
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Categorical representation learning: morphism is
all you need
To cite this article: Artan Sheshmani and Yi-Zhuang You 2022 Mach. Learn.: Sci. Technol. 3 015016

 

View the article online for updates and enhancements.

You may also like
Analysis of ability to use microscope and
its relation with visual and verbal
representation in representing microscopic
objects in anatomy of plant lecture
E Widodo, A Rahmat and E Nuraeni

-

Students’ ability of mathematical
representation on statistics topic in
elementary school
L Farokhah, T Herman and A Jupri

-

Improvement of the Ability of
Representation, Reasoning, and Self-
Efficacy of Prospective Mathematics
Teacher Students by Using Learning with
A Scientific Approach
Darta, J Saputra, W Eliyarti et al.

-

This content was downloaded from IP address 106.213.28.225 on 05/07/2023 at 12:08

https://doi.org/10.1088/2632-2153/ac2c5d
https://iopscience.iop.org/article/10.1088/1742-6596/1157/2/022107
https://iopscience.iop.org/article/10.1088/1742-6596/1157/2/022107
https://iopscience.iop.org/article/10.1088/1742-6596/1157/2/022107
https://iopscience.iop.org/article/10.1088/1742-6596/1157/2/022107
https://iopscience.iop.org/article/10.1088/1742-6596/1157/3/032110
https://iopscience.iop.org/article/10.1088/1742-6596/1157/3/032110
https://iopscience.iop.org/article/10.1088/1742-6596/1157/3/032110
https://iopscience.iop.org/article/10.1088/1742-6596/1776/1/012002
https://iopscience.iop.org/article/10.1088/1742-6596/1776/1/012002
https://iopscience.iop.org/article/10.1088/1742-6596/1776/1/012002
https://iopscience.iop.org/article/10.1088/1742-6596/1776/1/012002
https://iopscience.iop.org/article/10.1088/1742-6596/1776/1/012002


Mach. Learn.: Sci. Technol. 3 (2022) 015016 https://doi.org/10.1088/2632-2153/ac2c5d

OPEN ACCESS

RECEIVED

4 May 2021

REVISED

11 July 2021

ACCEPTED FOR PUBLICATION

1 October 2021

PUBLISHED

30 December 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Categorical representation learning: morphism is all you need
Artan Sheshmani1,2,3,5,∗ and Yi-Zhuang You4,5,∗

1 Department of Mathematics, Center for Mathematical Sciences and Applications, Harvard University, 20 Garden Street, Cambridge,
MA, 02139, United States of America

2 Institut for Matematik, Ny Munkegade 118 Building 1530, DK-8000 Aarhus C, Denmark
3 National Research University Higher School of Economics, Russian Federation, Laboratory of Mirror Symmetry, NRU HSE,
6 Usacheva Str., Moscow 119048, Russia

4 Department of Physics, University of California Sandiego, Condenced Matter Group, UC San Diego 9500 Gilman Drive, La Jolla, CA,
92093, United States of America

5 QGNai INC. (Quantum Geometric Networks for Artificial Intelligence), 83 Cambridge Parkway, Unit W806, Cambridge, MA, 02142,
United States of America

∗ Authors to whom any correspondence should be addressed.

E-mail: artan@cmsa.fas.harvard.edu and yzyou@physics.ucsd.edu

Keywords: category theory, categorical representation learning, natural language processing (NLP)

Abstract
We provide a construction for categorical representation learning and introduce the foundations of
‘categorifier’. The central theme in representation learning is the idea of everything to vector. Every
object in a dataset S can be represented as a vector in Rn by an encoding map E :Obj(S)→ Rn.
More importantly, every morphism can be represented as a matrix E :Hom(S)→ Rn

n. The
encoding map E is generally modeled by a deep neural network. The goal of representation learning
is to design appropriate tasks on the dataset to train the encoding map (assuming that an encoding
is optimal if it universally optimizes the performance on various tasks). However, the latter is still a
set-theoretic approach. The goal of the current article is to promote the representation learning to a
new level via a category-theoretic approach. As a proof of concept, we provide an example of a text
translator equipped with our technology, showing that our categorical learning model outperforms
the current deep learning models by 17 times. The content of the current article is part of a US
provisional patent application filed by QGNai, Inc.

1. Introduction

The rise of category theory was a great revolution of mathematics in the 20th century. It enables us to see
relationships between various fields that are otherwise imperceptible at ground level, attesting that seemingly
unrelated areas of mathematics are not so different after all. A category describes a collection of objects
together with the relations (calledmorphisms) between them. The concept of category has provided a unified
template for different branches of mathematics. Category theory is expected to be suitable for modeling
datasets with relational structures, such as semantic relations among words, phrases and sentences in
language datasets, or social relations among people or organizations in social networks.

From the category theory perspective, relationships are everything. Objects must be defined and can only
be defined through their interrelations. So far, the field of representation learning [1, 2] has remained
focused on learning object encodings, following the idea of ‘everything to vector’. More recently, graph neural
network models [3, 4] and self-attentive mechanisms [5] have begun to model relationships between objects,
but they still did not place relationships in the first place. This article aims to develop a novel machine
learning framework, called categorical representation learning, that directly learns the representation of
relations as feature matrices (or tensors). The learned relations will then be used in different tasks. For
example, direct relations can be composed to reveal higher-order relations. Functor map between different
categories can be learned by aligning the relations (morphisms). Relations can guide the algorithm to
identify clusters of objects and to perform renormalization transformations to simplify the category.

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac2c5d
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac2c5d&domain=pdf&date_stamp=2021-12-30
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4080-5340
mailto:artan@cmsa.fas.harvard.edu
mailto:yzyou@physics.ucsd.edu


Mach. Learn.: Sci. Technol. 3 (2022) 015016 A Sheshmani and Y-Z You

1.1. Overview
The construction of the proposed architecture in the current article will contain three major steps:

• Step 1: Mine the categorical structure from data. In this step the objective is to develop the categorical
representation learning approach, which enables the machine to extract the representation of objects and
morphisms from data. The approach developed in this step will be the foundation of the construction which
provides the morphism representation to drive further applications.

• Step 2: Align the categorical structures between datasets. The objective in this step is to develop the func-
torial learning approach, which can establish a functor between categories based on the learned categorical
representations by aligning the morphism representations. The technique developed in this step will find
applications in unsupervised (or semi-supervised) translation.

• Step 3: Discover hierarchical structures with tensor categories. The objective in this step is to combine
the categorical representation learning and functorial learning in the setting of a tensor category to learn the
tensor functor that fuses simple objects into composite objects. The approach here will enable the algorithm
to perform renormalization group transformations on categorical dataset, which progressively simplifies the
category structure. This will open up broad applications in classification and generation tasks of categories.

2. Categories and categorical embedding

2.1. Modeling the categorical structure in the data
A category C consists of a set of objects,Obj(C) , and a set of morphismsHom(C) between objects. Each
morphism f mapping a source object a to a target object b, is denoted as f : a→ b. It is possible that different
pairs of objects can be related by the same morphism, in which case, we may think that the object-pairs share
the same type of relations. It is also possible that the same pair of objects can be related by different
morphisms, in which case, we may think that there are multiple relations between the objects. The hom-class
Hom(a,b) denotes the set of all morphisms from a to b. Morphisms benefit from composition laws. The
composition is a binary operation; ◦ :Hom(a,b)×Hom(b, c)→Hom(a, c) defined for every three objects
a,b, c. The composition of morphisms f : a→ b and g : b→ c is written as g ◦ f. The composition map is
associative, that is, h ◦ (g ◦ f) = (h ◦ g) ◦ f. Given a category C, for every object x ∈ Obj(C) there exists an
identity morphism idx : x→ x, such that for every morphism f : a→ x and g : x→ b, one has idx ◦ f= f and
g ◦ idx = g, that is pre and post compositions of morphisms in the category with the identity morphism will
leave them unchanged.

One can associate a vector space to a given category, as its representation space. For the latter one can
think of such vector space as a category itself, and use a categorical functors as a map from a given category to
the geometric space.

Take for instance a category C in which every object, a is mapped to a vector va in an ambient vector space
R, and every morphisms between two objects in C, f : a→ b, is mapped to a morphism between vectors va,vb
in R. Since R is a vector space, a morphism between two vectors is then realized in R as amatrix Mf : va → vb.
For our purposes, the object and morphism embeddings, discussed above, will be implemented by separate
embedding layers in a neural network. The map f is a morphism from object a to object b, iff the embedding
matrix can transform the embedding vectors as vb =Mfva under matrix-vector multiplication. The
composition of morphisms is then realized as matrix-matrix multiplications asMg◦f =MgMf, which is
naturally associative. The identity morphism of an object x ∈ C is then represented as the projection operator
Midx = vxv⊺x /|vx|2, which preserves the vector representation vx of the object. In this manner, the category
structure is then represented respectively by the object, and morphism embeddings in the feature space.

Example 3.1. For a language dataset, each object is given as a word, represented as a word vector, via the
word-vector mapping functor. Each morphism is a relation between two words, represented by a matrix. For
instance

bright antonym−−−−−→ dark : vdark =Mantonymvbright,

socks inside−−−−→ shoes : vshoes =Minsidevsocks.
(1)

Given any pair of word vectors va,vb, the hom-classHom(va,vb) denotes the set of all matrices M which
transform va to vb, that is; vb =Mva.

Example 3.2. For a chemical compound dataset, each object can be chosen to be a chemical element, represented
as an element vector, via the embedding functor. Each morphism is a relation between two elements, which can,
for example, stand for the type of chemical bound between elements, represented by a matrix. For instance
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Na
ionic−−−→ Cl : vNa =MionicvCl,

C
covalent−−−−−→O : vC =McovalentvO.

(2)

Different types of chemical bounds (ionic, covalent, metallic etc) are model by different matrices. Two elements
can form the chemical bound, if their vector representations can be transformed from one to another by the
matrix. Of course, this is an over-simplified illustration of relations between chemical elements. The realistic
relations between elements in a chemical compound can be complicated, for which the categorical representation
learning is proposed to learn useful representation of relations from data.

2.2. Mining the categorical structure from the data
2.2.1. Fuzzy morphisms
In machine learning, the relation between objects may not be strict, that is;Mf va will not match vb precisely,
but only align with vb with a high probability. To account for the fuzziness of relations then, the statement of
f : a→ b should be replaced by the probability of f belonging to the classHom(a,b). It can be written as

P( f ∈Hom(a,b))≡ P(a
f−→ b)∝ expz(a

f−→ b), (3)

which is parametrized by the logit z(a
f−→ b) ∈ R. The logit is proposed to be modeled by

z(a
f−→ b) = v⊺bMf va, (4)

such that if vb andMfva align in similar directions, the logit will be positive, which results in a high
probability for the morphism f to connect a to b. The objects a and b are said to be related (linked) if there
exists at least one morphism connecting them.

The linking probability is then proportional to the sum of the likelihood of each candidate morphism,

P(a→ b)∝
∑

f expz(a
f−→ b). The probability is normalized by considering the unlinking likelihood as the

unit. Thus the binary probability P(a→ b) can be modeled by the sigmoid of a logit z(a→ b) that aggregates
the contributions from all possible morphisms,

P(a→ b) = sigmoid(z(a→ b))≡ ez(a→b)

1+ ez(a→b)
,

z(a→ b) = log
∑
f

expz(a
f−→ b) = log

∑
f

exp(v⊺bMfva),
(5)

where it is assumed that each morphism contributes to the linking probability independently. More generally,
the assumption of the independence of morphisms in determining the linking probability can be relaxed,

such that the logits z(a
f−→ b) of different morphisms f is aggregated by a generic nonlinear function:

z(a→ b) = F
(⊕

f

z(a
f−→ b)

)
= F

(⊕
f

v⊺aMfvb
)
, (6)

where F may be realized by a deep neural network, and
⊕

f denotes the concatenation of logit contributions
from different morphisms.

2.2.2. Learning embedding from statistics
The key idea of unsupervised representation learning is to develop feature representations from data
statistics. In the categorical representation learning, the object and morphism embeddings are learned from
the concurrence statistics, which corresponds to the probability p(a,b) that a pair of objects (a, b) occurs
together in the same composite object. For example, two concurrent objects could stand for two elements in
the same compound, or two words in the same sentence, or two people in the same organization.
Concurrence does not happen for no reason. Assuming that two objects appearing together in the same
structure can always be attributed to the fact that they are related by at least one type of relations, then the
linking probability P(a→ b) should be maximized for the observed concurrent pair (a, b) in the dataset.

The negative sampling method can be adopted to increase the contrast. For each observed (positive)
concurrent pair (a, b), the object b will be replaced by a random object b

′
, drawn from the negative sampling

distribution pN(b ′) among all possible objects. The replaced pair (a,b ′) will be considered to be an unrelated
pair of objects. Therefore the training objective is to maximize the linking probability P(a→ b) for the
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positive sample (a, b) and also maximize the unlinking probability P(a↛ b ′) = 1− P(a→ b ′) for a small set
of negative samples (a,b ′),

L= E
(a,b)∼p(a,b)

(
logP(a→ b)+ E

b ′∼pN(b ′)
log(1− P(a→ b ′))

)
. (7)

With the model of P(a→ b) in equation (5), the object embedding va and morphism embeddingMf can be
trained by maximizing the objective function L. The negative sampling distribution pN(b ′) can be
engineered, but the most natural choice is to take the marginalized object distribution
pN(b ′) = p(b ′) =

∑
a p(a,b

′). The theoretical optimum [6] is achieved with the following logit

z(a→ b) = log
p(a,b)

p(a)p(b)
= PMI(a,b), (8)

which learns the point-wise mutual information (PMI) between objects a and b. If the objects were not
related at all, their concurrence probability should factorize to the product of object frequencies, i.e.
p(a,b) = p(a)p(b), implying zero PMI. So a non-zero PMI indicates non-trivial relations among objects: a
positive relation (PMI> 0) enhances p(a,b) while a negative relation (PMI< 0) suppresses p(a,b) relative to
p(a)p(b). By training the logit z(a→ b) to approximate the PMI, the relations between objects are discovered
and encoded as the feature matrixMf of morphisms.

2.2.3. Scope of concurrence
It is noted that the definition of concurrence depends on the scope (or the context scale). For example, the
concurrence of two words can be restricted in the scope of phrases or sentences or paragraphs. Different
choices for the concurrence scope (say length of sentences, or phrases being considered) will affect the
concurrent pair distribution p(a,b), which then leads to different results for the object and morphism
embeddings. This implies that objects may be related by different types of morphisms in different scopes.
The categorical representation learning approach mentioned above can be applied to uncover the morphism
embeddings in a scope-dependent manner. Eventually, the different object and morphism embeddings across
various scopes can further be connected by the renormalization functor, which maps the category structure
between different scales, detail of which will be elaborated in later sections. The scope-dependent categorical
representation learning will form the basis for the development of unsupervised renormalization technique
for categories with hierarchical structures, which will find broad applications in translation, classification,
and generation tasks.

2.2.4. Connection to multi-head attention
The multi-head attention mechanism [5] consists of two steps. The first step is a dynamic link prediction by
the ‘query-key matching’, that the probability to establish an attention link from a to b is given by

P(a
f−→ b)∝ expz(a

f−→ b) with f labeling the attention head. The logit is computed from the inner product
between the query vector , Qf vb, and the key vector, Kf va, as

z(a
f−→ b) = v⊺bQ

⊺
f Kfva, (9)

which can be written in the form of equation (4) ifMf = Q⊺
f Kf. The second step is the value propagation

along the attention link (weighted by the linking probability). Focusing on the first step of dynamic link
prediction, the linking probability model in equation (5) resembles the multi-head attention mechanism
with the morphism embeddingMf = Q⊺

f Kf given by the product of query and key matrices for each attention
head. The proposal of the categorical representation learning is to keep the learned morphism matrixMf as
encoding of relations in the feature space, which can be further used in other task applications.

The matrixMf can also be viewed as a metric in the feature space, which defines the inner product of
object vectors. Different morphisms f correspond to different metricsMf , which distort the geometry of the
feature space differently (bring object embeddings together or pushing them apart). When there are multiple
relations in the action, the feature space is equipped with different metrics simultaneously, which resembles

the idea of superposition of geometries in quantum gravity. If the single-head logit z(a
f−→ b) = v⊺bMfva is

considered as an (negative) energy of two objects a and b embedded in a specific geometry, the aggregated

multi-head logit z(a→ b) = log
∑

f expz(a
f−→ b) is analogous to the (negative) free energy that the objects

will experience in the ensemble of fluctuating geometries.
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2.3. Aligning the categorical structures between data sets
2.3.1. Tasks as functors
Functor is a fundamental concept in the category theory. It denotes the structure-preserving map between
two categories. A functor F from a source category C to a target categoryD is a mapping that associates to
each object a in C an object F(a) inD, and associates to each morphism f : a→ b in C a morphism
F( f) : F(a)→F(b) inD, such that F(ida) = idF(a) for every object a in C and F(g ◦ f) = F(g) ◦F( f) for
all morphisms f : a→ b and g : b→ c in C. The definition can be illustrated with the following commutative
diagram.

(10)

A functor between two categories not only maps objects to objects, but also preserves their relations, which is
essential in category theory. Many machine learning tasks can be generally formulated as functors between
two data categories. For instance, machine translation is a functor between two language categories, which
not only maps words to words but also preserves the semantic relations between words. Image captioning is a
functor from image to language categories, that transcribes objects in the image as well as their interrelations.

In what follows, we discuss Functorial learning as an approach, providing the means for the machine to
learn the functorial maps between categories in an unsupervised or semisupervised manner.

2.3.2. Functorial learning
In functorial learning, each functor F is represented by a transformation VF that transforms the vector
embedding va of each object a in the source category to the vector embedding vF(a) of the corresponding
object F(a) in the target category

vF(a) = VFva, (11)

and also transforms the matrix embeddingMf of each morphism in the source category to the matrix
embeddingMF( f ) of the corresponding morphism F( f) in the target category

MF( f)VF = VFMf, (12)

represented by the following commutative diagram.

In the case where the objects are embedded as unit vectors on a hypersphere, the functorial transformation
VF will be represented by orthogonal matrices, whose inverses are simply given by the transpose matrices
V⊺
F , which admit efficient implementation in the algorithm. The proposed representation for the functor

automatically satisfies the functor axioms, as

MF(ida) = vF(a)v
⊺
F(a) = VFvav

⊺
aV

⊺
F = VFMidaV

⊺
F ,

MF(g◦f) = VFMg◦fV
⊺
F = VFMgMfV

⊺
F

= VFMgV
⊺
FVFMfV

⊺
F =MF(g)MF(f) =MF(g)◦F(f).

So as long as the optimal transformation VF can be found, our design will ensure that it parametrizes a
legitimate functor between categories.

2.3.3. Universal structure loss
Now we explain how to find the optimal transformation VF . The most important requirement for a functor
is to preserve the morphisms between two categories. Hence we propose to train the functor by minimizing a
loss function which ensures the structural compatibility in equation (12). We denote the loss function by
universal structure loss,

Lstruc =
∑
f

∥MF( f)VF −VFMf∥2, (13)

5
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given the matrix representationMf,MF( f ) of morphisms in both the source and target categories, which
were obtained from the categorical representation learning. The loss function is universal in the sense that it
is independent of the specific task that the functor is trying to model. In this approach, the morphism
embeddings are all that we need to drive the learning of functor transformation VF . This is precisely in line
with the spirit of the category theory: objects are illusions, they must be defined and can only be defined by
morphisms. Therefore

‘Morphism is all you need!’.

2.3.4. Alignment loss
However, in reality, the learned morphism matricesMf may not be of full rank. In such cases, the solution of
the transformation VF is not unique, because arbitrary transformation within the null space of the
morphism matrix can be composed with VF without affecting the structure lost Lstruc. To overcome this
difficulty, we propose to subsidize the structure loss with additional alignment loss over a few pair of aligned
pairs of objects (a,F(a)),

Lalign =
∑
a∈A

∥vF(a) −VFva∥2, (14)

whereA is only a subset of objects in the source category. This provides additional supervised signals to train
VF by partially enforcing equation (11). The total loss will be a weighted combination of the structure loss
and the alignment loss

L= Lstruc +λLalign. (15)

By minimizing the total loss, VF will be trained, and the functor between categories can be established. The
advantage of the categorical approach is that the structural loss already puts constrains on the parameters in
VF , so the effective parameter space for the alignment loss is reduced, such that the model can be trained
with much less supervised samples when the category structure is rigid enough.

2.4. Discovering hierarchical structures with tensor categories
2.4.1. Renormalization as tensor bifunctor
Renormalization group plays an essential role in analyzing the hierarchical structures in physics and
mathematics. It provides an efficient approach to extract the essential information of a system by
progressively coarse graining the objects in the system. The categorical representation learning and functorial
learning proposed in the previous two sections provide solid foundation to develop hierarchical
renormalization approach for machine learning. This will enable the machine to summarize the feature
representation of composite objects from that of simple objects.

The elementary step of a coarse graining procedure is to fuse two objects into one composite object (or
‘higher’ object). Multiple objects can then be fused together in a pair-wise manner progressively. In category
theory, the pair-wise fusion of objects is formulated as a tensor bifunctor⊗ : C ×C → C. The tensor bifunctor
maps each pair of objects (a, b) to a composite object a⊗ b and each pair of morphisms (f, g) to a composite
morphism f⊗ g while preserving the morphisms between objects, as presented in the following diagram.

(16)

The category equipped with the tensor bifunctor is called a tensor category (or monoidal category). Objects
and morphisms of different hierarchies are treated within the same framework systematically. This enables
the algorithm to model multi-scale structure in the data set with the universal approach of categorical
representation learning.

2.4.2. Representing tensor bifunctor
As a special case of general functors, the tensor bifunctor can be represented by a fusion operator Θ, such that
the object embeddings are fused by

va⊗b =Θ(va ⊗ vb), (17)

6
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Figure 1. Bootstrap approach for multi-scale categorical representation learning. (a) Starting with a set of elementary objects.
(b) Sample concurrent objects from the data set (high-lighted as red nodes). Strengthen the connection among the concurrent
objects (red links) and weaken other links. (c) After training, the model learns about the relationships of different strengths.
(d) Move to the next level by fusing pairs of objects with strong connections (covered in yellow shades) to form compound
objects. Sample concurrent objects from the data set to train the relationships among compound and elementary objects. (e) The
model learns higher relations.

and the morphism embeddings are fused by

Mf⊗gΘ=Θ(Mf ⊗Mg), (18)

following the general scheme in equations (11) and (12). The tensor product of the vector and matrix
representations are implemented as Kronecker products.Θ can be viewed as an operator which projects the
tensor-product feature space back to the original feature space.

To simplify the construction, we will assume that the representation of the tensor bifunctor is strict in the
feature space, meaning that the fusion is strictly associative without non-trivial natural isomorphisms,

va⊗b⊗c =Θ(Θ(va ⊗ vb)⊗ vc) = Θ(va ⊗Θ(vb ⊗ vc)). (19)

Such a strict representation will always be possible given a large enough feature space dimension, since every
monoidal category is equivalent to a strict monoidal category. To impose the strict associativity in the
learning algorithm, we propose to fuse objects in different orders, such that the machine will not develop any
preference over a particular fusion tree and will learn to construct an associative fusion operatorΘ. With the
fusion operator, we establish the embedding for all composite objects (and their morphisms) in the category
given the embedding of fundamental objects (and their morphisms).

2.4.3. Multi-scale categorical representation learning
The tensor bifunctor learning can be combined with the categorical representation learning as an integrated
learning scheme, which allows the algorithm to mine the category structure at multiple scales. If the data set
has naturally-defined levels of scopes, one can learn the objects and morphism embeddings in different
scopes. The objective is to learn the concurrence of objects within their scope according to the loss function
equation (7). For each pair of objects (a, b) drawn from the same scope, we want to maximize the linking
probability P(a→ b). For randomly sampled pairs of objects (a,b ′), we want to maximize the unlinking
probability P(a↛ b ′) = 1− P(a→ b ′). The linking probability P(a→ b) is modeled by equation (5), based
on the object and morphism embeddings. The vector embedding va of a composite object a is constructed by
recursively applyingΘ to fuse from fundamental objects as in equation (19).

A more challenging situation is that the data set has no naturally-defined levels of scopes, such that the
hierarchical representation must be established with a bootstrap approach. We assume that at least a set of
elementary objects can be specified in the data set (such as words in the language data set), illustrated as
small circles in figure 1(a). We first apply the categorical representation learning approach to learn the
linking probability P(a→ b) between objects. The algorithm first samples different clusters of objects from
the data set within a certain scale. The linking probability is enhanced for the pair of objects concurring in
the same cluster, and is suppressed otherwise, as shown in figure 1(b). In this way, the algorithm learns to
find the embedding va for every fundamental object a. After a few rounds of training, fuzzy morphisms
among objects will be established, as depicted in figure 1(c). The thicker link represents higher linking
probability P(a→ b) and stronger relations. In later rounds of training, when the sampled cluster contains a
pair of objects (a, b) connected by a strong relation (with P(a→ b) beyond a certain threshold), it will be
considered as a composite object a⊗ b, as yellow groups in figure 1(d). The embedding va⊗b of composite
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object will be calculated from that of the fundamental objects as va⊗b =Θ(va ⊗ vb), based on the fusion
operatorΘ given by the tensor bifunctor model. The model will continue to learn the linking probability
P(a⊗ b→ c) between the composite object a⊗ b and the other object c in the cluster, as red polygons in
figure 1(d). In this way, the fusion operatorΘ will get trained together with the object and morphism
embeddings. This will establish higher morphisms between composite objects like figure 1(e). The approach
can then be carried on progressively to higher levels, which will eventually enable the machine to learn the
hierarchical structures in the data set and establish the representations for objects, morphisms and tensor
bifunctors all under the same approach.

3. Summary

In this work, we propose the general framework for categorical representation learning—a
relationship-oriented representation learning approach. It allows machine learning algorithms to uncover
the categorical structure in the dataset, and to utilize the learned representation of objects and morphisms
for down-stream tasks. A key ingredient of the categorial representation learning beyond conventional
approach lies in its ability to obtain explicit matrix representations of morphisms (apart from vector
representations of objects), which can be applied to learn the functorical map
(relational-structure-preserving map) between categorical datasets.
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Appendix. Proof of concept results

Learning chemical compounds
Data set
To demonstrate the proposed categorical learning framework, we apply our approach to the inorganic
chemical compound data set. The data set for our proof of concept (POC) contains 61 023 inorganic
compounds, covering 89 elements in the periodic table figure 2(a). The data set can be modeled as a category,
which contains elements as fundamental objects, as well as functional groups and compounds as composite
objects. The morphisms represent the relations (such as chemical bonds) between atoms or groups of atoms.
We assume that the concurrence of two elements in a compound is due to the underlying relations, such that
the morphisms can emerge from learning the elements’ concurrence.

On the data set level, we collect the point-wise mutual information (PMI) PMI(a,b) = logp(a,b)−
logp(a)− logp(b), where p(a,b) is the probability for the pair of elements a, b to appear in the same
chemical compound, and p(a) is the marginal distribution. Performing a principal component analysis of the
PMI and taking the leading three principal components, we can obtain three-dimensional vector encodings
of elements, as shown in figure 2(b). We observe that elements of similar chemical properties are close to
each other, because they share similar context in the compound. This observation indicates that our
algorithm is likely to uncover such relations among elements from the data set.

Unsupervised/semisupervised translation
To demonstrate the categorical representation learning and the functorial learning in sections 1 and 2, we
designed an unsupervised translation task with the chemical compound data set. We take the data set in
English and translate each element into Chinese. Figures 2(c) and (d) shows some samples from both the
English and Chinese data set. The task of unsupervised (or semisupervised) translation is to learn to translate
chemical compounds from one language to another without aligned samples (or with only a few aligned
samples). The unsupervised translation is possible since the chemical relation between elements are identical
in both languages. The categorical representation learning can capture these relations and represent them as
morphism embeddings. By aligning the morphism embeddings, using the functorial learning approach, the
translator can be learned as a functor that maps between the English and Chinese compound categories. The
translation functor is required to map elements to elements while preserving their relations.
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Figure 2. (a) Periodic table. (b) Embeddings of elements by singular value decomposition of the point-wise mutual information.
(c) Examples of compounds (in English). (d) Examples of compounds (in Chinese).

Figure 3. Results of the semisupervised translation. For each English element, the top three Chinese translations are listed. The
gray lines are selected supervised elements. The row is green if the correct translation is the top candidate. The row is yellow if the
correct translation is not the top candidate but appears within top three. The row is red if the correct translation does not appear
even within the top-three candidates.

We demonstrate the semisupervised translation in figure 3. We assign 15 elements as supervised data and
provide the aligned English-Chinese element pairs to the machine. By minimizing the structure and
alignment loss together.

More onmodel structure for translator (by Ahmadreza Azizi6)

Many of the state-of-the-art translation models (usually called sequence to sequence or seq-2-seq models)
incorporate two blocks of Encoder and Decoder that are connected to the source input and the target input
respectively. Also in different models the Encoder and Decoder blocks are connected to each other in
different ways. For the purpose of POC, we hence use the most relevant design in the seq-2-seq models and
compare its results with our categorical learning model. Recently, text translation models with transformers
have had impressive achievements on the datasets with long inputs (usually more than 250 tokens). However
we do not use transformers, due to the name of compounds not being long and hence transformers do not
have specific supremacy over their counterparts with recurrent neural network (RNN) based cells in this
case. Therefore our choice is to design a seq-2-seq model which includes two blocks of Encoder and Decoder
with general recurrent unit (GRU) cells which benefits from the attention mechanism (see figure 4). We add
attention mechanism to the model as there is no significant language pattern in the compounds, hence the
connection between Encoder and Decoder must be empowered with attention mechanism so that almost all

6 Ahmadreza Azizi contributes to the appendix.
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Figure 4. Structure of conventional deep learning models with GRU cells, for comparison purpose.

Table 1. Performance of deep learning models and categorical learning model after training on compounds data.

Models Categorical learning Seq2Seq Seq2Seq Seq2Seq

Number of parameters 16 600 25 626 77 222 287 020
Number of supervised elements 15 15 15 15
Number of correct translations 57 12 38 59

the information in the Encoder can be expressed to the Decoder. Finally, we apply the teacher-force
technique to provide aid to the Decoder for translating the English name of compounds to the Chinese
counterparts, more robustly.

Learning method for translator
Formally, the source sentence s is a set of words s= {s1, s2, . . . , sT} and the target sentence is
t= {t1, t2, . . . , tT} both with length T. The embedding layers of source sentence and target sentence represent
them as two sets of vectors x= {x1,x2, . . . ,xT} ∈ X and y= {y1,y2, . . . ,yT} ∈ Y respectively. For each element
in x, the Encoder E reads xt and encapsulates its information in the hidden states

ht = E(ht−1,xt−1).

After reading all elements in x, the Encoder outputs the last hidden layer hT = E(hT−1,xT−1) to be passed to
the first cell in Decoder. Therefore for each element yt in y, the hidden state of the decoder cell at t is given by

st = D(st−1,yt, ct).

In this formula, the attention mechanism is expressed as the context vector ct . Conceptually, the context
vector ct =

∑T
i=1αt,ihi carries out the sum of information of the encoder cells (hi) weighted by the alignment

score αt,i. Here the score function αt,i indicates how much information from each input xi should be
contributed to the output yt and can have different forms [5, 7].

Finally, given the output of Decoder cells ŷ, its similarity will be compared to the true translation y
thorough the cross entropy loss function:

L(θD,θE) =− 1

N

∑
i

yi log ŷi (20)

with θE and θD the trainable parameters in the Encoder block and the Decoder block respectively. The
equation (20) can be seen as a metric function that measures the distance between y and ŷ.

Translator results
According to equation (20), in the process of training, the parametersΘE andΘD are optimized so that the
model output ŷ becomes very similar to the ground truth y. We train the deep learning model with various
sizes of GRU cells and count number of correct translations that are made in each model.

Note that the categorical learning model has only 16 600 parameters and we believe it is only fair if only
we compare the deep learning model with similar number of parameters. Table 1 elaborates on our results
for deep learning models and our categorical learning model. These results indicate that the deep learning
models are unable to outperform our model unless the number of parameters they use is 17 times more than
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our categorical learning model, in which case the deep learning model has the capability of achieving a better
performance. This comparison is particularly interesting, once one decreases the number of parameters to
about 25 000. Our experiments clearly indicate that the categorical learning methods completely outperform
the deep learning models.
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