 are embodied in ma, while the
additional accelerations due to the transport theorem are embodied
in the coupling cross-product terms: Euler ( �md�ω

dt × �r), Coriolis
(2 �m�ω × �v), and centrifugal ( �m�ω × �ω × �r). Control designs based
on the double-integrator dynamics alone are hypothesized to have
less efficacy than proposed techniques that utilize optimization and
the transport theorem terms.

2.2.3 Impacts on Control Design
Neglecting the cross-products of acceleration resulting from the
transport theorem reduces both Eqs. 4 and 5 to the double-
integrators of Eqs. 1 and 2. The goal of this research is to
develop controls (for applied forces �F and applied torques �T)
that account for the nonlinear, coupling cross-products produced
by the application of the transport theorem. Typically,
nonlinearities like those presented in Eqs. 4 and 5 caused by
transport theorem are simplified by assumption, neglected
altogether, or linearized to permit linear control design.
Subsequently, the linear controllers are applied to the
nonlinear systems and augmented as necessary to improve
performance. Instead, the optimal trajectories that result
from the solution of constrained optimization problems (for
translation and rotation, respectively) are combined to form
new nonlinear controls. The exact form of the nonlinear
equation is used to form the new nonlinear control
components where the motion states are taken from the
solution to the constrained optimization problem.

TABLE 1 | Double-integrator plant ten-run mini-Monte Carlo analysis (faults
occurred after first simulation run) executed in MATLAB

®
/SIMULINK

®
R2021b

(9.11.0.1769968) whose machine precision eps � 2.2204 × 10−16.

Methoda State error Rate error Cost Runtime

[T]−1 Fault Fault Fault Fault

1\[T] 0.000052 −0.0048598 4.0281 1.6221
inv[T] Fault Fault Fault Fault
pinv[T] 0.001169 −0.003941 4.0281 1.5589
LU Inverse [T] Fault Fault Fault Fault

aReal-time optimal control (with singular switching).
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2.3 Classical Position Plus Velocity (P + V)
Feedback Control
Proportional plus velocity control (Chai et al., 2019) utilizes
proportional control by forming a state error scaled by a
proportional gain adding a negative gained value of velocity
(translational or rotational), as elaborated in Eq. 5. The
velocity channel is not a differentiated version of the position
or angle channel, as is the case with classical cascaded control
topologies of PD, PI, and PID types (proportional plus derivative,
proportional plus integral, and proportional plus integral plus
derivative, respectively).

�J€�x + �KV _�x + �KP �x � �KP�xd ↔ �u � �Kp(�xd − �x)
− �Kv _�x

�x(s)
�xd(s) �

�Kp

�Js2 + �Kvs + �Kp

→ C.E.: s2 + �Kvs + �Kp

∣∣∣∣∣I�1
� s2 + 2ξωns + ω2

n.

(6)
Gains were tuned for performance specification by equating

the ubiquitous closed-loop system Eq. 5 to the performance
specified, where C.E. annotates the characteristic equation. The
desired rise time established the system natural frequency per
tr � 1.8

�ωn
, where �ωn ≈ �ωb is the desired control bandwidth;

therefore, �ωn � 1.8
tr
→ �Kp � �ω2

n. Settling time: oscillation
stabilize within 2–5% percent of steady state ts � 4.6

�ξ �ωn

→ �ξ �
4.6
ts �ωn

→ �Kv � 2�ξ �ωn.
Elimination of differentiation in the derivative channel often

bestows relative advantage in tracking desired velocity
trajectories. Another approach is the optimize gain selection,
and this alternative approach is called the linear quadratic
regulator.

2.4 Linear-Quadratic Optimal Regulator of
Proportional Derivative Type (Murray, 2010)
Eqs. 3 and 4, representing the full, nonlinear, coupled equations
of motion in six degrees, may be linearized and be expressed in
the form displayed in Eq. 6. This linearization is the basis for the
word “linear” in the LQR title. The word “quadratic” refers to
selecting gains K that minimize a quadratic cost function
displayed in Eq. 7. The LQR solution (Kwakernaak and Sivan,
1972; NASA, 2021a) only bestows optimal solutions for control
gains of the form Eq. 8 that minimizes the quadratic cost
simultaneously satisfying the (linearized) dynamic constraints
displayed in Eq. 5.

_�x � �A�x + �B�u, (7)

J � ∫
∞

0

(�xT �Q�x + �uT �R�u)dt, (8)

�u � − �K�x. (9)
The control designer may select the state weighting matrix

�Q and the control weighting matrix �R to penalize the state
errors and the control effort, respectively. In section 3,
equally weighted identity matrices were chosen for both �Q
and �R. This choice facilitates a multi-faceted comparison in
section 3 that does not solely focus on tracking errors or costs.
The gains �K are found using Eq. 9, where the matrix �P is first
found by solving the algebraic relation in Eq. 10, often
referred to as a Riccati equation which is most often solved
iteratively by a computer (the MATLAB®/SIMULINK® lqr
command).

�K � �R
−1(�BT

�P) (10)
�A
T
�P + �P �A − �P�B�R

−1
�B
T
�P + �Q � 0 (11)

2.5 Time-Optimal Control (Murray, 2010)
Minimizing a non-quadratic cost function comprised of only
the final time (as displayed in Eqs. 11 and 12) constrained
with the linearized dynamics of Eq. 6 with costate parameters
p(t) used in the Hamiltonian problem formulation leads to
time-optimal control (Flugge-Lotz, 1953; Pontryagin et al.,
1962; Boltyanskii, 1971; Sands et al., 2009; Sands and
Ghadawala, 2011; Duprez et al., 2017; Heidlauf and
Cooper, 2017; Baker et al., 2018; Sands, 2019; Smeresky
et al., 2020; Arguchintsev and Poplevko, 2021; Malecek,
2021; Srochko et al., 2021).

J � ∫
∞

0

tfdt, (12)

�u � sgn(<p(t), bi > ) � ⎧⎪⎨⎪⎩
1
−1
0

if
if
if

<p(t), bi > > 0
<p(t), bi > < 0
<p(t), bi > � 0

. (13)

Simulation subsystems depicted in the appendix execute a
bang-bang control where maximal application of control is
normalized to unity such that desired unity state and unity

TABLE 2 | Proximal variable definitions.

Variable Definition Variable Definition

�xd Desired state trajectory �ξ Critical damping ratio

�KP
Proportional gain �ωn Natural frequency

�Kv
Velocity gain ts Settling time

Such tables are distributed throughout the manuscript to increase the ease of reading,
while a combined master table of definitions is included in the Supplementary
Appendix.

TABLE 3 | Proximal variable definitions.

Variable Definition Variable Definition

�A State transition matrix J Cost function

�B Control matrix tf Final time

�K Gain matrix ∞ Infinity

�Q State weighting matrix sgn Signum function

�R Control weighting matrix p (t) Parameters (co-states)

�P Covariance matrix bi Control coefficients
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time is achieved to aid comparison to the other optimization
approaches. One key feature of bang-bang control is the
neglecting of the rate end condition leading to a so-called
bang-off-bang control, which is not treated here.

2.6 Open Loop Minimum-Control
Optimization (Pontryagin et al., 1962; Ross,
2015)
Minimizing only the control effort alone (not the state errors)
(Sands, 2019) in accordance with Eq. 13 constrained by the
double-integrator dynamics of Eq. 2 for specified initial and
final conditions permits the solution of a two-point boundary
value problem producing optimal control, acceleration, rate,
and state profiles displayed in Eq. 14, respectively.
Normalization for unity masses or mass moments is
included, thus, control and acceleration equations are
identical, where non-normalized control may be expressed
by scaling the control equation by the masses or mass
moments, respectively.

By specifying quiescent initial conditions and using variable
scaling and balancing to normalize the final position
coordinate to unity, the constants in Eq. 14 may be
solved, resulting in Eq. 15, where a = −12, b = 6, and c =
d = 0. It should be noted that states are not penalized in the
cost function, instead only solution forms that satisfy the
boundary values are produced by the two-point boundary
value problem from the initial point (x(0),v(0)) = (0,0) to
the final point (x(1), v(1)) = (1,0), thus, there is no need to solve
an algebraic Riccati equation to produce the optimal control,
where an additional benefit of this optimization approach
includes the production of optimal state trajectories that
will prove useful to decouple the nonlinear coupling effects
of the transport theorem described in section 2.2. Scaling and
balancing must be performed to normalize the initial and final
conditions to zero and unity, and the operations are explained
in section 2.11. The solution to the constrained optimization
problem listed in Eqs. 2 and 13 was solved analytically and
presented recently by Sands (2021) for virtual sensoring, and
that solution is presented here in Eqs. 14 and 15. The
mathematical development is intentional since 1) the
development is well-articulated by Sands (2021) and 2)
increased focus on the utilization of these results toward
nonlinear equations of motion (presented in Section 2.9).

J � 1
2
∫
∞

0

(�uT�u)dt, (14)

�up � �at + �b, _�v
p � �at + �b, �vp � 1

2
�at2 + �bt + �c, �xp

� 1
6
�at3 + 1

2
�bt2 + �ct + �d, (15)

�up � −12t + 6, _vp � −12t + 6, �vp � −6t2 + 6t, �xp � −2t3 + 3t2.

(16)
The open-loop optimal solution embodied in Eqs. 14 and 15

may be updated in real-time using state feedback resulting in real-
time optimal control presented in Section 2.7. These optimal
states in Eq. 15 are used to form nonlinear controls in
Section 2.9.

2.7 Real-Time Optimal Control
A corollary is to the open-loop minimum-control optimization in
section 2.6 augments the approach with feedback while
maintaining the remaining portions of the problem approach.
The solution for the constants in between Eqs. 14 and 15 may
be accomplished in real-time using feedback but asserting the
current position and velocities (translational and rotational) are
the initialization points of a new two-point boundary value problem.
Eq. (16) may be written in a matrix-vector form as Eq. 17,
permitting real-time solution for the integration constants in
the vector by inverting the matrix and pre-multiplying both
sides of the equation as depicted in (17). Notice the form of the
control derived in Eq. 17 is the same as Eq. 14 in section 2.6, where
the constants in the optimal solutions are solved in real-time.

vp � 1
2
at2 + bt + c, xp � 1

6
at3 + 1

2
bt2&vp(tf) � 1

2
a + b

� 0, xp(tf) � 1
6
a + 1

2
b � 1, (17)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t20
6

t20
2 t0 1

t20
2 t0 1 0

1
6

1
2 1 1

1
2 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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�
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−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�x(t)
�v(t)
1

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and �up ≡ ât + b̂.

(18)

TABLE 4 | Proximal variable definitions.

Variable Definition Variable Definition

J Cost function �up Optimal control
dt Differential time _�v

p Optimal (angular) acceleration

t Time �vp Optimal (angular) velocity
�u Control �xp Optimal (angular) position
�x(t) Current position �a, �b, �c, �d Integration constants
�v(t) Current velocity â, b̂, ĉ, d̂ Integration constant estimates
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One key feature of the open-loop solution method using a two-
point boundary-value problem is the enforcement of end conditions
producing optimal trajectories for state (�x*), rate (�v*), acceleration
(_�v

p
), and jerk (€�v

p
), in addition to the formulation of an optimal

control, u*. These signals yield the opportunity to formulate
decoupling control components to mitigate the transport theorem
(illustrated in section 2.9).

2.8 Real-TimeOptimal ControlWith Singular
Switching
Highlighting the matrix inverse in Eq. 17, the possibility of
issues inverting a poorly conditioned or rank-deficient matrix
may be addressed by monitoring matrix conditioning or
determinant and switching away from the feedback solution
when encountering rank-deficient instances in favor of the
optimal solution in Eq. 15.

2.8.1 Matrix Inverse Formulas
Five disparate methods to invert the [T] matrix were
investigated, as listed in Eq. 18. Matrix inversion methods
already coded in MATLAB/SIMULINK: [T]−1, 1\[T], inv[T],
pinv[T], LU Inverse [T]. Each method has specific strengths
and weaknesses expressed in state error, rate error, control
effort (quadratic cost), and runtime, as displayed in Table 1. In
several instances, the simulation would fault as a result of
encountering matrix singularity.

2.9 Nonlinear Transport Theorem
Decoupling (Recall Transport Theorem in
Section 2.2)
As mentioned in Section 2.6, the desire is to use the results of
Sections 2.7 , 2.8 applied to nonlinear dynamics coupled by
transport theorem. Section 2.2 describes the nonlinear coupling
effects of measuring motion in coordinates of rotating reference
frames extracted for highlighting in Eq. 18 for translation and
rotation, respectively. These effects were neglected when
optimizing the double-integrator–based systems of equations or
simplified by linearization in other instantiations. Taking
advantage of the results in Sections 2.6, 2.7, nonlinear
decoupling control components may be formulated using the
optimal trajectories as displayed in Eq. 18, where each component
(translation and rotation, respectively) should be added to augment
the control in Eq. 17.

Rotation: unonlinear � �ω × �J�ω

Translation: unonlinear � �m
d�ω

dt
× �r + 2 �m�ω × �v + �m�ω × �ω × �r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedback

Rotation: unonlinear � �ωp × �J�ωp

Translation: unonlinear � �m
d�ωp

dt
× �rp + 2 �m�ωp × �vp + �m�ωp × �ωp × �rp

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedforward

,

(19)

It is proposed to take the nonlinear control components in Eq.
18 formulated using the optimal trajectories from Eq. 18 and

TABLE 6 | Proximal variable definitions.

Variable Definition Variable Definition

[T]−1 MATLAB inverse m Mass

1\[T] MATLAB inverse J Mass moments
inv[T] MATLAB inverse ω Angular velocity
pinv[T] MATLAB pseudo-inverse r Position vector
lu([T]) MATLAB LU-inverse v Translational velocity
utransport Feedback decoupler ω* Optimal angular velocity

uptransport Feedforward (decoupler) r* Optimal position vector

v* Optimal Translational velocity

u Control, the sum of Eq. 18 or Eq. 19 with Eqs 5, 8, 12, 14, or Eq. 15

TABLE 5 | Proximal variable definitions.

Variable Definition Variable Definition

�F Externally applied forces �T Externally applied torques

�m Mass �J Mass moment of inertia

�a � €�x Translational acceleration �α � €�θ Rotational acceleration

d2 �x
dt2 � _v Translational acceleration d2 �θ

dt2 � _�ω Rotational acceleration

�r Radius vector relative to rotating frame �ω � _�θ Rotational velocity

�v Velocity vector relative to rotating frame �θ Displacement angle

Such tables are distributed throughout the manuscript to increase the ease of reading, while a combined master table of definitions is included in the Supplementary Appendix.
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augment them with Eq. 17’s optimal control solutions to
comprise the total control for rotation and translation,
respectively, displayed in Eq. 19.

Rotation: up
total � ât + b̂ + �ω × �J�ω

Translation: up
total � ât + b̂ + �m

d�ω

dt
× �r + 2 �m�ω × �v + �m�ω × �ω × �r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedback

Rotation: up
total � ât + b̂ + �ωp × �J�ωp

Translation: up
total � ât + b̂ + �m

d�ωp

dt
× �rp + 2 �m�ωp × �vp + �m�ωp × �ωp × �rp

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Feedforward

,

(20)

The distinction between feedforward and feedback is
determined by the chosen manner of decoupling the nonlinear
transport theorem. One option is feedback decoupling, where
feedback states are combined (for example, for rotation) as
�ω × �J�ω and added to the optimal control to form a new
nonlinear control. On the other hand, feedforward decoupling
(used in section 3) combines the optimal equations of state from
Eqs. 15 and 16, respectively, combined as �ωp × �J�ωp and augments
the optimal controls with this new nonlinear control. The efficacy
of this latter suggestion is evaluated in section 3.

Section 3 validates the proposed developments culminating in
the combination of real-time optimal control (Eq. 17) together
with transport theorem decoupling in Eq. 19, specifically for
rotation using feedforward: u*total � ât + b̂ + ωp × Jωp. After
evaluating initial efficacy, effectiveness against realistically
varying systems with noise is investigated.

2.10 Noisy Mixed Sensors and Parameter
Variations
With the inclusion of feedback, noise must be accounted for in
the feedback signals (state and rate only here) in the form of
random numbers with a standard deviation of 0.01 (1% of the
final state value when states are scaled and balanced to unity).
In addition, mass and mass moments are assumed to be
unknown or not precisely known; therefore, mass and
moments were allowed to vary randomly (uniformly) ten
percent heavier and lighter. The resulting scatterplots are
presented in section 3.

2.11 Scaling and Balancing
Poorly conditioned problems are those requiring
simultaneous mathematical operations on very large and
small numbers. A common mitigation strategy is to scale
and balance the variables transforming equations to
nominally remain of the same order. Scaling problems by
common, well-known values permits single developments to
be broadly applied to a wide range of state spaces not initially
intended. Normalizing time per Eq. 20 restricts simulation
time to vary between zero and unity. Scaling mass and mass
moments of inertia matrices by their nominal values per Eqs.
21 and 22, respectively, keep their values roughly on the
order of unity. Generic displacements (translation or
rotation) are normalized in accordance with Eq. 23, where
{r} could indicate either general translational or rotational
displacement.

t ≡
�t

tf
, (21)

�m ≡
[m]

[m]nominal

, (22)

�J ≡
J

Jnominal
, (23)

�r ≡
{r}
{r}f for translatoin and

�θ ≡
{θ}
{θ}f for rotation. (24)

3 RESULTS

Following the brief introduction to each control technique
presented earlier in section 2, section 3 displays the results of
individual simulations in addition to the Monte Carlo
investigation of ten-thousand simulations. Section
3.1 begins with commonly simplifying assumptions of
control design using dominant, double-integrator dynamics
with no transport theorem, where the control �up ≡ ât + b̂ is
applied to the same idealized system equations. The use of
idealized results provides interesting measures of
performance under ideal circumstances subject to
mathematical optimization. Another interesting artifact is
the immediately obvious differences in the responses to
disparate control techniques.

Next, in section 3.2, the performance of controllers designed
using simplified double-integrators �up ≡ ât + b̂ was applied to
more realistic plant equations with transport theorem. Then, in
section 3.3, nonlinear control designs u*total � ât + b̂ + �ωp × �J�ωp

are introduced, and comparisons are made applied to nonlinear
plants, including transport theorem. Lastly, in section 3.4,
random uniformly varying inertia was studied with random
noise added to sensor data for both state and rate, and the
comparisons were repeated in ten-thousand simulations. These
final simulations all utilized nonlinear control designs based on
various optimization methods, and the results were applied to
nonlinear, coupled system equations, including the transport
theorem, where controls were tailored specifically for the
transport theorem in the recommended application of
optimization (real-time optimal control with singular
switching and transport theorem decoupling). All simulations
were executed in MATLAB®/SIMULINK® R2021b
(9.11.0.1769968), whose machine precision was eps �
2.2204 × 10−16.

A new presentation style is offered to increase the ease of
reading and contemplation of the results. Quantitative figures of
merit are presented in tables inserted as sub-figures immediately
proximal to corresponding data plots presenting qualitative
results.

3.1 Ideal, Linear Double Integrator System
Equations
Double-integrator equations expressing relationships between
displacement, displacement rate, and acceleration are canonical
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relationships used to describe the movement of mass. The
relationships are linear, allowing easy control design using
classical methods, which predominantly use linear systems
methods to design controllers for any equations (including
linearizing any nonlinear equations). Each control design
technique introduced in section 2 was sequentially used to
control the linear, double-integrator system equations, and the
results are presented in Figure 3, where Table 9 contains
quantitative results corresponding to the qualitative results
presented in the multi-plots.

The baseline approach (classical proportional plus
velocity, or so-called “P + V” control) tuned to
performance specification exhibits better accuracy and
lower costs than linear-quadratic optimal regulators of the
proportional, derivative (PD) type, but the P + V controller
has the highest computational burden as indicated by
computational runtime. The embedded differentiation of
the noisy feedback signal in the rate channel would
logically explain the relatively lower performance of the
LQR tracking. Time-optimal (bang-bang) control achieved
machine precision state tracking accuracy with the largest

rate tracking error of the controllers investigated. Such
performance is validated by the instinct that time-optimal
control is mathematically designed to achieve the desired
state in the shortest time but is not structured to
simultaneously achieve rate tracking in minimal time. The
cost was the lowest of the controllers investigated, indicating
the benefits of not requiring simultaneous rate tracking.
Computational runtime was the second largest.

Open-loop optimization calculates the minimum control
effort that simultaneously meets state and rate endpoint
conditions, and accordingly, both state and rate endpoints
are achieved to machine precision, while the computational
burden is modest compared to low and high cases. Real-time
optimization solves the open-loop optimal control problem in
real-time using ideal sensor feedback of state and rate but
involves a matrix inverse. Rate and state errors (particularly)
are quite small, but machine precision tracking is not
achieved. Part of the cause of tracking errors is the
inversion of the rank-deficient matrix as the final time is
approached. Seeking to ameliorate the issue, switched real-
time optimal control is presented where the matrix condition

TABLE 7 | One-thousand-run (respectively) Monte Carlo analysis.

Method State error Rate error Cost Runtime

Classical p + V −0.0065157 0.038442 25.3181 1.2342
LQR Optimal PD −0.0050504 0.56851 75.5278 1.23
Time-optimal control 0.16381 1.2703 1.3643 1.3055
Open loop optimala 0.00069197 −0.0052251 4.0281 1.2335
Real-time optimal (RTOC)a 0.062551 −165.1258 40,959.5421 1.2818
Switched RTOCa 0.00066117 −0.0051746 4.0281 1.1068

aReal-time optimal control (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.

FIGURE 2 | Scatter plots displaying the results of 1,000 simulation runs (per case) with randomly (uniformly) varied mass and mass moments ± 10%. (A) classical
P + V, (B) LQR optimal PD, (C) time-optimal control, (D) open-loop optimal, (E) real-time optimal (RTOC), and (F) switched RTOC.
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is used to switch away from real-time optimal control to
open-loop optimal control during timesteps when matrix
inversion becomes poorly conditioned. Machine precision
tracking is attained, open-loop optimally low costs are re-
achieved, and the computational burden is slightly elevated
compared to the best case investigated.

Summarizing the results so far, real-time optimal control
(designed only to minimize control effort) with singular
switching to counter the deleterious effects of poor matrix
conditioning achieves the best simultaneous state and rate
error (machine precision) with costs matching the open-loop
minimal and average computational burden. Unfortunately,
these results are achievable only in idealized circumstances
of double-integrators. Expressing motion in coordinates of
rotating reference frames introduced nonlinear coupling
described in the next section (3.2).

3.2 Nonlinear Plants With Cross-Product
Coupled Transport Theorem With Linear
Control Designs
Expressing motion in coordinates of rotating reference frames
is referred to as the “transport theorem,” which introduces
nonlinear coupling between the six channels of motion that
would otherwise have been well-described by simple, linear
double-integrators. Very often, linearized system equations or
linear assumptions (the double-integrators) are used to design
linear controllers. Accordingly, each instance investigated in
section 3.1 was applied to nonlinear coupled system equations,
including the transport theorem. Increased errors and reduced
robustness is generally anticipated since the controllers are not
designed to accommodate system nonlinearities specifically. Each
control technique introduced in Section 2 was sequentially

TABLE 8 | Percentage change in performance in one-thousand-run (respectively) Monte Carlo analysis: double-integrator plant (with transport theorem) with control design
based off double-integrator with transport theorem and noisy, mixed sensors (state and rate).

Method State error Rate error Cost Runtime

Classical p + V — — — —

LQR Optimal PD −22% 1,379% 198% 0%
Time-optimal control 2,614% 3,204% −95% 6%
Open loop optimal a −111% −114% −84% 0%
Real-time optimal (RTOC) a 1,060% 429,645% 161,680% 4%
Switched RTOC a −111% −114% −84% −10%

aReal-time optimal control u*total � ât + b̂ + �ωp × �J�ωp (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.

FIGURE 3 | Double-integrator plant (no transport theorem) with control design based on double-integrator. (A)Motion states (translation or rotational) normalized
to propagate from zero and unity in one normalized second. (B)Motion rates (translation or rotational) intended to propagate from zero initial velocity to zero velocity at the
endpoint in one normalized second.

TABLE 9 | Double-integrator plant (no transport theorem) with control design based off double-integrator (no transport theorem): quantitative comparative data
corresponding to the qualitative display in Figures 3A,B.

Method State error Rate error Cost Runtime

Classical p + V 0.010115 0.066169 28.1671 3.1012
LQR Optimal PD 0.015015 0.43861 76.3418 2.4597
Time-optimal control eps 2 2 2.9038
Open loop optimala eps Eps 6 2.6086
Real-time optimal (RTOC)a −9.1882 × 10−6 0.019289 6.7656 2.7497
Switched RTOCa eps Eps 6 2.7281

aReal-time optimal control �up ≡ ât + b̂ (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.
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simulated, and the results are presented in Figure 4, where
Table 10 contains quantitative results corresponding to the
qualitative results presented in the multi-plots.

It should be noted that all approaches designed to control double-
integrators illustrate degraded performance compared to the
idealized case investigated in Section 3.1. All methods compared
achieved similar costs. The baseline approach (classical proportional
plus velocity, or P + V) tuned to performance specification exhibits
second-best state accuracy and second-best rate accuracy, while real-
time optimal control achieved the lowest state and rate errors but
used nearly double the amount of control. No technique achieved
machine precision tracking.

Summarizing the results so far, all control techniques are
degraded from the idealized case. Real-time optimal control
(designed only to minimize control effort) and classical
control methods were the most robust, but all three methods
utilized substantially more control effort.

3.3 Nonlinear Plants With Cross-Product
Coupled Transport Theorem and Nonlinear
Control Designs
Double-integrator relationships (implemented identically as done in
sections 3.1 and 3.2) are next augmented with feedback decoupling
of the transport theorem using state feedback in Eq. 19. Each control
design technique introduced in section 2 was sequentially used to
control the nonlinear, double-integrator system equations including
transport theorem, and the results are presented in Figure 5, where

Table 11 contains quantitative results corresponding to the
qualitative results presented in the multi-plots.

All methods are improved by addition of the nonlinear
decoupling control designed for the transport theorem. Time-
optimal control performs worst regarding state and rate errors,
while cost figures are generally increased for methods that
effectively track state and rate. Near machine-precision is
achieved by open-loop optimal control and switched, real-time
optimal control where both are designed to minimize control
effort alone (with no state error representation in the minimized
cost function). Computational burdens of all approaches are
roughly comparable.

Having initially analyzed idealized systems (the double-
integrators), nonlinear coupling was induced by the transport
theorem with significantly degraded performance using the
controllers designed for linear systems. Adding nonlinear control
components designed specifically to decouple the transport theorem
in feedback roughly restores nominal performances, but feedback
remains ideal (without noise). Section 3.4 adds zero-mean Gaussian
noise to both sensor types (state and rate)

3.4 Nonlinear Plants With Cross-Product
Coupled Transport Theorem and Nonlinear
Control Designs Utilizing Noisy,
Mixed-Sensors
Double-integrator equations with nonlinearities induced by
transport theorem were controlled by linear control designs

FIGURE 4 | Double-integrator plant (no transport theorem) with control design based on double-integrator. (A)Motion states (translation or rotational) normalized
to propagate from zero and unity in one normalized second. (B)Motion rates (translation or rotational) intended to propagate from zero initial velocity to zero velocity at the
endpoint in one normalized second.

TABLE 10 | Double-integrator plant (with transport theorem) with control design based off double-integrator (without transport theorem): displays the quantitative
comparative data corresponding to the qualitative display in Figure 4.

Method State error Rate error Cost Runtime

Classical p + V 0.024582 0.12803 26.6076 3.4291
LQR Optimal PD 0.26241 0.31372 75.8051 3.4593
Time-optimal control 0.56622 0.76159 0.5 3.4437
Open loop optimala 0.3606 −0.63176 6 3.5315
Real-time optimal (RTOC)a −1.9654 × 10−5 0.041323 11.2002 3.4579
Switched RTOCa 0.3606 −0.63176 6 3.5097

aReal-time optimal control u*total � ât + b̂ (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction. Notice the
control design did not account for nonlinear transport theorem with unonlinear � �ωp × �J�ωp, the resulting open-loop optimal costs were unchanged, but the state and rate errors increased
substantially due to the nonlinear plant not being included in control design. Figure 5 displays the results of including nonlinear control design unonlinear � �ωp × �J�ωp.
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augmented with nonlinear feedback decoupling designed specifically
for transport theorem. Feedback was provided by simulated mixed
state and rate sensors, and Gaussian noise was added. Each control
design technique introduced in section 2 was sequentially used to
control the linear, double-integrator system equations, and the results
are presented in Figure 6, where Table 12 contains quantitative
results corresponding to the qualitative results presented in the multi-
plots.

The baseline approach (classical proportional plus velocity, or P +
V) tuned to performance specification exhibits better rate accuracy
and lower costs than linear-quadratic optimal regulators of the
proportional, derivative (PD) type, but the P + V controller has
relatively inferior state errors compared to LQR. Time-optimal
control performs poorly in the face of transport theorem and
noisy sensors. Real-time optimal control is severely degraded by
noise, particularly with respect to rate errors and control effort.

Open-loop optimization and real-time optimal control with
singular switching simultaneously achieve the lowest state and
rate endpoint errors, with the lowest costs (that may be claimed to
meet endpoint conditions), while the computational burden is
modest compared to low and high cases.

3.4.1 Monte Carlos Analysis (6,000 Simulation Runs)
Summarizing the results so far, real-time optimal control
(designed only to minimize control effort) with singular
switching to counter the deleterious effects of poor matrix
conditioning achieves the best simultaneous state and rate

error with costs matching the open-loop minimal and
average computational burden in cases where nonlinear
feedback decoupling of transport theorem is incorporated
and where feedback is provided by noisy state and rate
sensors.

4 DISCUSSION

The results are multi-variate, but some general comments are
evident regarding the proposed real-time optimal control with
singular switching and transport theorem decoupling and its
performance compared to a classical benchmark and four other
instantiations of optimal control. In the most realistic situations
revealed by Monte Carlo analysis with random variations of
inertia and state and rate sensor noise, time-optimal bang-bang
control achieved respectable rate accuracy with the lowest cost
but highest runtime and modest rate tracking errors.
Meanwhile, optimal (control minimizing constrained to meet
endpoint conditions) open-loop control and its companion real-
time optimal control with singular switching achieved the
lowest state errors (three orders of magnitude better than
time-optimal control) and control effort, while real-time
optimal control with singular switching and transport
theorem decoupling achieved the lowest rate tracking error.
Real-time optimal control without singular switching displayed
vulnerability in rate errors and high costs.

FIGURE 5 | Double-integrator plant (no transport theorem) with control design based on double-integrator. (A)Motion states (translation or rotational) normalized
to propagate from zero and unity in one normalized second. (B)Motion rates (translation or rotational) intended to propagate from zero initial velocity to zero velocity at the
endpoint in one normalized second.

TABLE 11 | Double-integrator plant (with transport theorem) with control design based off double-integrator with transport theorem: displays the quantitative comparative
data corresponding to the qualitative display in Figures 5A, B.

Method State error Rate error Cost Runtime

Classical p + V 0.0078728 0.038016 27.0064 3.5535
LQR Optimal PD −0.0063144 0.57121 75.7706 3.5738
Time-optimal control 0.16359 1.2712 2.7286 3.629
Open loop optimala 3.0287 × 10−13 −1.0092 × 10−12 7.0286 3.4504
Real-time optimal (RTOC)a −9.1882 × 10−6 0.019288 7.7942 3.6725

Switched RTOCa 3.0287 × 10−13 −1.0092 × 10−12 7.0286 3.5765

aUnlike the results of Figure 4where only linear, time-varying control designs u*total � ât + b̂ were used, in Figure 5 nonlinear designs for real-time optimal control u*total � ât + b̂ + �ωp × �J�ωp

(with and without switching) were used. Notice the open-loop optimal control is visually indistinguishable from nonlinear, time-varying control designs in the graphic depiction.
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Other general conclusions apply to all techniques: designing
controls based on simplified plants and then applying them to
realistic plants is particularly weak compared to the relatively
modern approaches. Arguably, milli-degree accuracy with
“low” costs is admirable performance, but the modern
methods of control design, including optimality and
nonlinear coupling effects (with feedback), achieved, in
general, three orders of magnitude superior performance,
with the admission that real-time optimal control
performed particularly poorly.

Furthermore, well-known lessons from classical control are re-
validated in this study. Linear-quadratic regulators are very
robust and useful, but suffer from cascaded topologies,
particularly in the differentiation of the state feedback to
achieve rate feedback, thus the utilization of velocity control
was established as the classical baseline (with a requisite demand
to purchase and utilize rate sensors).

The proposed instantiation of real-time optimal control
with singular switching and nonlinear transport theorem
decoupling u*total � ât + b̂ + �ωp × �J�ωp was the overall top-
performing option with the lowest state errors, lowest rate
errors, lowest computational burden, and second-lowest
control effort (fuel usage).

Lastly, it should be noted that all the control techniques
performed very well (naturally, since most of the techniques
were formulated to satisfy optimization problems). The

indication of superior performance should not be judged
as mandating the proposed technique, especially in
instances where operators would be more comfortable with
classical techniques and the order of milli-degree accuracy is
sufficient.

4.1 Performance Improvement Percentages
The claim was just immediately earlier, validating that real-time
optimal control with singular switching and transport theorem
decoupling was the overall top-performing option, and this section
describes the results validating the claim in generally understandable
terms (percent performance improvement comparison). Open-loop
(control minimizing optimal control constrained to meet end state
and rate) performed very well, while real-time optimal control with
singular switchingmatched the performance andwas slightly better in
terms of computational burden.

4.2 Future Research
The derivation of optimal trajectories (state, rate, acceleration,
and jerk) should prove useful in the implementation of
deterministic artificial intelligence (Smeresky et al., 2020),
which requires some scheme of autonomous trajectory
generation. The current state of the art utilizes sinusoidal
trajectory generation schemes, and the optimal trajectories
illustrated here should have improved efficacy when used to
augment deterministic artificial intelligence.

TABLE 12 | Double-integrator plant (with transport theorem) with control design based off double-integrator with transport theorem and noisy, mixed sensors (state and
rate): sub-displays the quantitative comparative data corresponding to the qualitative display in sub-Figure 6.

Method State error Rate error Cost Runtime

Classical p + V −0.0066807 0.03828 27.0755 2.3988
LQR Optimal PD −0.0047636 0.56965 76.8806 2.4667
Time-optimal control 0.16546 1.2693 2.7286 2.4837
Open loop optimala 0.0018665 −0.0018665 7.0286 2.5816
Real-time optimal (RTOC)a 0.06463 −171.6553 41,436,948 2.469
Switched RTOCa 0.0018665 −0.0018665 7.0286 2.6125

aReal-time optimal control u*total � ât + b̂ + �ωp × �J�ωp (with and without switching) and open-loop optimal control are visually indistinguishable from one another in the graphic depiction.

FIGURE 6 | Double-integrator plant (with transport theorem) with control design based on double-integrator (with transport theorem). (A)Motion states (translation
or rotational) normalized to propagate from zero and unity in one normalized second. (B) Motion rates (translation or rotational) intended to propagate from zero initial
velocity to zero velocity at the endpoint in one normalized second. Notice that the open-loop optimal (minimum) control effort is increased from 6.0 (controlling double-
integrators without transport theorem) to just over 7.0 (controlling double-integrators with transport theorem), manifesting as a 17% increase to account for
transport theorem over idealized cases of double-integrators alone.
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5 CONCLUSION

Real-time optimal control is proposed to deal with nonlinear
mechanics, including transport theorem coupling nonlinearities,
where noisy (random) sensors are assumed, and random
parameter variation is countered with time-varying solutions
to Pontryagin’s necessary conditions of optimality. Specifically,
the Hamiltonian minimization condition and the adjoint
equations produce the form of the control parameterized in
terms of time and mass or mass moment of inertia,
respectively. Singularity-based switching is proposed to
address divergence of the adjoints approaching the final
state. Ubiquitous figures of merit are used to compare the
proposed methods to benchmark classical and modern optimal
control methods: mean state and rate errors, quadratic costs
embodying necessary fuel usage, and computational runtime as
an avatar of the computational burden. Open-loop optimal control
established an intermediate baseline over the benchmark classical
control, while the proposed method yielded identical performance
improvements in terms of state and rate accuracy and quadratic
cost while experimentally illustrating an unexpected ten percent
improvement in computational burden.
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