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Abstract: The objective of this paper is the joint application of two different methodological concepts
for the detection of lead-lag relationships in economic time-series in order to investigate their
consistency and their potential complementarity. The first methodology, a time domain analysis based
on vector error correction model, provides evidence about the existence of long-run equilibrium of the
time-series and the short-run lead-lag behaviors. The second methodology, a time-frequency concept
based on the phase difference of the cross-wavelet coherence, analyzes the lead-lag relationships
across various timescales and reveals the altering of leadership over time. The two methods are
applied to time-series of wealth-to-income ratio of four developed countries over the period 1970–2010
and analyze the lead-lag relationships of the countries in the long-run and in the short-run. The results
show that the two methods are consistent in their major long-run findings, however, they reveal
different aspects regarding the short-run dynamics of the lead-lag relationships. Furthermore,
the results suggest the complementarity of the two methodologies in the context of a complete
framework for the analysis of the lead-lag relationships in non-stationary economic time-series.

Keywords: lead-lag relationships; vector error correction model; wavelet coherence;
wealth-to-income ratio

JEL Classification: N30; O57

1. Introduction

Lead-lag relationships, also known as leader-follower relationships, between economic time-series
have been extensively researched in studies of empirical economics and finance. A characteristic
example of such relationships constitutes the link between the stock market and oil prices which has
been examined both within-in a country (Cong et al. 2008) and across countries (Rault and Arouri 2009).
Another example is the link between the index futures and the cash market, where many researchers have
found that the futures market leads the cash market (Gwilym and Buckle 2001; Stoll and Whaley 1990).
A number of empirical studies have established leader-follower relationships across portfolios, particularly
when formed on a size-related basis (Campbell et al. 1997). From another perspective, the leader-follower
outcomes regarding economic and market interdependences can be considered as indicators of the
economic cycles holding important implications for their determination and tracking of recession
periods and of business cycles (Estrella and Mishkin 1998) and are of considerable interest to academics,
regulators and practitioners. The dynamics of lead-lag relationships, including the altering of leadership
over time, has been also examined in the bibliography (Ajayi and Mougouė 1996; Koutmos 1996).
The literature review paper of (Zavadska et al. 2018) focuses on the lead-lag relationship between spot
and future prices of crude oil and its historical behavior. The authors highlight a key controversy
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within the extant literature, as to whether spot or futures prices are the main crude oil price indicator.
The literature review indicates that the lead-lag relationship between the variables is a dynamic one,
especially during periods of sustained uncertainty, which leads to significant disagreements among
researchers regarding the price that plays a dominant role. The lead-lag relationship between crude
oil spot and futures markets is a debatable issue, as can be confirmed in the many publications
on this topic since the paper by (Silvapulle and Moosa 1999). Changes in spot and futures prices
may be due to fundamental shifts in supply and demand; but they could also be due to speculation
(Polanco-Martínez and Abadie 2016). Other examples of studies providing evidence for dynamic
lead-lag relationships between economic variables include the link between the euro area sovereign
bond yield spreads against Germany and their underlying determinants (Afonso et al. 2015) and
the study of the determinants of sovereign bond yield spreads across 10 countries of the European
economic and monetary union (Bernoth and Erdogan 2012).

In terms of methodology, there are two main methodological pillars for the detection of lead-lag
relationships: the time domain methodologies and the time-frequency domain methodologies.
The research devoted to the detection and the modeling of lead-lag relationships between economic
variables using the traditional methods in the time domain is voluminous. However, the traditional
methodologies fail to capture the time-varying (dynamic) nature of the lead-lag relationships. Such
approaches require the condition of stationarity of the studied series. In addition, the typical time
domain methods study the elemental properties of an economic variable whose realizations are
recorded at a predetermined frequency, so such approaches do not produce any clue in relation to
multiple periodical components of the underlying variables. Due to the above mentioned limitations
of the traditional time domain approaches, there has been recently a growing interest in examining
lead-lag relationships using the time-frequency domain. In order to identify time-varying lead-lag
relationships in economic time-series, studies that are more recent have applied the methodology of
the wavelet transform (Ramsey 2002). Wavelet techniques explore both the time and the frequency
domain by decomposing the original time-series into different time-frequency scales, also known as
layers of resolution or simply as timescales, allowing the analysis of co-movements in various time
horizons. The wavelet methods can analyze linkages between two variables without any requirement
of stationarity or cointegration of the variables. In addition, such methodologies provide evidence
about the dynamics of the lead-lag structures especially in the case where the leadership of one variable
over the other switches over the time period of interest (Aguiar-Conraria and Soares 2014).

The motivation of this paper comes from the need for consistent and complete methodological
frameworks for the discovery of lead-lag relationships between economic variables. The paper aims to
investigate the potential for enhancement of the understanding of the lead-lag relationships between
economic time-series by using evidence both from time domain and from the time-frequency domain.
More specifically, this applies two different methodological concepts for the detection of lead-lag
relationships of time-series on the same dataset in order to investigate the consistency of the methods
and to provide evidence on their potential complementarity. The two methodological concepts under
comparison are the vector error correction model for the time domain analysis and the wavelet cross
coherence for the time-frequency domain analysis.

For the demonstration of the methodological framework, a dataset of time-series of the private
wealth-to-income ratio of France, Germany, the United Kingdom and the United States of America has
been selected. The private wealth-to-income ratios of developed economies have been documented
recently (Piketty and Zucman 2014; Piketty 2014; Piketty and Zucman 2015). The data of the
above-mentioned papers shows that the wealth-to-income ratio has fluctuated grossly over time
in Europe, whereas it has been both lower and more stable in the US (Piketty and Zucman 2014).
The importance of the investigation of the long-term evolution of the wealth-to-income ratio is driven
by its implications to both the economic and the financial sector of a country. Understanding how
the level and structure of private wealth-income ratio have evolved in the long-run is one of the most
important economic questions; studying the evolution of wealth-income ratios can also help improve
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our knowledge on the structure of wealth, savings and investment (World Inequality Report 2018).
(Grossmann and Steger 2016) argued that rising wealth-to-income ratios appear to be an important
trigger for the long-term growth of the finance industry. A long-term increase in the wealth-to-income
ratio may change the functional income distribution to the advantage of capital income recipients
(Piketty 2014) and has important implications in the housing sector (Rognlie 2015). Finally, the evolution
of the private wealth-to-income ratio can offer insight to the evolution of the national wealth-to-income
ratio, as upward trends in national wealth-to-income ratios can exclusively been the result of the increase
of the private wealth-to-income (Piketty and Zucman 2014). Leading indicators at cross-country level
are important as they are frequently used as auxiliary forecasting tools in conjunction with econometric
models for a cross-country economic analysis (Moore 1975).

This study contributes to the existing literature on the detection of lead-lag relationships by
presenting the results of the joint application of the two methodologies on a common dataset and by
providing empirical evidence about their consistency in the short-run, in the log-run as well as about
the dynamics of the lead-lag behavior over time. The main findings of this study are the agreement
of the results of the two approaches in the long-run and the complementarity of the results of the
methods in the short-run. The findings of the paper suggest that the application of both methodologies
results in a more informative understanding of the dynamic nature of lead-lag relationships over time.
With regards to the application of the methodologies to the dataset of wealth-to-income ratio, this
paper contributes to the existing literature by providing new evidence on the lead-lag relationships
of the wealth-to-income ratio of France, Germany, the United Kingdom and the United States of
America both in the long-run and in the short-run. The empirical country-by-country comparison of
the private wealth-to-income ratios and the detection of lead-lag relationships among them enhances
our understanding about the underlying dependencies of the economies.

The article is organized as follows: Section 2 presents the literature review of the methodologies
for the detection of lead-lag relationships and Section 3 describes the data being analyzed. Section 4
presents the analytical methodological steps of the two methodologies towards a detailed identification
of lead-lag relationships and Section 5 includes the empirical results of the analysis and includes a
discussion on the complementarity of the methods. Section 6 concludes this paper and its findings.

2. Literature Review

This section focuses on previous empirical studies aiming the detection of lead-lag relationships
between economic time-series. The literature review is organized in two subsections; initially the
traditional approaches of the time domain are summarized, and then the more recent approaches of
the time-frequency domain, which have attracted the interest of researchers during the recent years,
are presented.

2.1. Time Domain Analysis

The studies to discover lead-lag relationships using a time domain analysis constitute the largest
part of the literature. Initially the investigations on linkages between time series were pursued
through simple correlation or rolling window correlation (Nijman and de Jong 1997; Granger and
Morgenstern 1970), however, it was fairly quickly understood that, unlike regression, correlation has
not a natural direction (Hoover 2008). Many empirical studies analyze multivariate systems with p
lags. For example, the vector autoregressive (VAR) model is a general framework used to describe the
dynamic relationship among a collection of covariance stationary time-series (Chung and Liu 1994;
Corhay et al. 1993). The Vector Error Correction (VEC) model can be seen as a restricted VAR designed
for use with non-stationary series that are known to be cointegrated (Baum 2013). By using a VAR or a
VEC model, the existence of non-zero and statistical significant lagged coefficients of the explanatory
variables determines the existence of lead-lag relationships of the involved time-series. Given the
dynamic nature of time-series, the above two models are usually accompanied by a first step to
determine the stationarity of the time-series using unit root tests or the order of integration of the series
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in order to determine whether the series stand in a long-run relationship between them; that is, that
they are co-integrated. The presence of cointegration suggests that the data should be modelled using
a VECM model, rather than using a VAR model.

According to Granger (1988), cointegration between two variables implies existence of long-run
causality for at least one direction. After this development, the discovery of lead-lag relationships has
been associated in many cases with the causal inference (Jackline and Deo 2011; Visvikis et al. 2002)
after fitting a VAR model to the data. The most common methodology of this category is the Granger
causality test which assesses the causal effects of one variable on another group of variables and vice
versa (Toda and Phillips 1994). More precisely, the Granger causality test can identify whether two
variables move one after the other or contemporaneously and they test includes a VAR model and an
F-test to jointly test for the significance of the lags on the explanatory variables.

Although the above mentioned time domain methodologies have been widely used, these classical
time-series methods can only be used for stationary time-series. Another limitation of these methods
lies in their inability to capture the dynamic nature of lead-lag relationships. Considering that the
underlying lead-lad relationships between the variables are unlikely to remain stable over time,
the traditional methods are inappropriate in the context of dynamic leadership behaviors.

2.2. Wavelet Analysis

Wavelet analysis appears particularly attractive because it is well suited to the analysis of
non-stationary time-series. The basic properties of the wavelet approach and characteristic examples
of its use in economic studies are reviewed here. The concept of wavelets was initially introduced to
economics and finance by (Ramsey and Lampart 1998) with the analysis of relationships between income
and expenditure. In the growing body of wavelet literature (Ramsey 1999; Gençay et al. 2002), recent
studies employing the wavelet methodology have identified co-movement and causality between oil
and renewable energy stock prices (Reboredo et al. 2017), dynamic properties regarding the relationship
between stock returns and inflation (Kim and In 2005) and link between oil prices and US dollar
exchange rates (Reboredo and Rivera-Castro 2013). The study of (Tonn and McCarthy 2010) used the
correlation in the wavelet domain in order to study the relationship between futures prices of natural
gas and oil. The wavelet analysis provided evidence that the prices of natural gas futures and oil futures
have high covariance and the volatility of neither time series consistently leads the other. The authors
in (Chang and Lee 2015) investigated the time-varying correlation and the cointegration relationship
between crude oil spot and futures prices using wavelet coherency analysis. Given the results of
the analysis, the authors provided reasons for the structural changes in oil prices and recommended
investment strategies corresponding to risk diversification. The authors in (Polanco-Martínez and
Abadie 2016) argued that from a practical point of view, oil time series can be not stationary and
involve heterogeneous agents who make decisions over different time horizons and operate on
different time scales (frequencies). Thus, the mathematical tool of wavelet transform, which can handle
non-stationary time series, is able to work in the combined time-and-scale domain. The dynamic
relationship among the time series of prices of seven oil commodities across different time horizons was
studies in (Polanco-Martínez et al. 2018b). The strong wavelet correlations revealed that heating oil,
diesel and kerosene maximize the correlation with respect to the other oil variables on different scales,
indicating that these products are the most dependent variables in the crude-product/price system.

The wavelet approach has been also used in frameworks of causality detection in economic
time-series. For instance, the linear and non-linear causality between spot and futures oil prices
examined by (Alzahrani et al. 2014). The study employed the wavelet transform and found
consistent bidirectional causality between spot and futures oil markets on different time scales.
In addition, (Polanco-Martínez et al. 2018a) studied the number of uni-directional and bi-directional
causalities of the EU peripheral stock markets by using a rolling-window wavelet correlation analysis
and non-linear causality tests for the pre-crisis and crisis periods. The analysis showed that the
direction of the cause-effect varies depending on the studied time period and considered time-scales.
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(Olayeni 2016) proposed a continuous wavelet transform method to localize causality in time and
frequency. The method was applied to analyze the time-frequency causal effects in the relationship
between the USA financial stress and economic activity and revealed that financial stress has been
causing economic activity.

Towards a more complete approach, many studies have employed the joint application of time
domain and time-frequency domain methodologies to examine the dynamic relationships of the
economic variables over time. For instance, (Ko and Lee 2015) used both the time and the frequency
domain to examine the link between economic policy uncertainty and stock price in USA. The wavelet
analysis revealed that the relationship of the variables changes over time exhibiting low to high
frequency cycles and the findings provided insight with regards to the policy uncertainty. Similarly,
another study employing a joint framework of the time domain and the time-frequency domain shed
light on the nonlinear relationships among variables of the Chinese stock market and the commodities
markets of crude oil and gold (Huang et al. 2016). The nonlinearity caused by hidden frequency
information was revealed using causality tests in different frequency bands.

Using the wavelet perspective, the dynamic lead-lag relationships in economic time-series are
analyzed mainly through the phase difference on the basis of a cross wavelet transform. A review of
such economic studies and the interpretations of the phase difference was presented in (Funashima 2017).
The authors in (Marczak and Beissinger 2016) used the wavelet concept of phase angle to determine
the lead-lag relationship between investor sentiment and excess returns and concluded that sentiment
is leading returns in the short-run but the opposite is observed after a three-month period. The wavelet
cross-correlation was also used to analyze the co-movement and the lead-lag relationship between
the stock markets of Germany, Austria, France and the United Kingdom resulting in the conclusion
that co-movement between stock market returns is a scale-dependent phenomenon. The empirical
study of Chen (2016) used similar methodology to find the lead-lag linkages between economic growth
and health progress in the USA. (Polanco-Martínez and Abadie 2016) contributed to the literature
on the lead-lag relationship between spot and futures crude oil prices by using a stochastic model to
estimate long-term futures. The relationships between the two variables was analyzed in different
time-scales (short, medium and long-term scales) using a wavelet correlation graphical tool. Overall,
the studies employing the wavelet analysis observe the lead-lag relationships in an intuitive way as
this methodological tool can assess whether the relationship varies across frequencies as well as how it
evolves over time.

3. Data

The data of this study is annual time-series of private wealth-to-income ratio of four developed
countries; namely France (WFR), Germany (WGE), the United Kingdom (WUK) and the United States
of America (WUS) over the period of 18700–2010. The data was retrieved from the World Wealth
and Income Database (WID Database 2017) and its main characteristics are summarized in Table 1.
The original paper documenting the construction of the WID Database is (Piketty and Zucman 2014).
The WID Database constitutes the most extensive database on the historical evolution of the world
distribution of income and wealth, both within and between countries (World Inequality Report 2018).
The private wealth-to-income ratio, whose calculation is based on the net private wealth which equals
the sum of the end-of-year market value of the wealth of households (including both financial and
non-financial assets), represents the net private wealth as a percentage of the national income and is
expressed as the nominal net wealth possessed per citizen of the nation in year t divided by the net
national nominal income in year t. The variables of wealth-to-income ratios do not rely on price indexes.
There are no missing observations in the time-series. According to the WID database, regarding WGE
in 1950–1990, the wealth-to-income ratio reflects the situation in West Germany; from 1991-on reflects
the situation in re-unified Germany. Figure 1 plots the evolution of the wealth-to-income ratios for
the four economies. A short description of Figure 1 follows. High values are observed in Europe in
the nineteenth century (600–700%) and in every country, there appears a fall at unusually low levels
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the decades before and after the World War I (WWI) and World War II (WWII). A gradual rise of
wealth-income ratios is observed in recent decades, from about 200–300% in 1970 to 400–600% in
2010. The graph shows that although the series do appear to move together, the pairwise relationships
fluctuate grossly over time; there are periods when there are significant deviations from a long-run
pattern of co-movement.

Table 1. Descriptive statistics of the dataset. WFR: France; WGE: Germany; WUK: the United Kingdom;
WUS: the United States of America.

Variable Mean Standard Deviation Min Max Observations

WFR 467.67 192.53 174.96 790.29 141
WGE 384.04 171.05 153.82 703.72 141
WUK 480.60 156.07 268.39 744.85 141
WUS 399.96 62.78 232.56 515.80 141
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The economic insights with regard to the selection of the dataset of wealth-to-income ratios are
the following: a comparative analysis of the lead-lag relationships of private wealth-to-income ratios
between four developed economies enhances our understanding about the underlying dependencies
of these economies. The long-term evolution of the wealth-to-income ratio has implications to both the
economic and the financial sector of a country (World Inequality Report 2018). In addition, the detection
of leading indicators at cross-country level is useful as the latter are frequently employed as auxiliary
forecasting tools in econometric models for cross-country economic studies (Moore 1975). The results of
the paper shed light on the dynamic nature of the relationship between the wealth-to-income ratios of
the four countries; they reveal changes in leadership in the short-run but static structures of leadership
in the long-run. The evidence from such a study is innovative as no other study, to the best of our
knowledge, focuses on this research question.

In addition, other advantages resulting from the selection of this dataset is that the dataset is
open source, publicly available and reproductible. Thus, validation and/or extension of the current
paperwork can be easily performed. As this is the first study, to our knowledge, that applies a
comparison of two different methodological concepts for the detection of lead-lag relations, a dataset
of annual time-series without complexity, such as seasonality or sensitivity due to high frequency
variations, is considered as appropriate for the purpose of the demonstration of the comparison as well
as for the interpretation of the findings.
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4. Methodology

4.1. Time Domain Analysis

In order to investigate the pairwise lead-lag relationships between the wealth-to-income ratios
of the countries using a time domain methodology, a bivariate econometric approach is employed.
Let Yt and Xt be two time-series representing the wealth-to-income ratio Wi, W j of two countries
i, j ∈ {FR, GE, UK, US} and i , j. For every pair of Yt and Xt included in the dataset, the following
methodological steps are applied:

• Investigation of the stationarity of Yt and Xt to determine the order of integration of the variables.
• Specification of the lag order to include in the cointegration analysis.
• Investigation of the cointegrating relationship between Yt and Xt.
• Estimation of the coefficients of the VEC model in order to determine the lead-lag relationship

between Yt and Xt.

Stationarity Test. The first step of the time domain methodology is to check the stationarity of the
time-series. The Augmented Dickey–Fuller (ADF) unit-root test (Dickey and Fuller 1979) is performed
on the original time series Yt and on the time-series ∆Yt where ∆ is the first-order difference operator.
The same procedure is followed for the time-series Xt. For the ADF test, the null hypothesis H0 is
that Yt contains a unit root or equivalently the time-series is non-stationary and the alternative H1 is
that Yt was generated by a stationary process. In fact, the ADF test assumes that the series follows an
AR(p) process where p is the number of lagged difference terms of the variable Yt in the regression.
As the usual practice when performing the ADF test, p > 0 in order to remove serial correlation in
the residuals of the regression, whereas in case of p = 0 the test corresponds to the standard (simple)
Dickey-Fuller test. The t-statistic is used to test H0 and finally the p-value for the test of H0 against H1

is reported.
The result of the stationarity test is important as it determines latter the choice of the bivariate

time-series analysis model to be used; either a VAR model or a VEC model. A VAR model is selected in
case that both time-series are integrated of order 0 (denoted as I(0)) whereas a VEC model is selected in
case that the time-series are integrated of order 1 (denoted as I(1)) and there is evidence of cointegration
among the series. The rest of the methodology sections continues with the regards to the case that both
Yt and Xt are I(1) variables as this is the case of the time-series of the paper’s dataset based on the
stationarity results.

Selection of optimal lag order. Before testing for co-integration or before fitting a VEC model,
the optimal number of lags, also known as lag order or lag length, should be specified for the pair of Yt

and Xt. The selection of optimal lag order requires attention because inference based on multivariate
model is dependent on its correctness (Hacker and Hatemi-J 2008). The optimal lag order is decided
based on the following three information criteria: the Final Prediction Error criterion (FPE) (Ljung 1999),
the Akaike’s information criterion (AIC) (Akaike 1973) and the Hannan and Quinn information criterion
(HQIC) (Hannan and Quinn 1979). As suggested by (Nielsen 2006), these lag-order selection methods
can be employed in case of I(1) variables. According to each one of the criteria, the optimal model is
selected as the one that minimizes the following score correspondingly:

FPE = det(
1
N

N∑
1

e(t, θ̂N)(e(t, θ̂N))
T
)

1 + k
N

1− k
N

 (1)

AIC = −2 · Lm + 2 · k (2)

HQIC = −2 · Lm + 2 · k · ln(ln(N)) (3)

where N is the sample size (i.e., the number of observations), e(t) is the nx1 vector of predition errors,
θ̂N are the estimated parameters, k is the number of estimated parameters in the model and Lm is the
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maximized log-likelihood of the model. Given the results of the above three scores, the optimal lag
order is selected as the number of lags suggested by the majority of the information criteria.

Testing for cointegration. The purpose of this step is to determine whether the pair of the I(1)
series Yt and Xt are cointegrated or not. In case of cointegration, the number of cointegrating vectors
existing between the variables is also computed. According to Engle and Granger (1987), a linear
combination of two or more non-stationary time-series may be stationary. The definition of a bivariate
cointegrating relation requires that there exist a linear combination of the I(1) variables that is I(0).
More specifically, if there are two parameters θ and ξ, θ, ξ ∈ R, |θ|, |ξ| < ∞, θ , 0 and ξ , 0, such that
θYt + ξXt is I(0), then Yt and Xt are cointegrated meaning that they move together in the long-run.
If such a stationary linear combination exists, this combination, known as the co-integrating equation,
is interpreted as a long-run equilibrium relationship among the variables. If Zt is a K × 1 vector of
I(1) variables, i.e., Zt = (Yt, Xt)

T for a set of K = 2 variables, the parameters a and b constitute the
cointegrating vector β, such that βZt is a vector of I(0) variables.

Let consider a VAR process with p lagged terms, denoted as VAR(p):

Zt = v + A1Zt−1 + · · ·+ ApZt−p + εt (4)

where A1, . . .Ap are K × K matrices of parameters, v is a K × 1 vector of constants (also known as
intercepts) and εt is K × 1 vector of error. Then, we may rewrite the VAR in the form of a VEC model:

∆Zt = v + ΠZt−1 +

p−1∑
i=1

Γi∆Zt−i + εt (5)

where Π =
∑ j=p

j=1 A j − Ik, Γi = −
∑ j=p

j=i+1 A j, v and εt remain as in (4). It worth noting that a VEC(q)
model can be converted to a VAR(p) model in levels with p = q+ 1. For definitions, the term “lag order”
in this paper refers to the order of the underlying VAR.

According to (Engle and Granger 1987), if all variables in Z are I(1), the matrix Π has rank
0 ≤ r ≤ K, where r is the number of cointegrating relations. Regarding r (also known as cointegrating
rank), there are the following cases:

• If r = 0, there is no cointegration among the non-stationary variables and a VAR in their first
differences is consistent.

• If r = K, all the variables in Zt are I(0) and a VAR in their levels is consistent.
• If 0 < r < K, then Π can be expressed as Π = αβ′ where α and β are (rxK) matrices of rank r.

The cointegration rank shows the number of cointegrating vectors. For instance, a rank of
1 indicates that one linearly independent combination of the non-stationary variables Yt and Xt

is stationary.
There are several different frameworks for estimation and inference in cointegrating systems.

The paper of (Maddala and Kim 1998) surveys all these methods. In this study, for determining
the number of co-integration relationships r, the Johansen’s method (Johansen 1995) is employed
as this method is recommended by several comparative studies including (Gonzalo 1994) and
(Hubrich et al. 2001). According to (Johansen 1995), the null hypothesis is that there are no more than
r cointegrating relations. The Johansen’s maximum likelihood estimator of the parameters of the
cointegrating VEC and two likelihood-ratio (LR) tests are applied for inference on r. These LR tests are
known as the trace statistic and the maximum-eigenvalue statistic because the log likelihood can be
written as the log of the determinant of a matrix plus a simple function of the eigenvalues of another
matrix. Let λ1, . . . , λK be the K eigenvalues used in computing the log likelihood at the optimum.
Johansen’s testing procedure starts with the test for zero cointegrating equations (i.e., a maximum rank
of zero) and then accepts the first null hypothesis that is not rejected. By using the null hypothesis
and restricting the number of cointegrating equations to be r or less implies that the remaining K − r
eigenvalues are zero. According to (Johansen et al. 2000), the trace statistic τ is:
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τ = −T
K∑

i=r+1

ln
(
1− λ̂i

)
(6)

where T is the number of observations and the λ̂i are the estimated eigenvalues. For any given value
of r, large values of the trace statistic are evidence against the null hypothesis that there are r or fewer
cointegrating relations in the VEC model. The rest of the methodology sections continues under the
assumption both Yt and Xt are I(1) and cointegrated as this is the case of the time-series of the paper’s
dataset based on the results of stationarity and cointegration tests. Thus, a VEC model, rather than a
VAR model, is to be fitted to the time-series during the next methodological step.

Estimation of the coefficients of the VEC model. Having determined that Yt and Xt are
cointegrated, the next step is to estimate the parameters of a bivariate VEC model for the two series.
The VEC model restricts the long-run behavior of the endogenous variables to converge to their
cointegrating relationships while allowing for short-run adjustment dynamics. The cointegration
term is known as the error correction term since the deviation from long-run equilibrium is corrected
gradually through a series of partial short-run adjustments. The following part of the methodology
assumes that there exists r cointegrating relationships between the variables of Zt, 0 < r < K and thus
Π can be expressed as Π = αβ′. The Equation (5) can be rewritten as:

∆Zt = v + αβ′Zt−1 +

p−1∑
i=1

Γi∆Zt−i + εt (7)

The parameters of interest in the above VEC model are:

• the parameters of the cointegrating matrix β,
• the parameters of the adjustment matrix α and
• the parameters of the short-run coefficient matrix Γ.

In the case of a bivariate VEC with 1 cointegrating equation, α, β and v are 1× 2 vectors, that is

α = [ αy αx ], β =[ βy βx ], v = [ vy vx ] and Γ is 2× 2 matrix given by Γi =

[
θyi θxi
ξyi ξxi

]
.

Based on the Equation (7), we express the individual variables Yt and Xt as follows:

∆Yt = vy + αy ·Φt−1 +

p−1∑
i=1

θyi · ∆Yt−i +

p−1∑
i=1

θxi · ∆Xt−i + εyt (8)

∆Xt = vx + αx ·Φt−1 +

p−1∑
i=1

ξxi · ∆Xt−i +

p−1∑
i=1

ξyi · ∆Yt−i + εxt (9)

where
Φt−1 = β′Zt−1 = βyYt−1 + βxXt−1 (10)

is the error correction term lagged one period (also known as the cointegration term).
An interpretation of the parameters of interest is given as follows. According to the theory of the

VEC model, the parameters of the cointegrating vector β show the long-run equilibrium relationships
between levels of variables. In other words, β contains the cointegrating relationship which represents
the linear combination of Yt and Xt. Considering the definition of the cointegration:

βyYt + βxXt is I(0) (11)

the parameters that to be estimated are two. However, if βyYt + βxXt is I(0), so is cβyYt + cβxXt for any
finite, nonzero, real number c. Thus, a normalization is performed and the coefficient of Yt in (11) is
unity. If Yt and Xt deviate from the long-run equilibrium, the error correction term will be nonzero
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and each variable adjusts to partially restore the equilibrium relation. The coefficients ay and ax,
also known as loading coefficients, measure how Yt and Xt react to deviations from the long-run
equilibrium. In other words, they measure the speed of adjustment of the endogenous variable Yt and
Xt correspondingly towards the equilibrium; the greater the coefficient, the higher speed of adjustment
of the model from the short-run to the long-run. Finally, the parameters of the matrix Γ show the
short-run changes occurring due to previous changes in the variables.

The lead-lag relationship between the two variables is decided based on the values of the
coefficients of the Equations (8) and (9). The following cases are possible:

• If the coefficients θ2i are non-zero or the error correction coefficient α1 has a significant value,
there is some information in Xt that will be assimilated in later values of Yt; meaning that Xt leads
Yt. More specifically:

# The existence of non-zero and significant coefficients θ2i in (8), i.e., the lagged coefficients
of ∆Xt in the regression of ∆Yt indicate that there is a short-run causality between Xt and
Yt: Xt causes Yt.

# The existence of a significant error correction coefficient α1 indicates that there is a long-run
causality between Xt and Yt: Xt causes Yt.

• If the coefficients ξ2i are non-zero or the error correction coefficient α2 has a significant value,
there is some information in Yt that will be assimilated in later values of Xt; meaning that Yt leads
Xt. More specifically:

# The existence of non-zero and significant coefficients ξ2i in (9), i.e., the lagged coefficients
of ∆Yt in the regression of ∆Xt, indicates a short-term causality; Yt causes Xt.

# The existence of a significant error correction coefficient α2 indicates that there is a long-run
causality; Yt causes Xt.

• If all coefficients θ2i, ξ2i, α1, α2 have significant values, there is a two-directional relationship
between the variables Yt and Xt.

4.2. Wavelet Analysis

In this part of the methodology, the wavelet concept is used to characterize how the relationship
of two time-series evolves over time. More specifically, the continuous cross-wavelet transform is used
to investigate the evolution of covariance of two time-series and the phase analysis of the wavelet
coherence is employed to characterize the co-movement of the two series in the time-frequency domain.
In the bibliography, there are many wavelet functions that one may choose from and many more that
can be designed. In this paper, the Morlet wavelet function (also known as Gabor wavelet) is used as it
is frequently employed in economic and financial studies to study the dynamic relationship of a pair of
variables. In the following paragraphs, the concept of wavelet transform is briefly presented.

The basic Morlet wavelet function (also called mother wavelet), which can be seen as a Gaussian
modulated harmonic function, is defined as:

ψ(t) = exp(iω0t)exp(−(t/a)2) (12)

where ω0 is a non-dimensional frequency and a is a measure of the spread or support and ψ(t) satisfies
the condition

∫
∞

−∞
|ψ(t)|2 dt < ∞ and

∫
∞

−∞
ψ(t) dt = 0. Traditionally, the parameters w0 and a are defined

as (Strang and Nguyen 1997): a =
√

2 and w0 = π
√

2/ln2. This is the basic wavelet function and based
on it, a family of wavelet functions can be constructed by varying the wavelet scale and translating
along the time axis, as follows:

ψτ,s(t) =
1
√

s
ψ
( t− τ

s

)
(13)
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where 1
√

s
is a normalization constant that guarantees that the wavelet has unit variance and where τ

and s are the translation (localization) and scale parameters that determine the exact position of the
wavelet and wavelet dilution correspondingly. The scaling factor s controls the wavelet’s width and
the translation parameter τ controls the wavelet location (sliding) in the time axis.

The Morlet wavelet transformation for a time-series Xt at scale s and translation τ is defined:

Wx(τ, s) =
∫
∞

−∞

Xt
1
√
|s|
ψ∗

( t− τ
s

)
dt (14)

where ψ∗(t) denotes the complex conjugate of the Morlet wavelet ψ(t). In addition, the wavelet power
spectrum is given by WPSx(τ, s) = |Wx(τ, s)|2 and can be interpreted as a measure of the local variance
for the series at each time scale.

The cross-wavelet transform of two time-series, Xt and Yt, is defined as follows:

WXY(τ, s) = WX(τ, s)W∗Y(τ, s) (15)

where WX(τ, s) and WY(τ, s) are the Morlet wavelet transformation of the time-series Xt and Yt

respectively and ∗ denotes the complex conjugate. The cross-wavelet spectrum is given by XWPSXY =

|WXY(τ, σ)| and can be interpreted as the local covariance of the two series at each time and frequency.
The complex wavelet coherency is defined as follows:

ρXY =
S(WXY)

[S(|WX |)2)S(|WY|)
2)]

1/2
(16)

where S represents a smoothing operator for both time and scale.
The wavelet coherence RXY is the absolute value of the complex wavelet coherence ρXY and is

given by:

RXY =
|S(WXY)|

[S(|WX |)2)S(|WY|)
2)]

1/2
, 0 ≤ RXY ≤ 1 (17)

RXY resembles the correlation coefficient with low values providing evidence of weak correlation
between two time-series and high values indicating strong correlation between two time-series.
The wavelet coherence allows for a three-dimensional analysis, considering the time and frequency
components as well as the strength of correlation. Thus, the wavelet coherence allows the detection of
local correlation between the two series, the identification of structural changes over time as well as
the short-run and long-run relations across frequencies. The theoretical distribution of the wavelet
coherence is unknown, so statistical significance of its values is obtained using Monte Carlo procedures
(Torrence and Compo 1998). Considering the Equation (17), the wavelet coherence is a positive value,
so we cannot distinguish between positive and negative correlation. However, the phase difference,
ϕXY between two time-series is used to capture positive or negative correlation and the lead-lag
relationships between the two time-series in the time-frequency space. In the polar form, the complex
wavelet coherence can be expressed as ρXY = |ρXY| exp (iϕXY).

The wavelet coherence phase difference (or phase angle) is the angle of the complex wavelet
coherence and is defined as:

ϕXY(τ, s) = tan−1
(
={S(WXY(τ, s))}
<{S(WXY(τ, s))}

) , ϕXY ∈ [−π, π] (18)

where = and < are the imaginary and real part of the smooth power spectrum respectively. We
distinguish the following cases (Tiwari et al. 2013):

ϕXY =


∈ (0, π/2), Xt, Yt move in− phase and Yt leads Xt

∈ (−π/2, 0), Xt, Yt move in− phase and Xt leads Yt

∈ (π/2,π), Xt, Yt move anti− phase and Xt leads Yt

∈ (−π/2,−π), Xt, Yt move anti− phase and Yt leads Xt

(19)
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Phase difference between two time-series are indicated in the wavelet coherence plots by means
of arrows. Here is a short description of the notation of the phase arrows. Arrows pointing to the
right indicate that Xt and Yt move in-phase (analogous to positive correlation); arrows to the right and
up mean that Yt is leading whereas arrows to the right and down mean that Xt is leading. Arrows
pointing to the left indicate that Xt and Yt move anti-phase (analogous to negative correlation); arrows
to the left and up mean that Xt is leading whereas arrows to the left and down mean that Yt is leading.

5. Empirical Results

This section presents the results of the application of the above described methodologies to the
dataset. Initially, the empirical evidence using the time domain methodology is presented and the
results of the wavelet analysis follow. A discussion on the consistency and on the complementarity of
the two approaches is presented at the end of the section.

5.1. Time Domain Analysis

The results of the ADF unit root tests are reported in Table 2. A series of tests was performed for
the variables WFR, WGE, WUK, WUS as well as their first difference and the number of autoregressive
lags ranged in {0, 1, 2} in order to determine the order of integration. The critical values of the t-statistic
based on the tables in Fuller (1996) are −2.577 (10% critical value), −2.887 (5% critical value) and −3.497
(1% critical value). Statistically significant values of the t-statistic are indicated at *** 99% confidence,
** 95% confidence or * 90% confidence in Table 2. The decision of inclusion of trend and/or intercept in
the implementation of the ADF test, involved a combination of theory and visual inspection of the
data. There is no evidence in the bibliography that the ratio of wealth-to-income favors a particular
null hypothesis in order to choose trend and/or intercept based on that. In addition, the data do not
show a clear upward trend over the period of years 1870–2010. Thus, the ADF tests performed did not
include intercept and linear time trend.

Table 2. Results of unit root tests.

Unit Root Tests

Variable Lag t-Statistic p-Value

WFR

0 −1.162 0.6899
1 −1.561 0.5032
2 −1.258 0.6481

∆WFR

0 −11.193 *** 0.00
1 −7.377 *** 0.00
2 −5.759 *** 0.00

WGE

0 −1.910 0.3274
1 −1.74 0.4131
2 −1.393 0.5856

∆WGE

0 −8.422 *** 0.00
1 −5.617 *** 0.00
2 −5.101 *** 0.00

WUK

0 −1.381 0.5915
1 −1.816 0.3728
2 −1.685 0.4387

∆WUK

0 −6.378 *** 0.00
1 −6.988 *** 0.00
2 −5.765 *** 0.00

WUS

0 −2.236 0.1933
1 −2.673 * 0.0789
2 −2.502 0.1151

∆WUS

0 −9.991 *** 0.00
1 −8.195 *** 0.00
2 −6.826 *** 0.00
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For all four countries, the ADF test indicates that the null hypothesis, regarding the presence
of a unit root, is rejected for the original time-series (WFR, WGE, WUK and WUS). Thus, the series are
non-stationary at level. When the ADF test is performed on the first differences of the series (∆WFR,
∆WGE, ∆WUK and ∆WUS), there is evidence of stationarity. Thus, we consider that all the original
series are integrated of the same order, i.e., I(1). The same conclusion is retrieved when performing
ADF tests including linear trend and/or intercept.

In the next step, the selection of appropriate lag length has been performed. Table 3 presents
the scores of the three information criteria (FPE, AIC and HQIC) in terms of different lag orders
(lag ∈ {0, 1, 2, 3}) for each pair of variables. The minimum values for each criterion is indicated by “*”.

Table 3. Score results of the criteria for lag order selection regarding the pairs of variables: WFR −WGE,
WFR −WUK, WFR −WUS, WGE −WUK, WGE −WUS and WUK −WUS.

Selection of Lag Order

WFR −WGE WFR −WUK WFR −WUS

Lag FPE AIC HQIC FPE AIC HQIC FPE AIC HQIC

0 6.7 × 107 23.694 23.7113 1.6 × 108 24.5876 24.6049 7.2 × 107 23.7673 23.7846
1 281,199 18.2226 18.2745 491,706 18.7814 18.8333 460,394 18.7156 18.7675
2 246,603 18.0912 18.1778 * 320,585 18.3536 18.440 * 426,324 * 18.6386 * 18.7253 *
3 24,952 * 18.0803 * 18.2016 314,823 18.3353 18.4566 447,804 18.6877 18.8089
4 253,046 18.1176 18.2716 303,003 * 18.2969 * 18.4528 466,883 18.7292 18.8851

WGE −WUK WGE −WUS WUK −WUS

Lag FPE AIC HQIC FPE AIC HQIC FPE AIC HQIC

0 1.3 × 108 24.3869 24.4042 5.7 × 107 23.5357 23.553 3.6 × 107 23.0649 23.0822
1 206,577 17.9142 17.9661 202,704 17.8952 17.9472 296,622 18.276 18.3279
2 127,167 17.4289 17.5156 178,230 17.7665 17.853 * 200,433 17.8839 17.9705 *
3 120,902 * 17.3783 * 17.4996 * 175,691 * 17.7521 * 17.8733 201,810 17.8907 18.0119
4 126,803 17.4258 17.5817 183,276 17.7941 17.95 199,470 * 17.8788 * 18.0347

As determined by the most of the information criteria, the optimal lag order for the pair WFR −WGE
is 3, for the pair WFR −WUK is 4, for the pair WFR −WUSA is 3, for the pair WGE −WUK is 3, for the pair
WGE −WUSA is 3 and for the pair WUK −WUS is 4. The above mentioned lag orders are used for the
cointegration analysis and for the fitting of the bivariate VEC models.

Following, the cointegration for each pair of variables has been tested using the Johansen’s trace.
The results of these tests are shown in the Table 4. The first column of the Table 4 is the maximum
rank, i.e., number of cointegrating relationships, used in the null hypothesis of the Johansen’s testing
procedure. The rest columns present the trace statistic for each pair of variables in the dataset.
The statistically significant values of the trace statistic are indicated by “*”. For the tests, the 5% critical
value of the trace statistic is 15.41 for maximum rank = 0 and 3.76 for maximum rank = 1.

Table 4. Results of the Johansen’s tests for cointegration.

Trace Statistic of Johansen Test

Maximum Rank WFR−WGE WFR−WUK WFR−WUS WGE−WUK WGE−WUS WUK−WUS

0 16.4989 24.0862 25.371 19.8358 17.2377 21.0002
1 1.8499 * 2.6225 * 3.76 * 2.1310 * 1.997 * 2.6198 *

For example, regarding the relationship between WFR −WGE, the trace statistic at maximum
rank = 0 equals 16.4989 which exceeds its critical value of 15.41, thus, we reject the null hypothesis
of no cointegrating equations. In contrast, when testing for maximum rank = 1, equals 1.8499 which
is less than its critical value of 3.76, so, we cannot reject the null hypothesis that there at most 1
cointegrating equation. As Johansen’s method for estimating the maximum rank accepts the first
rank for which the null hypothesis is not rejected, we accept that the rank equals 1 for WFR −WGE.
Based on the results of the cointegration tests and considering the rest pairs of variables, we conclude



Economies 2019, 7, 28 14 of 27

that there is one cointegrating equation for every pair. Thus, each pair of variables has a long-run
equilibrium relationship. However, in the short-run there may be deviations from this equilibrium and
the error correction mechanism of a VEC model provides a means to reconcile the short-run and the
long-run behavior.

The estimated coefficients of the bivariate cointegrating VEC models are presented in the
Tables 5–10 for each pair of variables respectively. As an example, the description and interpretation
of the VEC model between ∆WFR and ∆WGE is analyzed following. The estimated parameters of
this cointegrating VEC model is presented in Table 6. Table 6 contains the estimates of the short-run
coefficients Γ, the estimates of the error correction parameters α and the constant v, along with their
standard errors presented in parenthesis. The second (lower) part of Table 6 presents the estimated
parameters of the cointegrating vector for this model; also here the standard errors are shown in
parenthesis. Statistically significant parameters are indicated at *** 99% confidence, ** 95% confidence
or * 90% confidence. Based on Table 6, the dynamics of the short-run and the long-run relationship
between WFR and WGE are analyzed as follows. In the equation of ∆WFR, the existence of a statistically
significant coefficient of the error correction term indicates the existence of a long-run causality between
WFR and WGE. This causality is running from WGE to WFR. In other words, the changes in WFR can
be explained by the changes in WGE. The negative sign of the coefficient represents the negative
feedback necessary when WFR is too high to bring it back towards the WGE levels. The absolute
value of the estimated coefficient αFR of the error correction term indicates the rate of convergence
to the equilibrium per year. More precisely, the speed of adjustment of any disequilibrium towards
the long-run equilibrium is that 13.52% of the disequilibrium is corrected each year. As expected,
the adjustment parameters αFR and αGE have adverse signs indicating the two adjustment directions
towards the equilibrium. In the equation of ∆WGE, the positive loading coefficient implies that when
the value of WFR is too high, the WGE adjusts toward WFR at the same time that WFR is adjusted.
Regarding the estimated cointegrating equation, there is the normalized coefficient of unity on WFR

and an estimated coefficient of −1.2154 on WGE and it is significantly different from zero. Thus, we
can conclude that the linear combination WFR − 1.2154 WGE is a I(0) variable in the long-run. It worth
noting that the significance of the coefficient of the lagged error correction term and the significant
coefficient estimated in the cointegrating equation indicates that a VAR model in first differences
of the variables WFR, WGE would result in inconsistent estimates. Finally, regarding the short-run
relationship between the variables, the estimated coefficients θGE, t−1 of ∆WGE lagged one period in
the ∆WFR equation are statistically significant at 90% confidence level indicating the presence of a
short-run causality from WGE to WFR.

Regarding the long-run relationships, Tables 5–10 show that the cointegration equations for all
pairs of the studied variables are highly significant at 99% confidence. The long-run relationship for
WFR −WUK is estimated as (1, −0.9848) with speed of adjustment −0.1220, for WFR −WGE is estimated
as (1, −1.2154) with speed of adjustment −0.1352, for WFR −WUS is estimated as (1, −1.1670) with speed
of adjustment −0.0460, for WGE −WUK is estimated as (1, −0.8119) with speed of adjustment −0.0628,
for WGE −WUS is estimated as (1, −0.9265) with speed of adjustment −0.0188 and for WUK −WUS is
estimated as (1, −1.1875) with speed of adjustment −0.0294. The negative and statistically significant
value of the error correction term (99% confidence for the first 4 relationships and 90% confidence for
the latter 2 relationships) indicates the existence of a long-run causality between the pairs of variables.
More specifically, the results provide evidence that in the long-run WUK leads both WFR and WGE, WGE
leads WFR, WUS leads the variables of WFR, WGE and WUK. In addition, the estimated cointegration for
WFR and WGE exhibits the largest error correction mechanism (−0.1352).

Regarding the short-run relationships and according to the results of Tables 5–10, there is a
unidirectional short-run causality running from WGE to WFR as indicated by the coefficient θGE, t−1 in
the equation of WFR, there exists a bidirectional (two-way feedback) relationship between WFR and
WUK and a bidirectional relationship between WUS and WUK as well.
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Table 5. The estimates of the parameters of the bivariate cointegrating VEC model for the series of
∆WFR and ∆WUK (upper part) and of the cointegrating equation for this model (lower part).

Coefficients of VEC Model for ∆WFR and ∆WUK

Dependent: ∆WFR, Independent: ∆WUK Dependent: ∆WUK, Independent: ∆WFR

αFR −0.1220 *** (0.0321) αUK 0.01851 (0.0235)
θFR, t−1 0.2176 *** (0.0819) ξFR, t−1 −0.1057 * (0.0571)
θFR, t−2 0.0365 (0.0795) ξFR, t−2 0.1426 ***(0.0553)
θFR, t−3 0.1373 * (0.0766) ξFR, t−3 0.0598 (0.0534)
θUK, t−1 −0.1125 (0.1254) ξUK, t−1 0.7065 *** (0.0875)
θUK, t−2 0.3099 * (0.1467) ξUK, t−2 −0.2314 **(0.1023)
θUK, t−3 −0.3419 *** (0.1275) ξUK, t−3 0.0327 (0.0890)

Coefficients of cointegrating equation

WFR 1
WUK −0.9848 *** (0.0365)

Table 6. The estimates of the parameters resulted from the bivariate cointegrating VEC model for the
series of ∆WFR and ∆WGE.

Coefficients of VEC model for ∆WFR and ∆WGE

Dependent: ∆WFR, Independent: ∆WGE Dependent: ∆WGE, Independent: ∆WFR

αFR −0.1352 *** (0.0502) αGE 0. 0498 (0.0315)
θFR, t−1 0.1127 (0.0900) ξFR, t−1 −0.0074 (0.0565)
θFR, t−2 0.0306 (0.0827) ξFR, t−2 0.0543 (0.0519)
θGE, t−1 0.2510 * (0.1374) ξGE, t−1 0.2485 *** (0.0859)
θGE, t−2 0.1367 (0.1406) ξGE, t−2 0.2254 ***(0.0883)

Coefficients of cointegrating equation

WFR 1
WGE −1.2154 *** (0.0311)

Table 7. The estimates of the parameters resulted from the bivariate cointegrating VEC model for the
series of ∆WFR and ∆WUS.

Coefficients of VEC model for ∆WFR and ∆WUS

Dependent: ∆WFR, Independent: ∆WUS Dependent: ∆WUS, Independent: ∆WFR

αFR −0.0460 *** (0.0171) αUS 0.0095 (0.0132)
θFR, t−1 0.0880 (0.0806) ξFR, t−1 0.0887 (0.0621)
θUS, t−1 −0.0452 (0.1104) ξUS, t−1 0.1756 ** (0.0866)

Coefficients of cointegrating equation

WFR 1
WUS −1.1670 *** (0.1342)

Table 8. The estimates of the parameters resulted from the bivariate cointegrating VEC model for the
series of ∆WGE and ∆WUK.

Coefficients of VEC model for ∆WGE and ∆WUK

Dependent: ∆WGE, Independent: ∆WUK Dependent: ∆WUK, Independent: ∆WGE

αGE −0.0628 *** (0.0199) αUK 0.01458 (0.0227)
θGE, t−1 0.2129 *** (0.0790) ξGE, t−1 −0.0630 (0.0901)
θGE, t−2 0.2612 *** (0.0792) ξGE, t−2 0.1168 (0.0903)
θUK, t−1 0.0549 (0.0736) ξUK, t−1 0.6908 *** (0.0839)
θUK, t−2 −0.0831 (0.0766) ξUK, t−2 0.2274 ***(0.0873)

Coefficients of cointegrating equation

WGE 1
WUK −0.8119 *** (0.0441)
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Table 9. The estimates of the parameters resulted from the bivariate cointegrating VEC model for the
series of ∆WGE and ∆WUS.

Coefficients of VEC model for ∆WGE and ∆WUS

Dependent: ∆WGE, Independent: ∆WUS Dependent: ∆WUS, Independent: ∆WGE

αGE −0.0188 * (0.0119) αUK 0.0127 (0.0146)
θGE, t−1 0.2256 *** (0.0804) ξGE, t−1 0.0351 (0.1060)
θGE, t−2 0.2425 *** (0.0806) ξGE, t−2 0.1081 (0.1063)
θUS, t−1 −0.326 (0.0652) ξUS, t−1 0.1703 ** (0.0860)
θUS, t−2 0.468 (0.065) ξUS, t−2 −0.0784(0.0868)

Coefficients of cointegrating equation

WGE 1
WUS −0.9265 *** (0.1780)

Table 10. The estimates of the parameters resulted from the bivariate cointegrating VEC model for the
series of ∆WUK and ∆WUS.

Coefficients of VEC model for ∆WUK and ∆WUS

Dependent: ∆WUK, Independent: ∆WUS Dependent: ∆WUS, Independent: ∆WUK

αUK −0.0294 * (0.0160) αUK 0.0233 (0.0188)
θUK, t−1 0.7220 *** (0.0861) ξUK, t−1 0.0351 ** (0.1060)
θUK, t−2 −0.2701 *** (0.1026) ξUK, t−2 −0.12579 (0.1203)
θUK, t−3 0.0831 (0.0876) ξUK, t−3 0.2234 **(0.1027)
θUS, t−1 −0.0920 (0.0739) ξUS, t−1 0.1205 (0.0866)
θUS, t−2 0.0778 (0.0747) ξUS, t−2 −0.8500 (0.0876)
θUS, t−3 −0.1644 *(0.0753) ξUS, t−3 −0.8544 (0.0883)

Coefficients of cointegrating equation

WUK 1
WUS −1.1875 *** (0.1080)

5.2. Wavelet Analysis

This subsection presents the results obtained by the application of the wavelet analysis.
The computation of the wavelet spectrum of the uni-variate case (namely, the wavelet spectrum
of the wealth-to-income ratio of each one of the four countries) and the bi-variate case (namely,
the cross-wavelet spectrum for every pair of wealth-to-income ratio), as well as the wavelet phase
angle values has been carried out in MATLAB using the “wavelet coherence toolbox”cdescribed in
(Grinsted et al. 2004). The source code of this toolbox is open source, freely available under the MIT
copyright license and can be found in the webpage of (Grinsted 2014).

Figure 2 presents the wavelet power spectrum of WFR, WGE, WUK and WUS respectively. Although,
the individual wavelet power spectrums do not bear any information for the lead-lag relationships
between the pairs of the variables, they are presented as they form the basis for the wavelet coherence
(WTC). In all plots of Figure 2, the time dimension is displayed on the horizontal axis and the frequency
dimension, i.e., period cycles, is presented on the vertical axis. The frequency is classified into four
bands: 1–4, 4–8, 8–16 and 16–32 years frequency bands. These frequency bands can be described as
short-run, medium-run, long-run and very long-run periods (Chen 2016). The power is presented by
color, ranging from the blue (low power) to yellow (high power). As the time-series are of finite length,
errors may occur at the beginning and end of the wavelet power spectrum; the cone of influence (COI),
shown with thick black lines, indicates the region affected by the edge effects. As the results outside
the COI region may not be reliable (Aguiar-Conraria and Soares 2014), this study focuses only on
the wavelet power spectrums included in the COI. Regarding the significance levels of the wavelet
power spectrum, the null hypothesis is defined as follows: it is assumed that the time series has a
mean power spectrum; if a peak in the wavelet power spectrum is significantly above this background
spectrum, then it can be assumed to be a true feature with a certain percent confidence. For definitions,
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“significant at the 5% level” is equivalent to “the 95% confidence level” and implies a test against a
certain background level, while the “95% confidence interval” refers to the range of confidence about a
given value. The thick contoured closed regions in the plots of Figure 2 indicate the 95% confidence
level for the corresponding spectrum. For example, in Figure 2, the 95% confidence level for WFR is
shown by the thick contour indicating that during 1900–1950 the variance in the 16–32 year band is
significant at 95% confidence level. Regarding WGE, a similar result is presented during 1900–1940.
For WFR and WUK, the variance shows a gradual increase with period, primarily during 1900–1970
and there are a few isolated significant regions around the cycle of 4 years. In all plots of Figure 2,
the significant volatilities at difference frequency bands identified over various periods suggest that
WWII is likely to have influenced the wealth-to-income ratio in all ranges of frequency bands (from
short to very long-run) in all four countries.

In order to investigate the pairwise lead-lag relationships between the four studied variables,
Figure 3 presents the WTC between all the pairs of the studied variables. As the wavelet coherence
finds regions in the time-frequency plane where the time-series co-vary, there are high correlations
at 5% significant level in the 16–32 year band during the period 1900–1960. Considering that there
exists one value of the wavelet phase difference for every combination of time point (year in the x-axis)
and frequency band (point in the y-axis), the arrows in Figure 3 represent a subset of the values of
the phase angle across blocks of years and across blocks of frequency bands. This representation
is performed for visualization purposes and in addition, only values of wavelet phase difference
where the underlying wavelet coherence is > 0.5 are presented. The cross-wavelet transform between
WFR and WGE and between WFR and WUK are analyzed following as examples and the dynamics of
the significant lead-lad relationships between all variables of the study are summarized in Table 11.
Regarding the first example, Figure 3 demonstrates that WFR and WGE move in-phase (i.e., the phase
difference approximately equals 0) in the long-run and in the very-long run and WGE leads WFR.
An isolated significant cluster around 1970 at the frequency band of 4–8 years indicates a significant
positive (in-phase) relationship between the WFR and WGE which may be related to the historical fact
of the creation of the European Economic Community in 1969. Regarding the second example pair,
the four largest clusters of significant correlations indicate the following cases; WFR and WUK move
anti-phase in the short-run around 1915 and around 1945 (i.e., around WWI and WWII respectively)
where WFR leads WUK, they move in-phase in the medium-run around 1980 where WUK leads WFR,
and they move in-phase where WUK leads WFR in the very long-run.

In order to obtain a detailed representation of phase angle values and in order to reduce the
complexity in its representation, it is useful to derive the tendency in the relationship between the
series in the time dimension and scale dimension. For that purpose, based on the calculation of the
wavelet phase difference for every combination of time point (year) and frequency point (frequency
band), we focused on the statistically significant values of phase angle and then we averaged the phase
angle values over time separately for each frequency band. Due to space limitations, we show in
detail only the case of the plots of the phase angle for the pair of WFR and WUK in Figure 4. Figure 4
includes three plots of the phase angle for the frequency band 1–4 years, 4–8 years and 16–32 years
respectively; the frequency band of 8–16 years includes no statistically significant phase angle values.
For example, in the medium-run WFR leads in the periods 1902–1920 and 1945–1948 whereas WUK

leads in the periods 1879–1881, 1939–1943 and 1980–1988. The lead-lag results derived from the
detailed analysis of the phase angle for the above-mentioned pair and for the rest pairs of the study are
presented in Table 11. In Table 11, a lead-lag relationship is described in terms of a specific timescale
(frequency band), a specific time period (indicating by starting and ending year) and the leading
variable. The correlation between the variables, either positive (in-phase) or negative (anti-phase)
is also presented in parenthesis. The results indicate that the leading variable in all relationships is
not static over time but it is differentiated depending on the period and on the timescale. In the very
long-run, the conclusions driven by the wavelet analysis are that WGE leads WFR, that WUK leads both
WGE and WFR, and that WUS leads WGE, WFR and WUK.
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Table 11. Presentation of the lead-lag relationships for all pairs of the studied variables based on the
phase angle difference of the wavelet coherence.

WFR −WGE

Timescale Years Leading

1–4 years 1904–1910 WFR (positive)
2007–2010 WGE (negative)

4–8 years 1970–1977 WGE (positive)

8–16 years
1902–1905 WFR (positive)
1906–1937 WGE (positive)
1938–1941 WFR (positive)

16–32 years 1889–1968 WGE (positive)

WFR −WUK

Timescale Years Leading

1–4 years

1874–1879 WUK (positive)
1914–1916 WFR (negative)
1936–1938 WUK (negative)
1943–1951 WFR (negative)
1984–1986 WFR (negative)
1999–2002 WFR (positive)
2006–2009 WFR (positive)

4–8 years

1879–1881 WUK (positive)
1902–1920 WFR (negative)
1939–1943 WUK (negative)
1945–1948 WFR (negative)
1980–1988 WUK (positive)

16–32 years 1895–1991 WUK (positive)

WFR −WUS

Timescale Years Leading

1–4 years 1959–1962 WUS (positive)
1982–1990 WFR (negative)

4–8 years 1991–2004 WUS (positive)

8–16 years 1947–1951 WFR (negative)
1991–1997 WUS (positive)

16–32 years 1909–1993 WUS (positive)

WGE −WUK

Timescale Years Leading

1–4 years
1907–1909 WUK (positive)
1922–1924 WUK (negative)
1966–1975 WGE (positive)

4–8 years 1875–1877 WGE (positive)
16–32 years 1895–1969 WUK (positive)

WGE −WUS

Timescale Years Leading

1–4 years
1981–1896 WUS (positive)
1956–1961 WUS (positive)
1966–1968 WGE (positive)

4–8 years 1938–1955 WUS (positive)
8–16 years 1942–1952 WUS (positive)

16–32 years 1901–1966 WUS (positive)

WUS −WUK

Timescale Years Leading

1–4 years 1930–1935 WUK (positive)
1983–1987 WUK (positive)

4–8 years 2000–2010 WUS (positive)
8–16 years 1887–1905 WUK (positive)

16–32 years 1889–1989 WUS (positive)
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Figure 4. Plot of the phase angle of the wavelet coherence between WFR and WUK for the three frequency
bands respectively; 1–4 years (up), 4–8 years (middle), 16–32 years (down). Red dots represent the
averaged phase angle over time and blue lines represent the corresponding variance.

Table 11 summarizes the lead-lag relationships between the six studied relationships where only
the periods of significant correlation are presented. The relationship of each pair of variables is captured
in terms of a specific timescale and the leading variable is indicated. The correlation between the two
variables, either positive (in-phase) or negative (anti-phase), is presented in parenthesis. The results
indicate that the leading variable in all relationships is not static over time and it is differentiated
depending on the period and on the timescale. In the timescale of 16–32 years, the conclusions driven
by the wavelet analysis are that WGE leads WFR, that WUK leads both WGE and WFR, and that WUS
leads WGE, WFR and WUK.
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5.3. Comparison of the Two Methodologies

To uncover the behavior of the lead-lag relationship between pairs of time-series two different
concepts are employed. The fitting of a VEC model to the non-stationary but cointegrated series
provides evidence of both the short-run relation and existence of a long-run equilibrium relation
between the independent and dependent variable. In addition, the model computes the speed of
adjustment of any disequilibrium towards the long-run equilibrium; it can also be seen as the rate of
convergence to the equilibrium state per time cycle (i.e., per year in case of annual time-series). On the
other hand, the computation of the phase angle of wavelet coherence offers two main advantages;
first, it uncovers the dynamic patterns between the variables by allowing for time-varying leadership
between the independent and dependent variable and second, it decomposes the lead-lag relationship
over various time horizons. In order to compare the time horizon of the long-run equilibrium of the
VEC model to the timescales of the wavelet analysis, we consider that the long-run equilibrium of
the first methodology corresponds to the timescale of 16–32 years of the second methodology. In the
following, the term long-run refers to the long-run equilibrium of the VEC model.

The application of the methodologies to the wealth-to-income ratios of four developed economies
yields several important results. First, the long-run results of the two methodologies are consistent, i.e.,
WGE leads WFR, that WUK leads both WGE and WFR, and that WUS leads WGE, WFR and WUK. Regarding
the series of WFR and WGE, for example, both methods confirm the leadership of WGE towards WFR in
the long-run. The VEC model provides evidence that the linear combination WFR − 1.2154 WGE is an
I(0) variable in the long-run with speed of adjustment −0.1352 and this result is significant at the 95%
confidence level. The coefficient of the error correction term in the ∆WFR equation has a statistically
significant and negative value indicating that causality runs from WGE to WFR. The examination of
the causal relationship between WFR −WGE based on the phase angle statistics reveals that WGE leads
WFR over the period 1889 – 1968 in the timescale of 16–32 years and this result is significant at the
95% confidence level. When comparing the short-run results derived from the two methodologies,
the VEC model detects a short-run causality from WGE to WFR as the lagged one period coefficients of
∆WGE is statistically significant at 90% level of significance in the ∆WFR equation. From the wavelet
perspective of analysis, a causality from WGE to WFR is detected over the period 1970–1977 in the
timescale of 4–8 years. Table 12 presents a comparative summary of the main statistically significant
findings of the two methodologies; regarding the time domain methodology the long-run and the
short-run results (if any) are presented and regarding the time-frequency domain methodology the
results in terms of the long-run, the short-run and the medium-run are summarized. Table 12 as well
as the detailed results of the two methodologies presented in Sections 5.1 and 5.2 suggest that the
lead-lag relationship between two time-series is best uncovered using methods both from the time and
from the time-frequency domain. The contribution of the phase angle analysis of wavelet coherence
is especially useful in cases where an altering in leadership takes place over time; an example is the
relationship between WFR −WUK where in the timescale of 4–8 years WFR leads WUK in 1902–1920 and
1945–1948 whereas WUK leads WFR in 1879–1881, 1939–1943 and 1980–1988. Thus, we conclude that
the two methodologies bear complementary information regarding the relationship of the variables
and the use of both a time domain and a time-frequency domain approach provides a more detailed
understanding in the context of time-varying lead-lag effects.
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Table 12. Main findings of the two methodologies regarding the lead-lag relationships for all pairs of
the studied variables.

Relationship Evidence from the Time Domain Evidence from the Time-Frequency Domain

WFR −WGE

Long-run: WGE leadership, speed of
adjustment −0.1352
Short-run: causality from WGE to WFR

Long-run: WGE leadership
Short-run: changes in leadership depending
on the time period
Medium-run: WGE leadership in 1970–1977

WFR −WUK

Long-run: WUK leadership, speed of
adjustment −0.122
Short-run: bidirectional causality

Long-run: WUK leadership
Short-run, Medium-run: changes in
leadership depending on the time period

WFR −WUS
Long-run: WUS leadership, speed of
adjustment −0.046

Long-run: WUS leadership
Short-run: changes in leadership depending
on the time period
Medium-run: WUS leadership in 1991–2004

WGE −WUK
Long-run: WUK leadership, speed of
adjustment −0.0628

Long-run: WUK leadership
Short-run: changes in leadership depending
on the time period
Medium-run: WGE leadership in 1875–1877

WGE −WUS
Long-run: WUS leadership, speed of
adjustment −0.0188

Long-run: WUS leadership
Short-run: changes in leadership depending
on the time period
Medium-run: WUS leadership in 1938–1955

WUK −WUS

Long-run: WUS leadership, speed of
adjustment −0.0294
Short-run: bidirectional causality

Long-run: WUS leadership
Short-run: WUK leadership in 1930–1935 and
in 1983–1987
Medium-run: WUS leadership in 2000–2010

6. Conclusions

In this article, the detection of lead-lag relationships in economic time-series is addressed by the
joint application of two conceptually different methodologies. Even though, the research question
of lead-lag relationships has been examined in a large number of studies using either a time domain
method or a time-frequency domain method, this article enriches the existing literature by presenting
a joint application of the two methods on a dataset and by providing a detailed comparison of their
results. Based on the joint application of the two frameworks, the question of their consistency and
their potential complementarity is addressed. This study provides empirical evidence about the
consistency of the two methodologies in the short-run, in the log-run as well as about the dynamics
of the lead-lag behavior over time. In addition, the study reveals that each methodology provides
evidence on different aspects of the lead-lag relationships and suggests the complementarity of the
results of the methods in the short-run. The results of the paper confirm that the joint application of
the two studied methodologies results in a more informative understanding of the dynamic nature of
lead-lag relationships over time.

More specifically, the VEC model is selected among the time domain methods as it suitable for the
investigation of the relationship of non-stationary but co-integrated time-series. The phase angle of the
wavelet is adopted among the methods of the time-frequency domain to demonstrate the dynamic
nature of the lead-lag relationships over time and across various timescales. The VEC model provides
the speed of adjustment from any disequilibrium to the long-run equilibrium, information which is
not provided when using the wavelet analysis. In addition, the VEC model detects short-run causal
relationships, which according to the theory of the model remain static all over the time-period of
study. On the other hand, the wavelet analysis is able to demonstrate changes in leadership over time
and in multiple time horizons such as the short-run, the medium-run and the long-run. This capability
of the wavelet analysis is not provided when applying the VEC analysis.
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The application of the two methodologies to the dataset of wealth-to-income ratios of the economies
of France, Germany, UK and USA. With regards to the application of the methodologies to the dataset of
wealth-to-income ratio, this paper contributes to the existing literature by providing new evidence on
the lead-lag relationships of the wealth-to-income ratio of France, Germany, United Kingdom and the
United States of America both in the long-run and in the short-run. The empirical country-by-country
comparison of the private wealth-to-income ratios and the detection of lead-lag relationships among
them enhances our understanding about the underlying dependencies of these economies. More
specifically, the results of the study indicate that the main long-run findings of the two methods
in terms of leadership are consistent; WGE leads WFR, that WUK leads both WGE and WFR, and that
WUS leads WGE, WFR and WUK. Further conclusions driven by the wavelet analysis regarding the
short-run and medium-run perspective demonstrate changes in the leadership depending on the time
period and indicate the dynamic nature of leadership between the variables. Overall, the combination
of the two methodological concepts provides a more informative picture on the dynamics of the
lead-lag relationship between two time-series compared to the results retrieved only by each one of the
two methodologies.
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