
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Differentiable programming of isometric tensor
networks
To cite this article: Chenhua Geng et al 2022 Mach. Learn.: Sci. Technol. 3 015020

View the article online for updates and enhancements.

You may also like
Quantum compression of tensor network
states
Ge Bai, Yuxiang Yang and Giulio
Chiribella

-

Symmetric tensor networks for generative
modeling and constrained combinatorial
optimization
Javier Lopez-Piqueres, Jing Chen and
Alejandro Perdomo-Ortiz

-

Riemannian geometry and automatic
differentiation for optimization problems of
quantum physics and quantum
technologies
Ilia A Luchnikov, Mikhail E Krechetov and
Sergey N Filippov

-

This content was downloaded from IP address 106.213.28.225 on 05/07/2023 at 12:08

https://doi.org/10.1088/2632-2153/ac48a2
https://iopscience.iop.org/article/10.1088/1367-2630/ab7a34
https://iopscience.iop.org/article/10.1088/1367-2630/ab7a34
https://iopscience.iop.org/article/10.1088/2632-2153/ace0f5
https://iopscience.iop.org/article/10.1088/2632-2153/ace0f5
https://iopscience.iop.org/article/10.1088/2632-2153/ace0f5
https://iopscience.iop.org/article/10.1088/1367-2630/ac0b02
https://iopscience.iop.org/article/10.1088/1367-2630/ac0b02
https://iopscience.iop.org/article/10.1088/1367-2630/ac0b02
https://iopscience.iop.org/article/10.1088/1367-2630/ac0b02

Mach. Learn.: Sci. Technol. 3 (2022) 015020 https://doi.org/10.1088/2632-2153/ac48a2

OPEN ACCESS

RECEIVED

2 November 2021

REVISED

28 December 2021

ACCEPTED FOR PUBLICATION

6 January 2022

PUBLISHED

21 January 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Differentiable programming of isometric tensor networks
Chenhua Geng1,∗, Hong-Ye Hu2 and Yijian Zou3

1 Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
2 Department of Physics, University of California San Diego, La Jolla, CA 92093, United States of America
3 Stanford Institute for Theoretical Physics, Stanford University, Palo Alto, CA 94305, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: xwkgch@issp.u-tokyo.ac.jp

Keywords: tensor network, auto-differentiation, machine learning, condensed matter physics

Abstract
Differentiable programming is a new programming paradigm which enables large scale
optimization through automatic calculation of gradients also known as auto-differentiation.
This concept emerges from deep learning, and has also been generalized to tensor network
optimizations. Here, we extend the differentiable programming to tensor networks with isometric
constraints with applications to multiscale entanglement renormalization ansatz (MERA) and
tensor network renormalization (TNR). By introducing several gradient-based optimization
methods for the isometric tensor network and comparing with Evenbly–Vidal method, we show
that auto-differentiation has a better performance for both stability and accuracy. We numerically
tested our methods on 1D critical quantum Ising spin chain and 2D classical Ising model. We
calculate the ground state energy for the 1D quantum model and internal energy for the classical
model, and scaling dimensions of scaling operators and find they all agree with the theory well.

1. Introduction

Tensor network has been a powerful tool to study quantum many-body systems and classical
statistical-mechanical models both theoretically [1, 2] and numerically [3–8]. And recently, it has been
proposed as an alternative tool for (quantum) machine learning tasks, both for supervised learning [9–16],
and unsupervised learning [17–22]. In the family of tensor networks, the multi-scale entanglement
renormalization ansatz (MERA) and tensor network renormalization (TNR) are important tensor networks
which are inspired by the idea of renormalization group (RG). They contain tensors that are to be optimized
under isometric constraints, where some tensors are restricted to be isometric.

RG [23–25] plays an important role in modern condensed matter physics and high-energy physics. What
lies in the heart of RG is the coarse graining procedure that changes the scale of the system. Under RG,
microscopic models flow to different fixed points that distinguish different macroscopic phases of matter.
More recently, the concept of RG also finds applications in machine learning and artificial intelligence (AI)
[26–30]. Traditionally, RG is performed in the Fourier space, which involves various approximations.
Furthermore, it has been shown that RG can be performed in real space using tensor networks.

In the context of quantum many-body physics, MERA and its variations [4, 31–34] are tensor networks
which perform real-space RG on quantum states. Due to the specific structure, MERA is especially suitable
for describing systems with scale invariance such as quantum critical systems. On the other hand, for a
classical statistical mechanical model, TNR [34, 35] is a tensor network algorithm that performs real-space
RG for the tensor network that represents the partition function of this model. Compared to tensor
renormalization group (TRG) [36] which also performs real-space RG, TNR resolves the computational
breakdown of TRG for critical systems. Additionally, it is known that TNR is closely related to MERA as
formalized in [37].

From the perspective of theoretical physics, MERA and TNR can be used to extract universal information
of critical systems, which are in a close relationship with conformal field theory (CFT) [38, 39]. Recently,

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac48a2
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac48a2&domain=pdf&date_stamp=2022-1-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8420-0779
https://orcid.org/0000-0001-5841-831X
mailto:xwkgch@issp.u-tokyo.ac.jp

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

another variation of MERA using neural network was proposed and had been applied to simulation of
quantum field theories, and finding holographic duality based on field theory actions [27, 40].

From the perspective of numerical studies, one of the central problems to tensor network is the
optimization of tensors for various systems. Conventional optimization algorithms are designed manually
and separately for different problems and different tensor networks structures. Recently, differentiable
programming, as a novel programming paradigm, has been proposed for the optimization problems of
tensor networks based on gradient optimization, which is extensively used in deep learning and artificial
intelligence. Compared with traditional gradient estimation, such as finite difference method, automatic
differentiation has the merits such as high accuracy and low computational complexity for calculating
gradients for many parameters. It provides a unified and elegant solution to many optimization problems by
combining the well-developed automatic differentiation frameworks like PyTorch [41] and TensorFlow [42].
Recently, it has been successfully applied to TRG and the optimization of projected entangled pair states
(PEPS) [43]. With the help of differentiable programming researchers can focus on the part of tensor
contraction in the algorithm without worrying about detailed and complicated optimization algorithms.
However, tensor networks which possess isometric constraints, such as MERA and TNR cannot be optimized
using differentiable programming directly.

Recently, Hauru et al [44] initiated the use of Riemannian optimization to tensor networks with
isometric tensors. Specifically, they have applied preconditioned conjugate gradient method to MERA and
matrix product states. In this work, we use a modified gradient search and show that auto-differentiation can
be applied to MERA and TNR as well. We explicitly construct the computation graphs for MERA and TNR
algorithms. Further, we discuss the gradient-based optimization methods and find that the combination of
Evenbly–Vidal and gradient-based methods generally have a better performance than either of them. Taking
1D quantum and 2D classical Ising model as examples, we obtain the ground state energy for the 1D
quantum model and internal energy for the 2D classical model with high accuracy. We also obtain scaling
dimensions of scaling operators at the critical point within the differentiable programming framework.

This paper is organized as follows: in section 2 we review the idea of differentiable programming,
including automatic differentiation, computation graphs and gradient-based optimization. We introduce
our new methods for optimizing isometric tensors within differentiable programming framework. In
sections 3 and 4 we briefly review MERA and TNR respectively, and show the results computed using
differentiable programming. Finally we make a summary about differentiable programming and give our
outlook for future research directions in section 5.

2. Differentiable programming

The characteristics of differentiable programming is automatic differentiation which computes the derivative
information automatically by the well-developed frameworks. We first review the core concepts of
differentiable programming and investigate how the derivative information are automatically computed for
tensor networks. Then we discuss how to optimize a tensor network, especially with isometric constraints, by
these derivative information.

2.1. Computation graphs
Computation graphs are central to the automatic differentiation which present how the derivatives are
computed with respect to intermediate variables by the chain rule

∂L
∂θ

=
∂L
∂Xn

∂Xn

∂Xn−1 · · ·
∂X1

∂θ
, (1)

where L is some general objective function used for the optimization, θ is a general trainable variable and X i

are intermediate variables. A computation graph is a directed acyclic graph where a node represents a tensor
which stores the data and a link indicates the dependence of data flow during the computation process. The
simplest computation graph is the chain graph characterized by equation (1), see figure 1.

In differentiable programming, all the data belongs to tensors which are represented by higher-order
arrays. The data together with trainable variable θ flows along the computation graph with a series of
intermediate tensors to obtain the final output results. This computation process is referred to as the forward
propagation.

In most application scenarios, there are some tensors to be determined and optimized in the
computation graph. For this purpose, the output results are usually compared with the expected output data
to obtain a scalar, known as loss function, which evaluates the quality of the computation process. From the
loss function, the derivatives with respect to the intermediate tensors are computed along the reversed
computation graph, which is the so-called backward propagation. Once a computation graph has been set

2

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 1. An example of the chain graph. The forward and backward propagation are indicated by black and red arrows.

up, one can directly obtain the derivative tensors of output with respect to the input or other intermediate
tensors through backward propagation. Using the derivative information of the intermediate tensors, the
parameters in the computation graph can be optimized by various optimization methods which will be
discussed later.

For a general computation graph, the computation of the derivative of a node need to sum over all
contributions from its child nodes

X̄ i =
∑

j:child of i

X̄ j ∂X
j

∂X i
, (2)

where the adjoint variable X̄= ∂L/∂X is defined as the derivative of the final output L with respect to the
variable X as shown in figure 1. If a node X has several different paths to flow and affect the final output, the
derivative X̄ will account all the contribution among these paths.

In the conventional tensor network computation, it usually involves computing the environment of a
tensor which is also a tensor obtained by computing a fully contracted network without this tensor. These
environment tensors are used to optimize the tensor network, but it is laborious to draw and determine the
details of the contraction graph of the environment tensor by hands. Besides, because of the tensor
contraction operation with a large amount of tensors, computing the environment of a tensor is costly for
the computer. We note that the derivation with respect to a tensor is computed by removing the tensor and
compute the contraction of the remnant tensor network, which is exactly the derivative of a tensor is exactly
the environment of the tensor so long as the computation graph is constructed properly. The observation
above motivates the application of automatic differentiation to optimizing tensor networks in order to get
rid of the tedious environments computation. The differentiable programming can be easily implemented
using modern machine learning frameworks, like PyTorch, TensorFlow. Furthermore, these frameworks
provide easy-to-use interfaces with high performance computing units, such as graphics processing units
(GPUs) and Tensor Processing Units (TPUs), which remarkably boost the computation speed.

2.2. Gradient-based optimization
Having established the computation graph, we need to determine the optimization method used in
differentiable programming. Given the input dataD, the optimization problem is to find an optimal
mapping f(D) with parameters X to minimize the loss function

min
X
.L(D, fX(D)). (3)

Gradient descent method is the earliest and most common optimization method. The idea of gradient
descent method is to iteratively update the parameter X by subtracting the gradient of the parameter X̄ timed
by a factor η, known as learning rate,

Xt+1← Xt− ηX̄t. (4)

Some studies have found that in many cases the difficulty of optimization comes from the ‘saddle point’
[45] where the slope is positive in some directions and negative in another directions. There are several ways
to help the optimization escape saddle points.

For example, the momentum [46] is introduced in gradient descent to simulate the inertia of
optimization process. In the momentum method the historical influence is taken into account

Mt+1← βmMt + ηX̄t, (5)

Xt+1← Xt−Mt+1, (6)

where βm ⩽ 1 is the so-called momentum factor. With benefiting from the extra variableM, the momentum
method can help speed up the convergence and get away from saddle points.

3

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 2. The isometric constraints for isometries w and disentanglers u.

Another direction of improving gradient descent is to adjust the learning rate dynamically. For instance,
RMSprop [47] uses the historical decayed gradients accumulated up to adjust the learning rate
automatically by

vt+1←
√
βvvt +(1−βv)(X̄t)2, (7)

Xt+1← Xt−
η

vt+1
X̄t, (8)

where βv is a decay factor.

2.3. Riemannian optimization for isometric tensors
In many physics problems, some of the tensors and parameters are required to be satisfied isometric
constraints XTX= I where X is the parameter to be optimized of the form of matrices and tensors. The
isometric constraints for tensor contraction is illustrated in figures 2 and 12. In this paper we assume the
parameter X is real and XT denotes the transpose of X. The generalization to complex cases is
straightforward.

However, the isometric constraints, also referred as (semi-) orthogonal or (semi-) unitary constraints,
obstruct the direct application of the optimization methods in the previous subsection. There are two ways
to impose the constraints during the optimization.

One is the soft-constraint optimization, which allows the isometries and unitaries away from the
constraints and add the deviation from the constraints into the loss function. This is known as the Lagrange
multiplier method [48]. Then it becomes an unconstrained problem which the gradients of tensors are
simply derivatives of tensors. We can directly use the inbuilt optimizers of the deep learning frameworks to
minimize the modified loss function which is composed of the energy and deviation, see appendix F.

The other is the hard-constraint optimizations, which restrict the isometries and unitaries to be
isometric. This corresponds to the optimization problems on the Stiefel manifold [49, 50]. In this case, the
gradients of tensors should be confined in the Stiefel manifold, being different from simple derivatives of
tensors which is the gradient tensors of the whole Euclid space. In the following, we focus on the
hard-constraint optimization.

The hard-constraint optimization requires the tensors to be optimized satisfying the constraints during
the whole computation process. A widely used strategy for solving the problem is the Riemannian
optimization. Various methods based on Riemannian optimization have been studied extensively, including
polar decomposition [51], QR decomposition [52], Cayley transform [50, 53–56]. The applications of
Riemannian optimization have also been studied in physics like quantum control and quantum technologies
[57, 58].

Basically, the Riemannian optimization includes two steps: (a) find the gradient vector in the tangent
space of the current point on Stiefel manifold. (b) Find the descent direction and ensuring the new points on
the manifold.

Specifically, assume the tensor X is one of the tensors to be optimized with the constraints. Define the set
{X ∈ Rn×p : XTX= I,n⩾ p} as the Stiefel manifold with the dimension np− 1

2p(p+ 1). And define the
tangent space at the point X as TX = {Z ∈ Rn×p : ZTX+XTZ= 0}. Now the problem becomes to found a
point on the Stiefel manifold with the minimum loss function L

min
X∈Rn×p

.L(X) s.t.XTX= I. (9)

For the first step, the inner product in the tangent space TX should be defined to obtain the gradient
GX ∈ TX. Let Z1,Z2 ∈ TX, we can define the Euclidean inner product as ⟨Z1,Z2 ⟩e = tr(ZT

1Z2). But it
is more widely used to define a more natural choice which is the canonical inner product

4

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

⟨Z1,Z2 ⟩c = tr(ZT
1 (I− 1

2XX
T)Z2). In the following we choose the canonical inner product. It can be proved

[50] that the gradient GX on the manifold is

GX = AX= X̄− 1
2
(XXTX̄+XX̄TX), (10)

where A= X̄XT−XX̄T + 1
2X(X̄

TX−XTX̄)XT. In other words, the gradient GX is obtained by projecting the
derivative X̄ onto the tangent space TX of Stiefel manifold.

For the second step, the so-called operation retraction plays an important role. Generally speaking, there
are two classes of retraction to keep the updated point on the manifold: projection-like and geodesic-like
schemes. The projection-like schemes preserve the constraint by projecting a point into the manifold such as
QR decomposition, while the geodesic-like schemes preserve the constraint by moving a point along the
geodesic or quasi-geodesic line such as the Cayley transform.

2.3.1. Projection-like schemes
The point X on the manifold moves along the gradient vector a short distance to the new point X− ηGX,
where η is a tunable parameter representing to the learning rate. But generally, the new point X− ηGX is not
the point on the manifold. We need to project the point X− ηGX onto Stiefel manifold by various methods.

One way is the QR-decomposition-type retraction by noting that the Q factor of QR decomposition is
orthogonal. Then the update equation is

QR= Xt−
1

2
ηGX, (11)

Xt+1 = Q. (12)

Another way is to use SVD as retraction. If the SVD of a matrix X ∈ Rn×p is X= UΣVT, then the
projection map onto Stiefel manifold is π(X) = UIn×pVT [59]. Then the update equation is

UΣVT = Xt− ηGX, (13)

Xt+1 = UIn×pV
T. (14)

2.3.2. Geodesic-like schemes
The point X on the manifold moves along a single parameter curve Y(η) such that the curve is on the Stiefel
manifold, i.e. Y(η)TY(η) = I, and the derivative of the curve at origin is the gradient vector Y ′(0) =−GX.

One of the choice of the curve is Cayley transform

Y(η) =
(
I+

η

2
A
)−1(

I− η

2
A
)
X, (15)

where A is the matrix in equation (10). Then update equation is

Xt+1 =
(
I+

η

2
At

)−1(
I− η

2
At

)
Xt. (16)

Note that the inverting a n× nmatrix I+ η
2A is costly. In appendix B, we show that the computation expense

can be reduced by Sherman–Morrison–Woodbury formula or an iteration method.

2.3.2.1. Algorithm improvement
In order to improve the optimization performance, We apply the optimization techniques introduced in
section 2.2 to our Riemannian optimization methods. Generally, both the accuracy and optimization speed
could be improved by introducing the dynamic momentum and adaptive learning rate techniques [56].

To be specific, instead of directly using the derivative X̄ in the gradient computation equation (10), we
introduce a decorated matrix momentumM to replace X̄. Then the momentum and the gradient are
computed by

Mt+1← βmMt + X̄t, (17)

GX←Mt+1−
1

2
(XtX

T
t Mt+1+XtM

T
t+1Xt), (18)

Mt+1← GX, (19)

5

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Xt+1← RGX
η (Xt), (20)

whereM0 = 0 and βm is a hyperparameter to be tuned. Here RGX
η (Xt) denotes the retraction operation,

which can be substituted by equations (11)–(14) and (16). Note that we project the momentum onto the
tangent space of Stiefel manifold.

A variant adaptive learning rate is also utilized by

ηadapt =min.(η,αη/(∥A∥+ ϵ)), (21)

where αη is a hyperparameter to be tuned and ∥A∥ denotes the norm of tensor A. The adaptive learning rate
is such that a large learning rate is used when the norm of gradient is small. These techniques may improve
the gradient diffusion problem during the optimization process and accelerate the convergence speed.

3. Application toMERA

The MERA is a variational ansatz for the ground state and low-energy excited states of critical quantum spin
chains. Numerically, it has been used to extract universal information, such as scaling dimensions and
operator product coefficients from the critical spin chain Hamiltonian. Furthermore, it has found
applications in the context of holography [60] and emergent geometry [61].

3.1. Review of MERA
The MERA |ψ(u,w)⟩ is composed of layers of isometries w and disentanglers u which satisfy the isometric
constraints,

u†u= uu† = I, ww† = I, (22)

which are expressed graphically in figure 2. Physically, the MERA can be viewed as a renormalization group
flow in the real space. From the bottom upwards, each layer of MERA coarse-grains the quantum state. The
isometric constraints of the tensors are essential from both physical and numerical perspectives. From the
physical perspective, the isometric constraints keep the norm of the state and retain the causal structure [32]
under the coarse graining. From the numerical perspective, the isometric constraints of the tensors ensures
that expectation values of the local operators can be computed in polynomial time.

Depending on the number of bonds of the isometries w, there are different types of MERA [62] and in
this work we focus on the ternary MERA as in figure 3. We further assume translational invariance, where the
u and w tensors are the same in the same layer. We also assume scale invariance, where all u’s and w’s are the
same above a certain number of transitional layers. Let the number of transitional layers to be n, then the
variational ansatz is completely specified by uτ and wτ , where τ = 1,2, . . . ,n+ 1 denotes the layers from
bottom to top, and un+1 and wn+1 constitute the scale-invariant layers.

In order to obtain the ground state, one optimizes the energy function as the loss function,

E=
⟨ψ(u,w)|H|ψ(u,w)⟩
⟨ψ(u,w)|ψ(u,w)⟩

= ⟨ψ(u,w)|H|ψ(u,w)⟩, (23)

where in the second equality we have used the normalization of the state as a result of the isometric
constraints.

It is well known [31] that the computation of the expectation value of local operators in a MERA involves
two superoperators, the ‘ascending superoperator’ and the ‘descending superoperator’. The ascending
superoperator Ā transforms local operators oτ−1 at layer τ − 1 to local operators oτ at layer τ ,
oτ = Āτ (oτ−1), as shown in figure 4. The descending superoperator, as the adjoint of the ascending
superoperator, transforms the two-site reduced density matrix ρτ at layer τ to the two-site reduced density
matrix ρτ−1 at layer τ , ρτ = D̄τ (ρτ+1), as shown in figure 5.

The coarse-graining is such that expectation values of the operator oτ for each layer τ are the same

tr(oρ) = tr(oτρτ). (24)

At the scale invariant layer T≡ n+ 1, the two-site reduced density matrix satisfies

ρT = D̄T(ρT), (25)

which is the unique eigenoperator of the average ascending superoperator D̄T with eigenvalue 1. The
eigenoperator can be approximately computed by the power method, i.e. repeatedly applying D̄T to any
initial state until convergent.

6

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 3. A one-dimensional infinite ternary MERA with isometries w and disentanglers u.

Figure 4. Ascending superoperators ascend the operator oτ−1 at the layer τ − 1 to the operator oτ at the layer τ . They include
three different formAL,AC andAR. The average ascending superoperators Ā= (AL +AC +AR)/3.

Figure 5. Descending superoperators descend the density tensor ρτ at the layer τ to the density tensor ρτ−1 at the layer τ − 1.
They include three different formDL,DC andDR. The average descending superoperators D̄ = (DL +DC +DR)/3.

To summarize, starting with random isometric tensors w, u under the constraints equation (22), the
standard computation process of constructing a MERA involves two steps [31]:

(a) Top-bottom: computing the density tensor ρT at the top layer by solving the eigenoperator of D̄T,
then computing the density tensors ρτ for all layers τ < T from top to bottom by the descending
superoperators D̄τ .

(b) Bottom-Top: From bottom to top, update the isometry and disentangler tensorswτ and uτ , and compute
the Hamiltonian Hτ for all layers τ by ascending superoperators Āτ .

For the updating procedure, we can use Evenbly–Vidal method [31] (see appendix A) or gradient-based
methods introduced above. Repeating the (a) top-bottom and (b) bottom-top process, the tensors w and u in
MERA will be constructed.

We note that in differentiable programming only the top-bottom approach is used and the bottom-top
approach is computed automatically once the optimization method is determined.

3.1.1. Scaling dimensions
Once the MERA has been constructed and optimized, we can easily extract the scaling dimensions, which are
universal properties of the phase transition that we can obtain easily from MERA. Take our ternary MERA as
example, consider an on-site operator ϕα in scaling invariant layers. By the on-site ascending superoperator
figure 6, the operator ϕα is lifted to Āτ (ϕα) in the next scale. The scaling operators are found by the fixed
points of the ascending superoperator.

Āτ (ϕα) = λαϕα. (26)

It can be easily shown that the two-point correlator of such scaling operators are

⟨ϕα(3r)ϕα(0)⟩= λ2α⟨ϕα(r)ϕα(0)⟩. (27)

The scaling dimensions can therefore be calculated by∆α =− log3 λα.

7

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 6. The on-site ascending superoperator acts on the eigenstate ϕα with the eigenvalue λα.

Figure 7. The computation graph for translation invariant MERA. At the left part the density tensor is iterated several times in the
scaling invariant layer as the input data. The forward propagation (grey arrow) involves the descending operation with parameters
w and u as in figure 5. On the bottom layer, the density matrix is contracted with the Hamiltonian to obtain the energy as the loss
function. The backward propagation (red arrow) computes the derivative tensors w̄τ , ūτ and ρ̄τ automatically. Finally the
parameters w and u are updated by the gradient optimization method.

3.2. Auto differentiation
3.2.1. Computation graph
The computation graph for the loss function of the optimization of MERA is shown in figure 7. The forward
and backward propagation correspond to the top-bottom and bottom-top processes in the conventional
computation, respectively. The top layer reduced density matrix ρT is computed by iteration of the
descending superoperator for several layers. The isometries w and disentanglers u serve as network
parameters to be trained. For each layer τ , the reduced density matrix ρτ flows to that of the lower layer ρτ−1
by the descending superoperators. Note that the descending superoperators only involve tensor contractions
which can be backward propagated automatically. At the bottom layer, the density matrix ρ0 is contracted
with HamiltonianH0 to obtain the energy E as the loss function L. Then the derivative tensors w̄τ , ūτ and ρ̄τ
of each layer τ are computed during automatically by backward propagation. We note that w̄τ and ūτ equal
to the environment tensors of w and u, respectively. Finally, due to equation (24), we have

ρ̄τ =
∂E

∂ρτ
=
∂tr(Hτρτ)

∂ρτ
=Hτ . (28)

The optimization of wτ and uτ can be done by the gradient optimization as in section 2. This can be
combined with the traditional Evenbly–Vidal algorithm [31] and we compare the performance below.

3.2.2. Results
We use the critical one dimensional transverse field Ising model [63] to test the algorithm.

H0 =−
∑
r

(
σ[r]
x σ

[r+1]
x +λσ[r]

z

)
, (29)

where λ= 1 for the critical point.
The ground state energy density is known exactly,

Eexact =−
1

2π

ˆ π

−π

√
(1− cosk)2+ sin2 kdk=− 4

π
. (30)

We use the PyTorch framework in Python to realize the auto-differentiable algorithm with the GPU
acceleration. As comparison of the computation speed, for the optimization of a MERA with χ= 8 in 104

iterations using Evenbly–Vidal method, our differentiable programming with GPU acceleration costs 883 s,
while the conventional programming without GPU acceleration costs 5109 s. For gradient-based methods
the GPU can also accelerate the computation speed. Our test platform is a laptop with Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60GHz and NVIDIA GeForce GTX 1060 GPU.

In addition to the Riemannian optimization methods mentioned in 2.3, we also propose a randommixed
method combining the Evenbly–Vidal method and the gradient-based methods. In random mixed method,

8

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 8. (a) The comparison of optimization curves with Evenbly–Vidal method (green dashed line), SVD method (blue solid
line), Cayley method (yellow solid line) and the random mixed method (purple solid line). The max bond dimension χ is 12 and
the number of transitional layers is 3. (b) The computed scaling dimensions with the four method comparing with the exact
values (grey dot-dashed line).

we use Evenbly–Vidal method as basis method for iterations and replace an iteration by gradient descent
methods with SVD or Cayley retractions every five iterations.

The error in energy for Evenbly–Vidal, SVD, Cayley and the random mixed methods are shown in
figure 8(a). For SVD and Cayley methods, we introduce dynamical momentum and adaptive learning rate
techniques with η= 1.0, βm = 0.9 and αη = 4.0. The learning rate is decayed every ten iterations with the
decay factor 0.999. Benefiting from the momentum and adaptive learning rate techniques, the errors of
energy can be reduced by more than an order of magnitude.

It is known that the MERA optimization is vulnerable to be stuck into local minima and gradient
diffusion [44]. In the practice of Ising model optimization, we find that if after the first several hundred
iterations the energy error is still larger than a threshold, it will be high probability that the optimization is
stuck into local minima. In order to reduce the chance of being stuck into local minima and improve the
success rate of optimization, we used a resetting mechanism, see appendix C for details of resetting
mechanism. The resetting here means that the network parameters w and u and the two-site reduced density
matrix are set to the initial state. The number of resetting times can be used as an indicator to show the
stability of optimization. High stability means that the optimization has a low possibility to be stuck at a local
minima. We can see from figure 8(a) that for gradient-based methods (SVD, Cayley and the random mixed
methods) the energy errors fall quickly at the beginning, meaning that the possibility of being stuck into local
minima is lower than the Evenbly–Vidal method. Indeed, we find that these methods hardly trigger the
resetting mechanism, while the Evenbly–Vidal method has certain possibility to trigger the resetting
mechanism.

In order to speed up convergence, we applied a gradually lifting bond dimension trick with the bond
dimension χ increasing from 4 to 12, see appendix C for details of lifting bond dimension trick. We can see
in figures 8(a) and 9 that there are some cusps in the errors of energy, corresponding to the bond dimension
lifting.

In figure 8(a), we find that although the accuracies of SVD and Cayley methods are not good as
Evenbly–Vidal method, the combination of them with Evenbly–Vidal method, corresponding to the random
mixed method, has a better accuracy. We repeat the same optimization process several times for
Evenbly–Vidal method and random mixed method as shown in figure 9, finding that generally the random
mixed method has better performance in both stability and accuracy. For other models the performance can
also be improved by applying random mixed method, see appendix D.

We can provide an explanation for the performance improvement. It is known that the main difficulty of
the optimization comes from the saddle points [45]. One idea for escaping saddle points is to introduce
fluctuation such as using random input data in Stochastic gradient descent (SGD) [64]. However, in our
problem the input data is deterministic (determined by w and u of the top layer in MERA). Therefore we
introduce perturbation of the optimization with Evenbly–Vidal method by randomly choosing SVD and
Cayley methods and adding an iteration with this method into the optimization process, as what did in the

9

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 9. Repeated energy errors with Evenbly–Vidal and random mixed methods with the same setting as figure 8, except for the
max bond dimension χ= 10 here.

random mixed method. Different methods possess different searching way in the parameter space. Switching
the method meaning the changing of searching way, which can help the optimization process to escape
saddle points. As a result, such a combination of different optimization methods can improve both stability
and accuracy benefiting from ‘shaking up the system’.

The scaling dimensions can also be computed using the optimized MERA. The first three scaling
dimensions using the MERA optimized by Evenbly–Vidal, SVD, Cayley and the random-mixed methods are
shown in figure 8(b). As we can see, our optimized MERA could produce good value of scaling dimensions
for the first several scaling dimensions. The scaling dimensions of higher order terms usually needs tensor
networks with larger bond dimensions.

4. Application to TNR

The partition function of a d+ 1-dimensional classical statistical-mechanical models or d-dimensional
quantum many-body systems can be represented as a d+ 1-dimensional tensor network. One way of
computing the partition function is based on the real-space RG, where the linear size of the tensor network is
reduced at each step. There are several methods that stood out, including the TRG [36], HOTRG [65], TNR
[34, 35], Loop-TNR [66] and Gilt-TNR [67]. Most of the techniques work extremely well in d= 1, and some
of them also work in d= 2. In this work we focus on TNR in d= 1, which produces a proper RG flow for a
critical system. In TNR, there is an optimization over disentanglers and isometries similar to MERA [37].
Therefore, the differentiable programming techniques in this work can be applied. This generalizes previous
work where the application of differentiable programming to TRG is discussed [43].

4.1. Review of TNR
Here we briefly review the algorithm of TNR. For more details we refer to [35]. Consider the 2D classical
Ising model on square lattice with inverse temperature β. The partition function is

Z=
∑
{σ}

e−βH(σ), (31)

where

H(σ) =−
∑
⟨i,j⟩

σiσj, (32)

and σi =±1 is the Ising spin on site i. The partition function is a square tensor network consisting of
four-index tensors Aijkl which are located in the center of every second plaquette of Ising spins as in figure 10,
where

Aijkl = eβ(σiσj+σjσk+σkσl+σlσi). (33)

Then the patition function equation (31) is given by the contraction of the tensor network

Z(β) =
∑
ijk···

AijklAmnojAkrst · · · . (34)

At each step of the coarse-graining, we approximate a 2× 2 block of tensors by inserting isometries and
unitaries as in figure 11, where the tensors vL,vR,u satisfy the isometric constraints as in figures 12(a)–(c).
The tensors vL,vR,u are determined by minimizing the approximation error as in figure 13.

10

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 10. The square lattice of classical spins σ =±1 rotated by 45◦ maps into a tensor network.

Figure 11. The original sub-network is approximated by a new network by inserting pairs of isometries and disentanglers. The
tensor B is defined for convenience.

Figure 12. The isometric constraints for (a) the isometries vL, (b) the isometries vR, (c) the disentanglers u and (d) the isometries
w. The bond dimension χ of each index are illustrated.

Figure 13. The loss function defined as the approximation error δ.

Figure 14. The approximation of tensor B by making singular value decomposition.

The optimization has been achieved by Evenbly–Vidal method as in [35]. Here we use the gradient-based
methods like SVD and Cayley methods discussed in this paper.

Then, we contract some of the tensors into a tensor B as defined in figure 11. Next, a singular value
decomposition on the tensor B is performed to obtain the isometric tensors uB, vB and the diagonal matrix sB
containing singular values, which is truncated to χ×χ by discarding smallest diagonals. The diagonal matrix
sB is then splited to make a pair of

√
sB, and we define new tensors yL = uB

√
sB and yR =

√
sBvB as shown in

figure 14. The tensor network is now entirely composed of the tensor on the left of figure 15.

11

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 15. The definition of the coarse grained tensor Aout.

Figure 16. The computation graph for TNR. The grey dotted rounded rectangle indicate one step of TNR computation. The
forward and backward propagation processes appear in each coarse-graining step. The gray arrows show the forward propagation
path, while the red arrows show the backward propagation path.

Finally, we insert the isometry w with the isometric constraint shown in figure 12(d) and obtain Aout,
which effectively contain the information of four tensors in the original tensor network.

We note that the tensors w should be also optimized in order to minimize the approximation errors as in
figure 13. But here we can apply an alternative method by solving the eigenvectors of the matrix of the first
sub-network of figure 15 with contracting the left and right indices, because of the hermitian property of this
sub network.

Repeating the computation above, the original large tensor network of the partition function can be
simplified to one or a few tensors, which can be easily computed. Also note that at each RG step, the tensor A
is divided by the norm of A to prevent the data explosion.

4.2. Auto differentiation
4.2.1. Computation graph
Within the differentiable programming framework, we show the computation graph of TNR in figure 16.

Given the inverse temperature β, we first construct the tensor network representation for the system.
Then we use TNR to coarse grain the tensor network until the network only consists of single or a few tensors.
At each RG step, we use the truncation error as the loss function, and then backward propagate to optimize
the parameters vL, vR and u. We refer to appendix E for detail description of the computation graph of TNR.

Since the computation graph for the loss function is short, the optimization of parameters vL, vR and u is
easy with the fast convergence. At the last step where only one tensor AT remains in the network, we obtain
the partition function lnZ by taking the tensor trace of AT and multiplied by the Anorm of all previous steps.

4.2.2. Results
For 2D classical Ising model on an infinite square lattice, the logarithm of partition function per site is
exactly known [68]

lnZ=
1

2
ln2+

1

2π

ˆ π

0
ln

(
cosh2 2β+

1

λ

√
1+λ2− 2 λcos2x

)
dx, (35)

where λ= 1/ sinhβ2.
In figure 17(a), we show the computed lnZ accords well with the exact value as a function of the inverse

temperature β by random mixed method. We can see that the computed results by differentiable
programming fit well with the exact values.

12

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 17. (a) The lnZ of 2D classical Ising model computed by differentiable programming with respected to the inverse
temperature β. The blue line represents the exact value while the orange cross points represent the computed results by
differentiable programming. The size of system is 28× 28 and the max bond dimension here is χ= 14. (b) The internal energy as
the function of β computed by finite difference method.

Figure 18. The approximation errors of 2D classical Ising model computed by differentiable programming with Evenbly–Vidal
method and random mixed method. Here we take approximation errors of the 3rd, 5th and 7th layers as examples. The bond
dimension here is χ= 14.

We show the computed internal energy results E=−∂ lnZ
∂β in figure 17(b) by finite difference method.

The relative errors of lnZ and internal energy E are about 10−7 ∼ 10−5 and 10−5 ∼ 10−3 correspondingly.
The errors are almost the same for the results from conventional TNR algorithm. But the computation speed
can be boosted by GPU acceleration. We find the random mixed method can also improve the performance
of optimization in TNR, as shown in figure 18.

As a comparison of computation speed, for the construction of a 28× 28 TNR with χ= 14 with 800
iterations for each layer using random mixed method, our differentiable programming with GPU
acceleration costs 708 s, while the conventional programming without GPU acceleration costs 2456 s.

We note that in our cases, the automatic differentiation of quantities like internal energy E=−∂ lnZ
∂β is

difficult. Taking TNR as example, the loss function is a function of β. Each iteration of updating a parameter
tensor will introduce a term of β. When we intend to automatic differentiate lnZ with respected to β, we
should track all the hundreds and thousands of iterations and back-forward propagate the whole
computation process. This make the automatic differentiation with respected to β difficult both for
programming and efficient. For programming, it requires to build the computation graph of backward
propagation itself. In other words, it need to backward propagate the backward propagation. But it is quite
difficult to code such programming within automatic differentiation frameworks. For efficiency, we have to
record and store the whole computation process with hundreds and thousands of iterations and track them
back to the initial status. This procedure will consume a huge amount of memory resources as well as
time.

4.2.3. Scaling dimensions
Once the TNR has been constructed and optimized, the scaling dimensions can also be extracted easily. Here
we use the transfer matrix technique [69] to compute the scaling dimensions with the critical inverse
temperature βc = ln(1+

√
2)/2 shown in figure 19. We can see that with the TNR and transfer matrix

technique the computed scaling dimensions have accurate results even at quite higher orders.

13

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 19. The scaling dimensions of 2D classical Ising model computed by differentiable programming. The dotted gray lines
indicate the exact values. The size of system is 210× 210 and the max bond dimension here is χ= 20.

5. Summary

In this paper, we extend the application of differentiable programming to an important family of tensor
networks with isometric constraints such as MERA and TNR. We show how the MERA and TNR are
constructed and optimized within differentiable programming framework by explicitly illustrating the
computation graphs of them. We discuss several gradient-based optimization methods that supplement
traditional methods for tensor networks with isometric constraints and show that the performance of
optimization can be improved by combining the gradient-based method and traditional methods.

The differentiable programming in tensor network optimization has several advantages.
(a) Differentiable programming has an unified programming paradigm since we only need to specify the
computation graph and the optimization method for the optimization. (b) In differentiable programming,
the gradient can be computed automatically, which releases the labor on the tedious contraction
computation of environment graphs. (c) Differentiable programming has extensibility and flexibility in
practice. It can be modularized, in which one can easily change and add different network layers and
optimization methods. (d) We can also benefit from the parallel computation with the GPU acceleration.
(e) Last but not the least, differentiable programming can also help with the optimization of arbitrary
network networks when no traditional optimization methods are known.

With the merits above, the differentiable programming can be applied to other tensor networks such as
higher-dimensional MERA or TNR, which have not yet been implemented previously due to the complexity
of the network structures and the high computation expenses. With the help of automatic differentiation, we
can get rid of the tedious labor of contracting graphs. For example, in our one dimensional ternary MERA
case, we need only determine 3 tensor contraction graphs (descending superoperators) in differentiable
programming, comparing with the 15 tensor contraction graphs in the traditional algorithm. This advantage
will play a more significant role when the network structure becomes complicated. It is also very interesting
and challenging to combine the optimization of tensor data together with the optimization of tensor
network’s structure [70]. This will serve as a unified method to discover hidden structures of the data. For
example, given the measurement results of a quantum state, can machine find the best tensor network
structure that represents the data? It has been shown that based on the entanglement data, neural network
can establish different hidden geometry (structure) for area law, logarithmic law, and volume law quantum
states as an analog of holographic duality [71]. In tensor network studies, it is also known that random
tensor networks are closely related to holographic duality [72]. Whether different hidden geometry of tensor
network can emerge purely based on observation data of different quantum states is both an interesting and
fundamental question for physics. Our methods can also be applied to simulate and train quantum neural
network ansatz for real-world applications [30]. Last but not the least, tensor networks with unitary or
isometric constraints are closely related to quantum computing simulation and quantum machine learning
[73], as unitary tensors are represented by quantum gates. The isometric tensor network representation is
therefore a natural description and potential platform for quantum and quantum–classical hybrid
algorithms like variational quantum eigensolver (VQE) [74, 75]. The gates in VQE are equivalent to tensors
with isometric constraints, and might be optimized using our proposed scheme. Besides, this scheme may
also be used for stimulating quantum circuits by combining with the recent techniques based on cutting and
contracting tensor networks [76, 77].

14

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 20. The environment tensors of (a) the isometry w and (b) the disentangler u for MERA, which are the summation of six
parts and three parts correspondingly. The environment tensors of vL, vR and u in TNR are shown in (c).

Data availability statement

The data that support the findings of this study are openly available at the following URL:
https://github.com/xwkgch/IsoTensor.

Acknowledgments

We thank Masaki Oshikawa, Yasuhiro Tada, Atsushi Ueda, Jin-Guo Liu, Song Cheng, Yi-Zhuang You and
Markus Hauru for helpful discussions. The simulations were performed using the PyTorch [41] and we have
the open source package ‘IsoTensor’ available on GitHub [78].

C G was supported by JSPS KAKENHI Grant Nos. JP17H06462 and JP19H01808. H Y H is supported by
the UC Hellman fellowship. Y Z is supported by the Stanford Q-Farm Bloch Postdoctoral Fellowship in
Quantum Science and Engineering.

Appendix A. Evenbly–Vidal optimizationmethod

In order to optimize the whole tensor network, we need to explain how to optimize a single tensor. Here we
briefly introduce the Evenbly–Vidal optimization method [31, 35]. Taking the isometry tensor w as example,
we need to minimize the energy, or to say loss function

E(w) = tr(wYw). (A1)

We temperately regard w and w† as independent tensors and Yw is the environment of the tensor w shown in
figure 20(a). By applying the singular value decomposition (SVD) on the environment Yw = USV†, the
energy E(w) can be minimized if we choose the new isometry tensor

w ′ =−VU†. (A2)

Then a single step of updating is to replace the old tensor w by the new tensor w
′
.

The remaining quest is to determine the environment of the tensor. We can automatically obtain the
environment tensors by means of differentiable programming discussed in the main text, or drawing and
contracting the environment graphs manually. Here we show the environment graphs for the ternary MERA
and TNR used in this paper.

Appendix B. Reducing computation expense of Cayley method

We can reduce the computation of inverting a n× nmatrix to inverting a 2p× 2p (n> 2p) matrix by
Sherman–Morrison–Woodbury formula(

B+αUVT
)−1

= B−1−αB−1U
(
I+αVTB−1U

)−1
VTB−1. (B1)

Define the concatenated matrices U= [PXX̄,X] and V= [X,−PXX̄] where the square brackets here refer to
the matrix concatenation and PX = I− 1

2XX
T. Then we have A= UVT and the matrix inverse term in

equation (15) becomes

15

https://github.com/xwkgch/IsoTensor

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

(
I+

η

2
A
)−1

=
(
I+

η

2
UVT

)−1
(B2)

= I− η

2
U
(
I+

η

2
VTU

)−1
VT. (B3)

And the optimization method of Cayley transform becomes

Xt+1 = Xt− ηUt

(
I+

η

2
VT
t Ut

)−1
VT
t Xt. (B4)

There is an alternative way to accelerate the computation of Cayley transform by the iterative estimation of
equation (15) [50, 56]. Note that the fixed point solution of the equation Y(η) = X− 1

2ηA(X+Y(η)) for
Y(η) is exactly equation (15). By iterating several steps of the equation

Xt+1,0 = Xt− ηGX, (B5)

Xt+1,k+1 = Xt−
1

2
ηA(Xt +Xt+1,k), (B6)

we can update the tensors in the Cayley transform scheme to avoid computing inverse of matrices.

Appendix C. Training details of MERA

C.1. Resetting mechanism
In the practice of Ising model optimization of MERA, we find that if after the first several hundred iterations
the energy error is still larger than a threshold around 10−3, it will be highly possible to be stuck into local
minima with energy errors 10−3 ∼ 10−4. In order to reduce the chance of being stuck into local minima and
improve the success rate of optimization, we used a resetting mechanism. To be specific, we first optimize the
MERA for 700 iterations and check whether the energy error is larger than a threshold value 1.5× 10−3. If
the energy error is larger than the threshold value, we reset the optimization to the beginning, meaning that
all the trainable parameters in the network are set to there initial values as well as the associated parameters
of optimizers.

We note that the Evenbly–Vidal method in our paper has a little difference from Evenbly and Vidal’s
original algorithm [31]. In the original algorithm, the update is timely, meaning that once a tensor is updated
the next derivative or environment tensor is computed using this updated tensor and so on. within the
auto-differentiation framework, it is hard to update tensors timely. That is, we compute all the derivative
tensors at once. And then we use these derivative tensors to update all the tensors to be optimized.

C.2. Lifting bond dimension trick
In our MERA optimization we use a gradually lifting bond dimension trick which can speed up convergence
and improve the accuracy. To be specific, we start the computation with a small bond dimension χ= 4 in
first 200 iterations. Then we increase the bond dimension to 6,7,8,9,10,12 sequentially by enlarging the
tensors’ size and padding zero values. For the result in figure 8, the lifting bond dimension occurs at the
200,700,2700,5700,8700,11700,15700 iterations.

Appendix D. Methods comparison of MERA for other models

In this section we compare the Evenbly–Vidal method and random mixed method for critical Heisenberg XY
model and Heisenberg XXZ model [79]

HXY =
∑
r

(
σ[r]
x σ

[r+1]
x +λσ[r]

y σ
[r+1]
y

)
, (D1)

HXXZ =
∑
r

(
σ[r]
x σ

[r+1]
x +σ[r]

y σ
[r+1]
y +λσ[r]

z σ
[r+1]
z

)
(D2)

with λ= 1.0.
The results are shown in figure 21. We find that for Heisenberg XY and XXZ models the random mixed

method can also improve the optimization performance.

16

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 21. Energy errors with Evenbly–Vidal method and random mixed method for critical Heisenberg XY (left) and XXZ
(right) models. The setting of computation is the same as the Ising model in the main text.

Appendix E. Computation graph of TNR

In this section we explicitly describe the computation graph of TNR used in our paper. The computation
graph for the TNR is illustrated in figure 16 in the main text.

The computation graph starts from the inverse temperature β because we would like to investigate the
partition function with different β. Using equation (33) we can represent the partition function as the
contraction of As. In order to prevent the data explosion, the A is renormalized to A0 by dividing a constant
number Anorm,0 which is taken as the L2 norm of A here.

The computation graph of TNR for each layer (gray dashed frame in figure 16) involve three parts. We
take the first layer for example:

(a) Forward propagation: Taking a 2× 2 sub-network ofA0 wemake the approximation by inserting projec-
tion operators as in figure 11 to obtain the new sub-network Anew,0. Taking a 2× 2 sub-network of A0 we
make the approximation by inserting projection operators as in figure 11 to obtain the new sub-network
Anew,0. Then compare the new sub-network Anew,0 with the original 2× 2 sub-network of A0 by making
contraction of them, we get the approximation error ∥δ∥ as the loss function. The forward propagation
is shown as gray arrows in figure 16.

(b) Backward propagation: From the loss function, the derivative tensors of parameters vL, vR and u are
automatically computed. With the derivative tensors the parameters can be updated by various methods.
Iterating the forward and backward propagation the parameters are optimized. The backward propaga-
tion is shown as red arrows in figure 16.

(c) Tensors renormalization: Once the parameters have been optimized, we canmake the tensors renormal-
ization as described in the main text. The tensors renormalization is shown as brown arrows in figure 16.

By repeating the coarse-graining procedure layer by layer, we finally arrive the top layer and obtain the
single tensor AT in our case. Applying the tensor trace on AT and collecting Anorms of every layers, we obtain
the partition function Z and its logarithm lnZ.

Indeed, the brown arrows in figure 16 also indicate the forward propagation from β to lnZ. We can
compute the first-order or even second derivatives of lnZ with respect to β corresponding to energy density
and specific heat in further works.

Appendix F. Soft-constraint optimization

The soft-constraint optimization is to relax the constraints and allow the tensors w and u to be away from
isometric, which is known as the method of Lagrange multipliers [48].

Define the elementwise average error

Terr =
1

3

(⟨
I−w†w

⟩
+
⟨
I− u†u

⟩
+
⟨
I− uu†

⟩)
. (F1)

Here the angle bracket refers to the elementwise average of a matrix. The value of Terr measures how the the
tensors w and u away from the isometric constraints. Adding Terr with the energy E we obtain the modified
loss function

17

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

Figure 22. The optimization curves of the soft-constraint method both for the energy error and the orthogonality error. The bond
dimension χ= 8. The number of transitional layers is 4.

Ll = E+λlTerr, (F2)

where λl is the Lagrange multiplier. Now the constraints are absorbed into the modified loss function and we
can optimize the modified loss function Ll using the usual optimization methods.

The hyperparameter λl should be tuned manually and the optimization is sensitive to the
hyperparameter λl. But the tuning of hyperparameter λl is tricky and elusive depending on the systems. We
introduce a dynamic tuning process of λl here. If λl is too large, the optimization will mainly focus on the
constraints and the energy decreasing will become difficult, while if λl is too small, the optimization will
almost ignore the constraints and the energy will keep deceasing. We use a dynamic tuning strategy:

(a) Starting with a small λl. After a few iterations switch to a large λl.
(b) When the tensors error Terr is lower than a threshold, decrease λl and the threshold exponentially until

to a lower bound.
(c) When the tensors errorTerr is higher than the threshold, increase λl exponentially until to a higher bound.

By this tuning strategy, the hyperparameter λl is tuned automatically depending on the tensors error Terr
such that the optimization keeps a relative balance between the energy E and the tensor error Terr.

Figure 22 shows the optimization curves of the soft-constraint method both for the energy error and the
orthogonality error by the Adam optimizer. The inner figure shows how the hyperparameter λl changes
during the optimization process. In this result, the energy error is about∼10−5, which is larger than what we
obtained by Evenbly–Vidal and gradient-based methods in the main text.

ORCID iDs

Chenhua Geng https://orcid.org/0000-0001-8420-0779
Hong-Ye Hu https://orcid.org/0000-0001-5841-831X

References

[1] Hayden P, Nezami S, Qi X-L, Thomas N, Walter M and Yang Z 2016 Holographic duality from random tensor networks J. High
Energy Phys. 2016 9

[2] Pastawski F, Yoshida B, Harlow D and Preskill J 2015 Holographic quantum error-correcting codes: toy models for the
bulk/boundary correspondence J. High Energy Phys. 2015 149

[3] Verstraete F and Cirac J I 2004 Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions
(arXiv:cond-mat/0407066 [cond-mat.str-el])

[4] Vidal G 2008 Class of quantum many-body states that can be efficiently simulated Phys. Rev. Lett. 101 110501
[5] Vidal G 2003 Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett. 91 147902
[6] Schollwöck U 2005 The density-matrix renormalization group Rev. Mod. Phys. 77 259
[7] Tilloy A and Cirac J I 2019 Continuous tensor network states for quantum fields Phys. Rev. X 9 021040
[8] Verstraete F, Murg V and Cirac J 2008 Matrix product states, projected entangled pair states and variational renormalization group

methods for quantum spin systems Adv. Phys. 57 143

18

https://orcid.org/0000-0001-8420-0779
https://orcid.org/0000-0001-8420-0779
https://orcid.org/0000-0001-5841-831X
https://orcid.org/0000-0001-5841-831X
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP06(2015)149
https://arxiv.org/abs/cond-mat/0407066
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevX.9.021040
https://doi.org/10.1103/PhysRevX.9.021040
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

[9] Novikov A, Trofimov M and Oseledets I 2016 Exponential machines (arXiv:1605.03795 [stat.ML])
[10] Stoudenmire E and Schwab D J 2016 Supervised learning with tensor networks Advances in Neural Information Processing Systems

vol 29, ed D Lee, M Sugiyama, U Luxburg, I Guyon and R Garnett (Curran Associates, Inc.)
[11] Glasser I, Pancotti N and Cirac J I 2018 From probabilistic graphical models to generalized tensor networks for supervised learning

(arXiv:1806.05964 [quant-ph])
[12] Martyn J, Vidal G, Roberts C and Leichenauer S 2020 Entanglement and tensor networks for supervised image classification

(arXiv:2007.06082 [quant-ph])
[13] Sun Z-Z, Peng C, Liu D, Ran S-J and Su G 2020 Generative tensor network classification model for supervised machine learning

Phys. Rev. B 101 075135
[14] Efthymiou S, Hidary J and Leichenauer S 2019 TensorNetwork for machine learning (arXiv:1906.06329 [cs.LG])
[15] Cheng S, Wang L and Zhang P 2020 Supervised learning with projected entangled pair states (arXiv:2009.09932 [cs.CV])
[16] Lu S, Kanász-Nagy M and Cirac J I 2021 Tensor networks and efficient descriptions of classical data (arXiv:2103.06872 [quant-ph])
[17] Cui J, Shi M, Wang H, Yu F, Wu T, Luo X, Ying J and Chen X 2019 Transport properties of thin flakes of the antiferromagnetic

topological insulator MnBi2Te4 Phys. Rev. B 99 155125
[18] Han Z-Y, Wang J, Fan H, Wang L and Zhang P 2018 Unsupervised generative modeling using matrix product states Phys. Rev. X

8 031012
[19] Stokes J and Terilla J 2019 Probabilistic modeling with matrix product states Entropy 21 1236
[20] Glasser I, Sweke R, Pancotti N, Eisert J and Cirac J I 2019 Expressive power of tensor-network factorizations for probabilistic

modeling, with applications from hidden Markov models to quantum machine learning (arXiv:1907.03741 [cs.LG])
[21] Gao X, Anschuetz E R, Wang S-T, Cirac J I and Lukin M D 2021 Enhancing generative models via quantum correlations

(arXiv:2101.08354 [quant-ph])
[22] Liu J-G and Wang L 2018 Differentiable learning of quantum circuit born machines Phys. Rev. A 98 062324
[23] Kadanoff L P 1966 Scaling laws for ising models near Tc Phys. Phys. Fiz. 2 263
[24] Wilson K G and Kogut J 1974 The renormalization group and the ε expansion Phys. Rep. 12 75
[25] Wilson K G 1983 The renormalization group and critical phenomena Rev. Mod. Phys. 55 583
[26] Hu H-Y, Wu D, You Y-Z, Olshausen B and Chen Y 2020 RG-Flow: a hierarchical and explainable flow model based on

renormalization group and sparse prior (arXiv:2010.00029 [cs.LG])
[27] Li S-H and Wang L 2018 Neural network renormalization group Phys. Rev. Lett. 121 260601
[28] Koch-Janusz M and Ringel Z 2018 Mutual information, neural networks and the renormalization group Nat. Phys. 14 578
[29] Li S-H 2021 Learning non-linear wavelet transformation via normalizing flow (arXiv:2101.11306 [cs.LG])
[30] Evenbly G 2019 Number-State preserving tensor networks as classifiers for supervised learning (arXiv:1905.06352 [quant-ph])
[31] Evenbly G and Vidal G 2009 Algorithms for entanglement renormalization Phys. Rev. B 79 144108
[32] Vidal G 2007 Entanglement renormalization Phys. Rev. Lett. 99 220405
[33] Cincio L, Dziarmaga J and Rams MM 2008 Multiscale entanglement renormalization ansatz in two dimensions: quantum Ising

model Phys. Rev. Lett. 100 240603
[34] Evenbly G and Vidal G 2015 Tensor network renormalization Phys. Rev. Lett. 115 180405
[35] Evenbly G 2017 Algorithms for tensor network renormalization Phys. Rev. B 95 045117
[36] Levin M and Nave C P 2007 Tensor renormalization group approach to two-dimensional classical lattice models Phys. Rev. Lett.

99 120601
[37] Evenbly G and Vidal G 2015 Tensor network renormalization yields the multiscale entanglement renormalization ansatz Phys. Rev.

Lett. 115 200401
[38] Pfeifer R N C, Evenbly G and Vidal G 2009 Entanglement renormalization, scale invariance and quantum criticality Phys. Rev. A

79 040301
[39] Miyaji M, Takayanagi T and Watanabe K 2017 From path integrals to tensor networks for the AdS/CFT correspondence Phys. Rev.

D 95 066004
[40] Hu H-Y, Li S-H, Wang L and You Y-Z 2020 Machine learning holographic mapping by neural network renormalization group

Phys. Rev. Res. 2 023369
[41] Paszke A et al 2019 PyTorch: an imperative style, high-performance deep learning library Advances in Neural Information Processing

Systems vol 32 p 8026
[42] Abadi M et al 2016 TensorFlow: a system for large-scale machine learning 12th USENIX Symp. on Operating Systems Design and

Implementation (OSDI 16) (Savannah, GA: USENIX Association) pp 265–83
[43] Liao H-J, Liu J-G, Wang L and Xiang T 2019 Differentiable programming tensor networks Phys. Rev. X 9 031041
[44] Hauru M, Damme M V and Haegeman J 2021 Riemannian optimization of isometric tensor networks SciPost Phys. 10 40
[45] Pascanu R, Mikolov T and Bengio Y 2013 On the difficulty of training recurrent neural networks Int. Conf. on Machine Learning

(PMLR) pp 1310–8
[46] Polyak B 1964 Some methods of speeding up the convergence of iteration methods USSR Comput. Math. Math. Phys. 4 1–17
[47] Tieleman T et al 2012 Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude COURSERA: Neural

Networks for Machine Learning vol 4 p 26
[48] Bertsekas D P 2014 Constrained Optimization and Lagrange Multiplier Methods (New York: Academic)
[49] Tagare H D 2011 Notes on optimization on Stiefel manifolds Technical Report (Yale University)
[50] Wen Z and Yin W 2013 A feasible method for optimization with orthogonality constraintsMath. Program. 142 397
[51] Absil P-A and Malick J 2012 Projection-like retractions on matrix manifolds SIAM J. Optim. 22 135
[52] Kaneko T, Fiori S and Tanaka T 2013 Empirical arithmetic averaging over the compact Stiefel manifold IEEE Trans. Signal Process.

61 883
[53] Nishimori Y and Akaho S 2005 Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold Neurocomputing 67 106
[54] Jiang B and Dai Y-H 2015 A framework of constraint preserving update schemes for optimization on Stiefel manifoldMath.

Program. 153 535
[55] Zhu X 2017 A Riemannian conjugate gradient method for optimization on the Stiefel manifold Comput. Optim. Appl. 67 73
[56] Li J, Fuxin L and Todorovic S 2020 Efficient Riemannian optimization on the Stiefel manifold via the Cayley transform

(arXiv:2002.01113 [cs.LG])
[57] Pechen A, Prokhorenko D, Wu R and Rabitz H 2008 Control landscapes for two-level open quantum systems J. Phys. A: Math.

Theor. 41 045205

19

https://arxiv.org/abs/1605.03795
https://arxiv.org/abs/1806.05964
https://arxiv.org/abs/2007.06082
https://doi.org/10.1103/PhysRevB.101.075135
https://doi.org/10.1103/PhysRevB.101.075135
https://arxiv.org/abs/1906.06329
https://arxiv.org/abs/2009.09932
https://arxiv.org/abs/2103.06872
https://doi.org/10.1103/PhysRevB.99.155125
https://doi.org/10.1103/PhysRevB.99.155125
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.3390/e21121236
https://doi.org/10.3390/e21121236
https://arxiv.org/abs/1907.03741
https://arxiv.org/abs/2101.08354
https://doi.org/10.1103/PhysRevA.98.062324
https://doi.org/10.1103/PhysRevA.98.062324
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.55.583
https://doi.org/10.1103/RevModPhys.55.583
https://arxiv.org/abs/2010.00029
https://doi.org/10.1103/PhysRevLett.121.260601
https://doi.org/10.1103/PhysRevLett.121.260601
https://doi.org/10.1038/s41567-018-0081-4
https://doi.org/10.1038/s41567-018-0081-4
https://arxiv.org/abs/2101.11306
https://arxiv.org/abs/1905.06352
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.100.240603
https://doi.org/10.1103/PhysRevLett.100.240603
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1103/PhysRevB.95.045117
https://doi.org/10.1103/PhysRevB.95.045117
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevLett.115.200401
https://doi.org/10.1103/PhysRevLett.115.200401
https://doi.org/10.1103/PhysRevA.79.040301
https://doi.org/10.1103/PhysRevA.79.040301
https://doi.org/10.1103/PhysRevD.95.066004
https://doi.org/10.1103/PhysRevD.95.066004
https://doi.org/10.1103/PhysRevResearch.2.023369
https://doi.org/10.1103/PhysRevResearch.2.023369
https://doi.org/10.1103/PhysRevX.9.031041
https://doi.org/10.1103/PhysRevX.9.031041
https://doi.org/10.21468/SciPostPhys.10.2.040
https://doi.org/10.21468/SciPostPhys.10.2.040
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1007/s10107-012-0584-1
https://doi.org/10.1007/s10107-012-0584-1
https://doi.org/10.1137/100802529
https://doi.org/10.1137/100802529
https://doi.org/10.1109/TSP.2012.2226167
https://doi.org/10.1109/TSP.2012.2226167
https://doi.org/10.1016/j.neucom.2004.11.035
https://doi.org/10.1016/j.neucom.2004.11.035
https://doi.org/10.1007/s10107-014-0816-7
https://doi.org/10.1007/s10107-014-0816-7
https://doi.org/10.1007/s10589-016-9883-4
https://doi.org/10.1007/s10589-016-9883-4
https://arxiv.org/abs/2002.01113
https://doi.org/10.1088/1751-8113/41/4/045205
https://doi.org/10.1088/1751-8113/41/4/045205

Mach. Learn.: Sci. Technol. 3 (2022) 015020 C Geng et al

[58] Oza A, Pechen A, Dominy J, Beltrani V, Moore K and Rabitz H 2009 Optimization search effort over the control landscapes for
open quantum systems with Kraus-map evolution J. Phys. A: Math. Theor. 42 205305

[59] Manton J 2002 Optimization algorithms exploiting unitary constraints IEEE Trans. Signal Process. 50 635
[60] Evenbly G 2017 Hyperinvariant tensor networks and holography Phys. Rev. Lett. 119 141602
[61] Nozaki M, Ryu S and Takayanagi T 2012 Holographic geometry of entanglement renormalization in quantum field theories J. High

Energy Phys. 2012 193
[62] Evenbly G and Vidal G, Quantum criticality with the multi-scale entanglement renormalization ansatz 2013 Strongly Correlated

Systems: Numerical Methods ed A Avella and F Mancini (Berlin: Springer) pp 99–130
[63] Pfeuty P 1970 The one-dimensional ising model with a transverse field Ann. Phys., NY 57 79
[64] Robbins H and Monro S 1951 A stochastic approximation method Ann. Math. Stat. 22 400
[65] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Coarse-graining renormalization by higher-order singular value

decomposition Phys. Rev. B 86 045139
[66] Yang S, Gu Z-C and Wen X-G 2017 Loop optimization for tensor network renormalization Phys. Rev. Lett. 118 110504
[67] Hauru M, Delcamp C and Mizera S 2018 Renormalization of tensor networks using graph-independent local truncations Phys.

Rev. B 97 045111
[68] Onsager L 1944 Crystal statistics. I. A two-dimensional model with an order-disorder transition Phys. Rev. 65 117
[69] Hauru M, Evenbly G, Ho WW, Gaiotto D and Vidal G 2016 Topological conformal defects with tensor networks Phys. Rev. B

94 115125
[70] Hashemizadeh M, Liu M, Miller J and Rabusseau G 2020 Adaptive learning of tensor network structures

(arXiv:2008.05437 [cs.LG])
[71] You Y-Z, Yang Z and Qi X-L 2018 Machine learning spatial geometry from entanglement features Phys. Rev. B 97 045153
[72] Hayden P, Nezami S, Qi X-L, Thomas N, Walter M and Yang Z 2016 Holographic duality from random tensor networks J. High

Energy Phys. 2016 9
[73] Cong I, Choi S and Lukin M D 2019 Quantum convolutional neural networks Nat. Phys. 15 1273
[74] McClean J R, Romero J, Babbush R and Aspuru-Guzik A 2016 The theory of variational hybrid quantum-classical algorithms New

J. Phys. 18 023023
[75] Liu J-G, Zhang Y-H, Wan Y and Wang L 2019 Variational quantum eigensolver with fewer qubits Phys. Rev. Res. 1 023025
[76] Peng T, Harrow AW, Ozols M and Wu X 2020 Simulating large quantum circuits on a small quantum computer Phys. Rev. Lett.

125 150504
[77] Yuan X, Sun J, Liu J, Zhao Q and Zhou Y 2021 Quantum simulation with hybrid tensor networks Phys. Rev. Lett. 127 040501
[78] Geng C 2021 GitHub: differentiable isometric tensor network (available at: https://github.com/xwkgch/IsoTensor)
[79] Fisher M E 1964 Magnetism in one-dimensional systems—the Heisenberg model for infinite spin Am. J. Phys. 32 343

20

https://doi.org/10.1088/1751-8113/42/20/205305
https://doi.org/10.1088/1751-8113/42/20/205305
https://doi.org/10.1109/78.984753
https://doi.org/10.1109/78.984753
https://doi.org/10.1103/PhysRevLett.119.141602
https://doi.org/10.1103/PhysRevLett.119.141602
https://doi.org/10.1007/JHEP10(2012)193
https://doi.org/10.1007/JHEP10(2012)193
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevB.86.045139
https://doi.org/10.1103/PhysRevLett.118.110504
https://doi.org/10.1103/PhysRevLett.118.110504
https://doi.org/10.1103/PhysRevB.97.045111
https://doi.org/10.1103/PhysRevB.97.045111
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRevB.94.115125
https://doi.org/10.1103/PhysRevB.94.115125
https://arxiv.org/abs/2008.05437
https://doi.org/10.1103/PhysRevB.97.045153
https://doi.org/10.1103/PhysRevB.97.045153
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1103/PhysRevLett.127.040501
https://doi.org/10.1103/PhysRevLett.127.040501
https://github.com/xwkgch/IsoTensor
https://doi.org/10.1119/1.1970340
https://doi.org/10.1119/1.1970340

	Differentiable programming of isometric tensor networks
	1. Introduction
	2. Differentiable programming
	2.1. Computation graphs
	2.2. Gradient-based optimization
	2.3. Riemannian optimization for isometric tensors
	2.3.1. Projection-like schemes
	2.3.2. Geodesic-like schemes

	3. Application to MERA
	3.1. Review of MERA
	3.1.1. Scaling dimensions

	3.2. Auto differentiation
	3.2.1. Computation graph
	3.2.2. Results

	4. Application to TNR
	4.1. Review of TNR
	4.2. Auto differentiation
	4.2.1. Computation graph
	4.2.2. Results
	4.2.3. Scaling dimensions

	5. Summary
	Acknowledgments
	Appendix A. Evenbly–Vidal optimization method
	Appendix B. Reducing computation expense of Cayley method
	Appendix C. Training details of MERA
	C.1. Resetting mechanism
	C.2. Lifting bond dimension trick

	Appendix D. Methods comparison of MERA for other models
	Appendix E. Computation graph of TNR
	Appendix F. Soft-constraint optimization
	References

