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Abstract
We show that density models describing multiple observables with (1) hard boundaries and (2)
dependence on external parameters may be created using an auto-regressive Gaussian mixture
model. The model is designed to capture how observable spectra are deformed by hypothesis
variations, and is made more expressive by projecting data onto a configurable latent space. It may
be used as a statistical model for scientific discovery in interpreting experimental observations, for
example when constraining the parameters of a physical model or tuning simulation parameters
according to calibration data. The model may also be sampled for use within a Monte Carlo
simulation chain, or used to estimate likelihood ratios for event classification. The method is
demonstrated on simulated high-energy particle physics data considering the anomalous
electroweak production of a Z boson in association with a dijet system at the Large Hadron
Collider, and the accuracy of inference is tested using a realistic toy example. The developed
methods are domain agnostic; they may be used within any field to perform simulation or
inference where a dataset consisting of many real-valued observables has conditional dependence
on external parameters.

1. Introduction

In the physical sciences, we often use statistical methods to make quantifiable statements about how
compatible experimental observations are with different hypotheses about nature. These frameworks,
typically frequentist or Bayesian, usually require us to model the expected probability density function (PDF)
for all possible observations, conditioned on the hypotheses of interest. Finding such a parameterization for
the PDF can be very challenging when data are multi-dimensional.

Within experimental particle physics, often the problem is simplified by observing only one or two
dimensions of the data at a time following some initial data selections. For these low-dimensional
measurements, we are able to approximate the PDF either parametrically or using histograms, allowing for
statistical interpretation of the data. To ensure these simplified measurements contain maximum sensitivity
to the processes of interest, hereafter referred to as the ‘signal’ in contrast with the ‘background’ of all other
processes contained in the dataset, we only select data in regions of phase space for which the frequency of
signal is high relative to the background. We note several disadvantages of this approach:

(a) By analyzing data only in select regions of phase space, we lose any potentially useful information con-
tained within other regions.

(b) Different hypotheses may predict different distributions of the data in the high-dimensional space. How-
ever, we lose this information when collapsing data into one or two dimensions.

(c) When analyzing histograms, the binning of data discards finely-grained information about the shape of
the distribution.
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(d) The experimentalist must manually design the selection criteria, observables and binning, making it dif-
ficult to ensure that an analysis provides fully optimized sensitivity to all accessible regions of the theory
parameter space.

If the expected signal and background PDFs can be modeled parametrically in a space spanning all data
dimensions, the PDF ratio contains the expected signal-to-background-ratio at every point in phase space.
This means that we do not require restrictive data selections to optimize statistical sensitivity to the signal
component. We also do not require binning. The information described above is therefore retained and may
be used to provide greater exclusion and discovery potential for all possible new physics models1.

It has recently been demonstrated that machine-learned density models may be constructed which
describe PDFs (or PDF ratios) in a high-dimensional observable space [1–9]. Provided that model bias can
be mitigated and systematic uncertainties properly described, these can be used to perform parameter
inference or construct likelihood ratios for event classification2.

Many PDF models may also be sampled from, which is not the case when exclusively modeling the PDF
ratio. This has several benefits:

(a) We can verify that the distribution obtained by sampling the model is well-behaved when compared with
the training data. Such cross checks are desirable in the physical sciences, where rigorous data interpret-
ation is emphasized.

(b) It may be used to generate new datasets at arbitrary points in parameter space, which the model accom-
plishes by interpolating between the external parameter values at which training data were provided.

(c) We can numerically estimate the expected distribution of a test-statistic under different parameter hypo-
theses, instead of assuming an asymptotic form. This aids in the estimation of rigorous frequentist con-
fidence limits.

(d) Once trained, sampling from the density model may be more computationally efficient than running the
full simulation package used to generate training data. In this context, density models provide a com-
pelling alternative to other stochastic generative models such as generative adversarial networks [13] and
variational auto-encoders [14, 15] for performing steps in a simulation chain [16–19].

In this work, we will show that density models describing multiple observables with (1) a complex
multi-dimensional distribution, (2) hard boundaries and (3) dependence on external parameters may be
created using an auto-regressive Gaussian mixture model (GMM) [5, 6, 20, 21]3. The model is made more
expressive by projecting data onto a configurable latent space. The method is designed to capture how
observable spectra are continuously deformed as the external parameters are varied, behaviour which is
common in the physical sciences. We hope that this work will provide users with a simple but expressive way
to model such datasets in their own domains.

To study the performance of our method on a high-dimensional dataset of physically realistic
observables, we use simulations of particle physics data sensitive to anomalies in the electroweak production
of a Z boson in association with a dijet system. We demonstrate the degree to which our trained density
models can describe this data, capturing how it is deformed as two physical parameters are varied. We then
use a toy example, in which we can access the ground-truth PDF, to demonstrate that accurate parameter
estimates and exclusion limits may be obtained using our method. This is not possible using the physical
example because we do not have access to the ground-truth PDF with which to compare.

This paper is structured as follows. In section 2 we describe the generation of training data used
throughout the paper, and explain the physical basis behind it. In section 3 we describe how data are
transformed onto the latent space and how the density model is built. We then discuss several features of the
model. In section 4 we construct a 12-dimensional model to study the ability to describe a highly
multi-dimensional dataset. In section 5 we construct a 4-dimensional model with dependence on two
external parameters to study the ability to learn the parameter dependence. In section 6 we study the
accuracy of inference using our toy example. In section 7 we conclude.

1 Here we consider only the optimization of statistical sensitivity and assume that the PDFs can be modeled with sufficient accuracy
and well-described systematic uncertainties. This may be challenging in a real-world analysis which includes data-driven constraints and
regions with large systematic effects.
2 See e.g. [10–12] for alternative approaches for enhancing sensitivity to new physics models using machine-learned classifiers and anom-
aly detection.
3 Whilst we were unable to find examples which combine all these properties, Bishop [20] and Variani et al [21] provide examples of
GMMs for density estimation parameterized using neural networks and Papamakarios et al [5] and Uria et al [6] of auto-regressive
density estimation used to model multi-dimensional data.
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Whilst these experiments demonstrate that the method is performant on datasets of realistic observables
within the domain of high-energy physics, we emphasize that it may be used to model any dataset of
continuous observables for which a high-dimensional PDF is deformed by parameter variations, regardless
of scientific domain, provided that appropriate training data may be provided.

2. Experimental setup

To test our method in a real-world environment, we consider the electroweak production of a Z boson in
association with a dijet system occurring in high-energy proton–proton collisions at the Large Hadron
Collider. This process is labeled EW Zjj in the remainder of this text. It is often referred to as the Vector
Boson Fusion production of a Z boson.

We choose to model the EW Zjj process for several reasons. Firstly, it provides a number of physically
interesting observables which are correlated, challenging our method to capture a feature-rich
high-dimensional distribution. Secondly, there exist new physics models which are expected to continuously
deform this distribution in distinct ways as different parameters-of-interest are varied. Finally, it is a process
of interest for current and future LHC experiments. Nonetheless, we emphasize that the EW Zjj process is
intended to be a representative example using which we test the ability of our method to overcome general
modeling challenges, and we hope that the method may be used to model smoothly-varying
parameter-dependent high-dimensional datasets in any domain.

Each ‘event’ is the observation of many particles created by a single proton–proton collision. High-energy
physics datasets typically consists ofO (100− 100M) events, depending on the pre-selection criteria applied.
By identifying the particles produced, and measuring their kinematic properties and other high-level
‘observables’, we study the processes which contributed to their production.

The EW Zjj process is characterized by a final state of two jets of hadrons along with two oppositely
charged electrons or muons which are produced by a Z-boson decay. Since the EW Zjj process is defined by a
t-channel exchange of a colour-neutral weak boson between the two incoming partons, these jets are typically
separated by a wider rapidity than in the dominant background process which contains a t-channel exchange
of a gluon. As a result, experimental analyses often select events with a large dijet rapidity separation (or large
invariant mass) to enhance the proportion of signal within their sample. We may measure the event rate as a
function of many observables. We expect that the presence of certain new particles/forces will induce
distortions in the shape or magnitude of these spectra relative to the precise predictions of the Standard
Model of Particle Physics (SM). These measurements enable a rich discovery potential for new natural
phenomena and the derivation of constraints on the theoretical models describing them.

The binned one-dimensional kinematic spectra of particles produced via EW Zjj in high-energy
proton–proton collisions were recently measured [22, 23] by the ATLAS experiment [24]. Exclusion limits
were derived for several parameters of the SM effective field theory (SMEFT) in the Warsaw basis [25], which
characterize the presence of any novel physics phenomena in such interactions. In this work, we consider
how EW Zjj events are affected by variations of the SMEFT parameters cHWB and c̃W. These parameters
extend the SM Lagrangian LSM by the addition of two non-renormalizable terms with mass dimension six.
These additional terms modify how electroweak bosons interact with one another, impacting the rate and
expected kinematic distribution of EW Zjj events. These modifications reflect the indirect effects of new
physics interactions above some energy scale Λ which is not directly probed by the experiment. We will
assume Λ = 1 TeV throughout, noting that other choices simply correspond to a re-scaling of cHWB and c̃W
within this parameterization. The effective Lagrangian is [25–27]:

L= LSM +
cHWB

Λ2
H†τ IHWI

µνB
µν +

c̃W
Λ2

ϵIJKW̃Iν
µ WJρ

ν W
Kµ
ρ , (1)

where H is the Higgs doublet, τ are the Pauli matrices,Wµν and Bµν are the electroweak field strength
tensors, ε are anti-symmetric tensors with ϵ012 = ϵ0123 = 1, W̃µν = 1

2ϵ
µν
ρσW

ρσ and we neglect Hermitian
conjugates. In this work, we use simulated events to construct high-dimensional statistical models which
describe many of the kinematic observables considered in the ATLAS analysis. Of the six parameters
constrained within the ATLAS analysis, we choose to study cHWB and c̃W because they are shown to vary the
expected PDF in distinctly different ways. Simultaneously modeling both parameters therefore provides a
more ambitious test for the efficacy of our methods.

Ground truth events are generated using the Madgraph5 (MG5) [28] program with perturbative
calculations at leading order in the strong coupling constant. This models the primary high-energy
interaction of interest, simulating the resultant array of particles and their properties. Subsequent
hadronization of these particles and modeling of the underlying event [29, 30] are simulated using Pythia8
[31, 32]. Definition and selection of stable and detectable particles produced in the collision is performed
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using Rivet [33]. Neural networks are implemented using TensorFlow v2.4.3 interfaced with Keras v2.4.0
[34, 35]. SMEFT interactions are implemented in MG5 using the SMEFTSim [36] package. 1M datapoints are
generated at the Standard Model value of (cHWB, c̃W) = (0,0). 400k datapoints are generated in increments
of 0.1 on the interval c̃W ∈ [−0.4, 0.4] with cHWB = 0, excluding the SM configuration. 200k datapoints are
generated in a 2D grid with increments of 0.2 on the interval c̃W ∈ [−0.4, 0.4] and increments of 2 on the
interval cHWB ∈ [−4, 4], excluding pairs with cHWB = 0.

All objects are defined at particle level, i.e. after parton showering and hadronization (as they would
appear in a particle detector). Testing our method on such a dataset demonstrates that it fulfills the key
objective of this work: to effectively model a high-dimensional PDF of physically realistic observables with
external parameter dependence. Since the method is not restricted to any particular experiment or domain,
we do not simulate the effects of detector efficiency and resolution when generating our training data.
However, we note that end-users who wish to perform (for example) parameter estimation using
detector-level experimental data can accomplish this by simulating the impact of their detector when
generating their own training data. We expect this to smear the PDF, but not impact the key modeling
challenges identified above. We emphasize that there are no practical barriers preventing the modeling of
detector-level datasets for use within a given experimental context.

2.1. EW Zjj event selection and observable definitions
Selection requirements and observables of interest are chosen based on the recent ATLAS measurement [22],
and the ATLAS co-ordinate system [24] is used throughout with all observables defined in the laboratory
reference frame.

All final state objects are required to satisfy a pseudorapidity of |η|⩽ 5. Electrons and muons are
‘dressed’ [37] with photons within a cone of∆R⩽ 0.1. Electrons are required to satisfy pT ⩾ 25 GeV and
have |η|< 2.47 excluding 1.37< |η|< 1.52 where pT is the momentum component transverse to the
beamline. Muons are required to satisfy pT ⩾ 25 GeV and |η|< 2.4. Jets arise from collimated streams of
stable particles and are clustered [38] from all final state particles excluding muons and neutrinos using the
anti-kT algorithm [39] within a cone of∆R⩽ 0.4. Reconstructed jets are required to satisfy pT ⩾ 30 GeV and
have a rapidity of |y|< 4.4. Jets are rejected if they fall within∆R⩽ 0.2 of a selected electron, to reflect the
limitations of a real detector in accurately distinguishing jets and electrons produced at small angular
separations.

Events are required to have at least two selected electrons or muons, where the two leptons with the
highest pT are used to define the dilepton system and are required to have opposite charge. Events are also
required to contain two selected jets, and the two jets with the highest pT are used to define the dijet system.
The following observables are calculated from the selected objects:

• mll, pllT and |yll| are respectively themass, transversemomentum and absolute rapidity of the dilepton system.

• mjj, p
jj
T and |yjj| are respectively the mass, transverse momentum and absolute rapidity of the dijet system.

• pj1T and pj2T are the transverse momenta of the highest and second-highest pT jets.
• ∆ϕ( j, j) is the angular spread of the dijet system in a plane transverse to the beamline, measured clockwise
with respect to the highest rapidity jet and defined on a domain of [−π, π].

• |∆y( j, j) | is the absolute rapidity spread of the dijet system.
• Njet is the number of selected jets, and Ngapjet is the number of selected jets which have a rapidity in the
interval bounded by the rapidities of the two highest pT jets.

Table 1 shows the intervals over which these observables are defined. Events are rejected if any observable
falls outside of its interval. The total selection efficiency is estimated to be 64% using the events simulated
under the SM hypothesis.

3. Method overview

Consider that we measure datapoints x ∈ X on an n-dimensional observable space X≡ Rn. The PDF is
p(x|θ), where θ ∈Θ represents the set of parameters of interest and nuisance parameters. This conditional
dependence allows us to constrain a set of possible physical models according to their consistency with
experimental observations.

3.1. Gaussian mixture models
We can model a conditional one-dimensional density p(x|θ) by simulating data for a variety of θ and fitting
this with a conditional GMM. This parameterizes the density as a linear sum of Gaussian distributions
according to:
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Table 1. Closed intervals over which observables are selected for experiments performed on simulated EW Zjj data. Events are rejected if
they fail any selection requirement.

Observable Closed interval

mll [75, 105] GeV

pllT [0, 900] GeV

yll [0, 2.2]

mjj [150, 5000] GeV

pjjT [0, 900] GeV

yjj [0, 4.4]

pj1T [60, 1200] GeV

pj2T [40, 1200] GeV

∆ϕ( j, j) [−π,π]

|∆y( j, j) | [0, 8.8]

Njet [0, 5]

Ngapjet [0, 2]

pϕ (x|θ) =
NG∑
g=1

fϕ,g (θ) · N
(
x; µϕ,g (θ) ; σϕ,g (θ)

)
, (2)

where NG labels the number of Gaussian modes;N is a Gaussian PDF; fϕ,g, µϕ,g and σϕ,g are respectively the

amplitude, mean and width of the gth Gaussian subject to
∑NG

g=1 fϕ,g = 1 and fϕ,g ⩾ 0 ∀ g; ϕ label the
parameters of a neural network used to capture the functional forms of fϕ,g, µϕ,g and σϕ,g (see e.g. [20, 21]).

We use mixture models in this work because they allow us to model arbitrarily complex positive-definite
distributions which can be analytically normalized to unity and easily sampled from. This is achieved by
writing the density as the linear sum of simple parametric probability distributions. They are often used to
model multi-modal data [40], and are well-suited for our probability spectra which we can imagine as being
composed from a series of overlapping local probability masses. Each local mass may be modeled as having a
different dependence on the external parameters θ, allowing us to express how every region of the spectrum
is deformed when θ is varied. In this work we use Gaussian distributions to model each local mass of density.
This is because they are simple distributions (each defined by only two parameters) which are peaked in the
center and smoothly vary to 0 without excessively sharp or sparse tails, ensuring continuity in the model and
retaining the local nature of the probability mass. They are also easily normalized and sampled from.

However, there are several ways in which the shape of p(x|θ)may not be well-suited to a GMM:

(a) GMMs naturally model a smooth turn-off at the boundaries of a distribution, whereas the data distribu-
tion may have hard boundaries due to strict physical constraints or event pre-selection.

(b) The structural features of the PDF, and any deformations induced by variations of θ, must be smooth and
wide enough to be modulated by the Gaussian modes.

(c) In order to deform the PDF downwards, the model must contain a Gaussian mode with finite amplitude
local to the deformation, the amplitude of which can be modulated downwards without impacting the
rest of the distribution4.

Points (b) and (c) mean that a GMM which is dominated by few wide Gaussian modes will have limited
ability to describe local deformations of the PDF as θ is varied. Instead, we wish to have a distribution which
is described by a spectrum of many narrow overlapping Gaussian modes and which contains no deformations
narrower than the Gaussians themselves. We will now show that these conditions may be achieved by
transforming the data and using a suitable network architecture to model fϕ,g, µϕ,g and σϕ,g. We find that
this method resolves the failure conditions listed above in the experiments presented.

4 A density model must be positive definite everywhere. For a GMM, we enforce this by only allowing positive amplitudes for the Gaussian
modes. To deform the PDF upwards in some local region, we can add a new Gaussian mode with positive amplitude. However, a down-
wards deformation cannot be similarly accounted for by adding a newGaussianmode with negative amplitude, as this is not allowed. This
can only be described if the nominal model already contained a narrow Gaussian mode with positive amplitude local to the deformation.
In this case we capture the downwards deformation by modulating the amplitude downwards, from positive to less-positive.
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Figure 1. Left: probability density p(x) with x=∆ϕ( j, j), evaluated using MG5 events assuming cHWB = c̃W = 0. Right:
probability density after projecting onto the the latent space using the method described in figure 2.

3.2. Modeling a single observable
Datapoints are projected by a function h : x 7→ u ∈ U onto a latent space U≡ Rn. The properties of the
projection may be tuned to optimize the performance of a GMM describing the density pϕ(u|θ). We will now
explore this idea using our EW Zjj example.

Consider the case where x=∆ϕ( j, j) is the only observable. Figure 1 (left) shows the probability density
p(x) for the SM case of cHWB = c̃W = 0. This plot is obtained by histogramming the datapoints simulated
using MG5. We note that this distribution has hard physical boundaries at [−π, π] which a GMM would be
unable to model. Figure 1 (right) shows the probability density of the same datapoints after projecting x onto
the latent space. This distribution is designed to be well described by a series of overlapping narrow Gaussian
modes. We will now describe how this projection function h(x) was derived, then train a GMM to model this
spectrum for a variety of c̃W.

To derive h(x), we first construct a response curve Qx (x) between the physical boundaries of x. This is
written as:

Qx (x) = (1− f) ·Dx (x)+ f · Lx (x) , (3)

where Dx (x) is the cumulative distribution function of the data simulated at the SM and Lx (x) is a linear
function. The hyperparameter f is tuned to ensure that wide regions in X are not collapsed onto narrow
regions in U, whilst also providing a smooth turn-off at the boundaries of the distribution. This function is
shown as the solid black line in figure 2 (left). We then construct a response curve Qu (u) over the latent
space, shown as the solid blue line in figure 2 (middle), defined as the cumulative distribution function of a
target function q̃u (u) given by:

q̃u (u) =
1

1+ exp[α(u−β)− γ]
· 1

1+ exp[−α(u+β)− γ]
. (4)

This function, shown in figure 2 (right) using values of (α,β,γ) = (4,3,1), is heuristically designed to be flat
in the centre and smooth at the edges. This encourages the optimal GMM description to contain many
narrow overlapping Gaussian modes. We note that it may seem natural to choose a Gaussian distribution for
q̃u (u) (see e.g. [9]), however this will often result in a GMM which is dominated by a single wide Gaussian
mode, violating our target behaviour. The mapping function between X and U is defined as
h(x) = Q−1

u (Qx (x)), and its derivation is shown visually as the green dotted line connecting the points x∗

and u∗ in figure 2 (left and middle).
We compute Qu (u) as a piecewise-linear function over the interval u ∈ [−5, 5]. Whilst the domain of u

could be extended arbitrarily far so that all sampled points u∗ ∈ U are mapped onto the physically allowed
domain of X, we found that limiting the domain improved numerical stability in our experiments by
avoiding dilute tails in the latent distribution.

We now apply the projection function h to all our datasets with nonzero values of c̃W5. It is crucial that h
are derived using data at a single point in parameter space (here c̃W = 0) and applied to the data at all values

5 For simplicity, in this section we only consider variations of c̃W and fix cHWB = 0 throughout.
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Figure 2. Left: response curve over the data space, Qx (x), derived as the linear sum of Dx (x) and Lx (x). Middle: response curve
over the latent space, Qu (u), derived as the cumulative distribution function of q̃u (u). Right: heuristic function q̃u (u). The green
dotted line connecting Qx (x) with Qu (u) visually represents how a datapoint at x∗ is transformed onto u∗ in the latent space.

of c̃W. As c̃W is varied, the probability density p(u|̃cW) is deformed. This is modeled as pϕ (u|̃cW) where the
neural network parameters ϕ are trained using maximum likelihood estimation evaluated over the simulated
training data for all c̃W, i.e.:

V(ϕ) =
1∑
w

·
∑
c̃W,x,w

w · logpϕ (h(x) |̃cW) , (5)

ϕ→ argmax
ϕ

V(ϕ) , (6)

where w label Monte Carlo event weights, used to account for how integration of probabilities is handled
within a particular simulation package [29, 30], if applicable.

We train a GMM with NG = 30 individual modes to describe the probability density. Figure 3 (top row)
compares the training data and post-fit model pϕ (u|̃cW) at values of c̃W = {−0.4, 0, 0.4}. Thin coloured lines
show the decomposition into individual Gaussian modes. As c̃W is varied, we see that deformations in the
spectrum are captured by modulating the amplitudes, positions and widths of the narrow Gaussian modes.

Figure 3 (middle row) shows the ratio between the training data and the model PDF, offset to 0 so we
study the residual difference between the two. This demonstrates that systematic mis-modelling is below 5%
except in the sparsely populated tails of the distribution for all three values of c̃W. The dark shaded band
around the data shows the Poisson estimate of the statistical uncertainty. The thickness of this band is
comparable with the residual difference between the data and the model, suggesting that this residual is
mostly dominated by random fluctuations in the data.

Figure 3 (bottom row) shows the ratio between pϕ (u|̃cW) and pϕ (u|0), the model PDF evaluated at
c̃W = 0, once again offset to 0 so we study the residual difference between the two. This quantifies how the
shape of the distribution is deformed when translating across c̃W. Training data are also shown,
demonstrating that the model has captured how the spectrum is deformed as c̃W is varied.

3.3. Extending to multiple observables
When modeling d observables on the latent space, we write an auto-regressive probability density:

pϕ (u|θ) =
d∏

i=1

pϕ,i (ui|u<i,θ) , (7)

where i label observables and u<i is the list of all prior latent observables. The conditional probability density
for each ui is modeled using a GMM parameterized by a neural network with parameters ϕ according to:

pϕ,i (ui|u<i,θ) =

NG∑
g=1

fϕ,g,i (u<i,θ) · N
(
ui; µϕ,g,i (u<i,θ) ; σϕ,g,i (u<i,θ)

)
, (8)

where fϕ,g,i, µϕ,g,i and σϕ,g,i are respectively the amplitude, mean and width of the gth Gaussian for
observable index i. By including u<i as input to the network, it now captures the dependence on both
external parameters and preceding observables. This means that high-dimensional observable correlations
may be described by the model.
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Figure 3. Gaussian mixture model over the latent space (black dashed line) for the one-dimensional example of x=∆ϕ( j, j). We
show the comparison with MG5 events (grey line) when c̃W =−0.4 (left), c̃W = 0 (middle) and c̃W = 0.4 (right), with cHWB = 0
throughout. Dark shaded regions show the estimated statistical uncertainty due to the finite number of MG5 events. Lower panels
show the ratio with respect to pϕ (u|̃cW) (middle row) and pϕ (u|0) (bottom row).

3.4. Neural network architecture
Figure 4 shows a schematic diagram of the neural network architecture used to model the GMM for latent
observable ui ∈

[
umin
i ,umax

i

]
. Fully connected layers at depth l are shown in grey and labelled Dense, with a

number of neurons equal to N l as specified and an activation function shown in parentheses. These are
either linear, equivalent to applying no activation function, or LeakyReLU [41] with a negative gradient of 0.2
defined for input x according to:

LeakyReLU(x) =

{
x if x⩾ 0
0.2 · x if x< 0.

(9)

Inputs θ and u<i of lengths Nθ and Nu respectively are compressed onto the interval [−2,2] and fed into
initial layers of size N1 and N2. The configurable constants {A1,A2,B1,B2} determine the width of these
layers. The outputs are concatenated and fed into a sequence of C layers of width N1 +N2. The constant C
determines the ultimate depth of the network. The outputs are then fed into three separate channels, which
will separately assign the Gaussian amplitudes f⃗i, means µ⃗i and widths σ⃗i. In each channel, activations x pass
through two further dense layers of size D ·NG and NG, creating three vectors of length NG. These are scaled
by factors of sf , sµ and sσ . These scale factors determine the size of the initial fluctuations around the

nominal initial values of f⃗i, µ⃗i and σ⃗i which are assigned as follows.
In the f⃗i channel, activations are passed through a Softmax function to ensure the Gaussian amplitudes

are positive definite and sum to unity. If |sf| � 1 then all components of f⃗i are initially approximately equal.
In the µ⃗i channel, a constant is added to the gth vector component such that the Gaussian modes are initially
linearly spaced between umin

i and umax
i subject to fluctuations. In the σ⃗i channel, Gaussian widths are

initialized to fluctuate around a value of f σ units of umax
i −umin

i
NG

. The configurable constant f σ therefore
determines how many standard deviations of overlap exist between the initial Gaussian modes. Finally, a
constant of ϵ= 10−4 is added to prevent the evaluation of Gaussian modes with zero width. We note that
these transformations impact the gradients of the loss function with respect to the three different channels,
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Figure 4. Structure of the neural network implemented for observable ui ∈
[
umin
i ,umax

i

]
. Configurable parameters

{A1,A2,B1,B2,D} determine the width of the fully connected Dense layers, which have nodes equal to the N provided, and C
determines the number of intermediate Dense layers. Configurable constants {sf, sµ, sσ} determine the scale of initial
perturbations, while f σ configures the initial Gaussian widths.

leading to different learning rates for the amplitudes, means and widths respectively. This likely impacts the
post-fit model, and future optimization may be achieved by controlling the balance of these gradients to
preferentially enhance model updates in one channel.

The resulting network containsO
(
(N1 +N2)

2C
+(N1 +N2 +NG)DNG

)
trainable parameters. Model

optimization is performed using the Adam [42] algorithm with a learning rate of λlr. An adaptive learning
rate is used, such that λlr is multiplied by a factor of λupdate factor

lr < 1 if the training loss does not improve for

λ
patience
lr epochs. This mitigates underfitting when the initial λlr is large. Network biases are initialized to zero

and weights are drawn randomly from a uniform distribution over the interval±10/(3
√
Nin) where Nin is

the number of input neurons. This mitigates vanishing/exploding activations and gradients in the initial
state.

9
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3.5. Impact of transforming the likelihood
The function h performs a monotonic one-dimensional change of variables between x and u. The probability
density pu (u) over the latent space may therefore be transformed into a probability density over the original
data space px (x) according to:

px (x) = pu (h(x)) ·
∣∣∣∣dh(x)dx

∣∣∣∣ , (10)

where h(x) is evaluated using a piecewise linear function calculated from the training data, and so
∣∣∣ dh(x)dx

∣∣∣ is a
step function over x. Whilst it leads to a tractable density over x, equation (10) contains no dependence on θ.
This means that statistical inference is equivalent when performed on U and X. Applying such a
transformation is therefore not necessary, and we will always perform inference using observations in the
latent representation unless stated otherwise.

We also note that the transformation h(x)must preserve the total probability contained within a
span, i.e.

ˆ x2

x1

px (x)dx=

ˆ h(x2)

h(x1)
pu (u)du, (11)

and so we can integrate the probability contained within [x1,x2] simply by transforming x1 and x2 and
performing the integration over the latent space. However, this integration may only be performed
analytically when data are one-dimensional.

We do not perform a rotation when transforming between x and u. This secures three desirable features:
it ensures a diagonal Jacobian matrix, it retains an easily understood relationship between each component
of x and u, and it mitigates potential concerns about loss of generalization [43].

3.6. Complexity of likelihood evaluation
Consider that we wish to model d observables, using d neural networks each containing L hidden layers and
W neurons per layer. Assuming that d�W and NG � LW, the calculation of p(u|θ) has a complexity of
O
(
dLW2

)
. However, each of the d conditional probability densities may be computed in parallel, resulting in

O
(
LW2

)
complexity. This may be further accelerated up to a limit ofO (L) by using a GPU for efficient

matrix multiplication. Since u<i are used as input to the networks for all i> 0, network outputs must be
computed separately for every datapoint except in the case of the first observable u0, for which a single pass
through the network can be used to provide the Gaussian parameters needed to evaluate every datapoint.

3.7. Complexity of generative sampling
We have noted that the density model may be sampled, allowing it to be used as a generative model for event
simulation. We achieve this by randomly drawing u∗0 ∼ pϕ,0 (u0|θ), u∗1 ∼ pϕ,1 (u1|u∗0 ,θ) and so on until a
datapoint u∗ in d dimensions is constructed. This may be transformed back onto data space using
x∗ = h−1 (u∗).

Since this process is sequential in the latent observables, they may not be simulated in parallel. As with
likelihood evaluation, the complexity of sampling isO

(
dLW2

)
. This may be accelerated up to a limit of

O (dL) using a GPU. Since pϕ,0 (u0|θ) contains no dependence on other observables, many u∗0 may be
sampled using a single evaluation of the network. However, sampling u∗i for i> 0 requires the network to be
evaluated for every datapoint.

3.8. Modelling of systematic uncertainties
In this work, we focus on the expressive power of the model and do not consider the impact of systematic
uncertainties. However, it is crucial that such uncertainties are accounted for when performing a statistical
interpretation on a measured dataset. Here we briefly discuss how this may be done, whilst noting the
limitations. We note that cross-section uncertainties may be trivially accounted for, since they do not impact
the distribution of events throughout phase space.

We may separate modelling uncertainties into three categories. The first category are uncertainties
associated with the simulation of training data which are parameterizable in terms of a nuisance parameter
θNP. These may be accounted for either by including θNP within the vector θ input to the network, or by
training a separate model r(u,θNP) = p(u|θNP)/p

(
u|θrefNP

)
for some fixed reference θrefNP and writing:

p(u|θNP) = p
(
u|θrefNP

)
· r(u,θNP) . (12)
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The second category are non-parameterizable uncertainties associated with the simulation of training
data. In high energy physics, these may account for poorly understood differences between the simulated
data and control measurements. In a binned one-dimensional analysis, they may be mitigated by performing
auxiliary observations which are uncorrelated with the observable being modelled and ‘transferring’ the
data-driven constraint on a bin-by-bin basis. Residual uncertainties may then be parameterized according to
systematic variations of this transfer procedure. It is challenging to extend such techniques to our model
because we must cover possible mismodelling of the high-dimensional observable correlations.

The third category are uncertainties associated with the density model. These biases are caused by the
inductive bias of the model as well as under- or over-fitting. Over-fitting may be mitigated using techniques
such as regularization, dropout and early stopping, and by limiting model complexity. Under-fitting may be
studied by sampling the density model for all simulated θ and showing that the marginal projections are
compatible with the simulated data. Quantifying and parameterizing the remaining mismodelling is once
again challenging, and we leave this for future work.

We consider overcoming these challenges to be one of the main hurdles facing the use of
high-dimensional density models in high energy physics.

3.9. Model optimization
A strength of the proposed method is that there are many ways in which modelling may be improved if
under-fitting is observed. These strategies include:

(a) Increase the model capacity by using more complicated networks or larger NG.
(b) Tune the parameters sf , sµ and sσ , whichmodulate the size of the initial state perturbations of theGaussian

amplitudes, positions and widths as described in figure 4, to balance the stability of the initial model with
the size of perturbations which provide gradients for the learning process.

(c) Tune f σ to configure the initial width of the Gaussian modes. Whilst narrowmodes tend to describe local
features of the data, fulfilling the objectives of our model design, training data do not provide significant
learning potential for Gaussian modes several standard deviations away. We find that successful training
occurs when the value of f σ balances these effects.

(d) Tune the hyperparameter f or the functional form of q̃u to create a latent distribution which is well
described by a mixture of narrow Gaussians.

(e) Alter the ordering of the observables, since p(B|A) may be more easily described than p(A|B) for two
latent observables A and B.

(f) Alter the training procedure to improve convergence towards likelihood maxima.
(g) Rotate observables onto the eigenvectors of their covariance, reducing strong correlations in the data.

These opportunities for tuning improve the chance of finding a model which captures the salient features
of the dataset provided.

4. EW Zjj with 12 observables and no external parameter dependence

In this section we create a density model to describe 12 observables with no external parameter dependence.
This demonstrates that the method can learn a joint probability density over a high-dimensional dataset of
physically realistic observables. Table 2 shows the observable ordering as well as the f -values used to
configure the projection onto the latent space.

We include the two discrete observables Ngapjet and Njet in the model. This demonstrates that there are no
barriers to modelling continuous and discrete observables at the same time. A discrete observable taking
integer values on the inclusive interval [umin

i ,umax
i ] is modelled using a neural network which outputs a

categorical probability distribution of length Np = 1+ umax
i − umin

i . Inputs θ and u<i are projected onto the
interval [−2,2] and passed through dense layers of size N1 and N2 respectively. These are followed by two
fully connected layers of size 300 and 200, and an output layer of size Np. All intermediate layers use a
LeakyReLU activation function with a negative gradient of 0.2. The output layer uses a SoftMax activation
function to ensure that outputs represent a normalized multinomial probability distribution. The network is
trained using a cross entropy loss function and the same training scheme as used to model continuous
observables.

Table 3 shows the constants used to configure the remaining neural networks and their training. The
networks contain between 27k and 304k trainable parameters. This reflects a degree of over-parameterization
of the model, since the number of parameters is the same order of magnitude as the number of training
samples. We note that any resultant over-training is mitigated by the use of a GMM which naturally smooths
each conditional PDF in the auto-regressive chain. Each network is initially trained for up to 400 epochs,
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Table 2. Indices in which observables are ordered when constructing a density model describing EW Zjj data with 12 observables and no
external parameter dependence. The f values used to project continuous real-valued observables onto the latent space are shown.
Indices start from 0.

Observable order: name [projection constant f ]

0: mjj [f = 0.2] 1: pjjT [f = 0.2] 2: |yjj| [f = 0.2]

3: ∆ϕ( j, j) [f = 0.8] 4: ∆y( j, j) [f = 0.8] 5: pj1T [f = 0.2]

6: pj2T [f = 0.2] 7: Ngapjet 8: Njet

9: mll [f = 0.8] 10: pllT [f = 0.2] 11: |yll| [f = 0.8]

Table 3. Constants used to construct and train a density model describing EW Zjj data with 12 observables and no external parameter
dependence.

NG = 20 A1 = 200 A2 = 0 B1 = 200 B2 = 50
C= 3 D= 3 sf = 0.01 sµ = 0.01 sσ = 0.01

fσ = 0.5 batch size= 1k λlr = 0.001 λ
update factor
lr = 0.5 λ

patience
lr = 3

Figure 5. 1D marginal distributions comparing events simulated with MG5 (red) with those sampled from a GMM trained on a
latent space (black) with no external parameter dependence. Note that the two spectra are not statistically independent, since the
density model was trained using the MG5 events.

stopping early if the loss function does not improve over a period of 12 epochs. We observe thatO (10−4)
relative updates to the log-likelihood are important, since they may lead to%-level improvements in the
description of the tails. Training should therefore not be halted until a true plateau in the loss function is
obtained.

The model is trained using the 640k selected MG5 events generated assuming the SM hypothesis. To
evaluate its performance, we randomly sample 4M datapoints from the model and compare the 1D and 2D
marginal distributions with those of the training data. This large number is chosen to reduce fluctuations
due to sampling variance.
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Figure 5 presents the 1D marginal distributions. For each observable, an upper panel presents the
absolute spectrum in units normalized such that the highest bin takes a value of 1, and a lower panel shows a
ratio taken with respect to the MG5 events. MG5 events are shown in red and compared with events sampled
from the density model, shown in black. Shaded areas present Poisson estimates of the statistical uncertainty
arising from finite sample size. We observe that all spectra are well described within a systematic precision of
±5%, with many spectra achieving precision similar to the statistical variance of the training data. We note
that fewer bins than the expectedO (32%) lie outside of the uncertainty bands, indicating that the model
may be over-trained. Since this work is intended as a proof-of-principle for the method, we make no further
attempt to mitigate over-training, whilst noting that this will be important for future applications.

Figure 6 presents the 2D marginal distributions for all pairs of observables as measured using the MG5
events. This demonstrates that complex correlations exist between all observables. Figure 7 presents the 2D
marginal distributions using the samples from the density model. Comparing figures 6 and 7 shows that the
model has captured the high-dimensional correlations between all pairs of observables. Bins are coloured
white if no entries exist, and black if a small number of entries are observed. We note that several fully-white
regions of figure 6 are black in figure 7, suggesting that the density model may predict a small non-zero
probability in regions of phase space which are unpopulated when simulating from-first-principles, as is the
case with MG5.

If the modelled density in such regions is sufficiently small, we expect that this artifact should have
minimal impact on inference tasks. This is because any overflow of density into physically-disallowed regions
of phase space will mainly cause a small under-estimate of the normalization in physically-allowed regions,
where all observed events must necessarily exist. Furthermore, this normalization shift may cancel when
considering likelihood ratios. A greater problem may occur when using the density model for event
sampling, since events may be generated in the physically-disallowed regions. Whilst not solving this
problem at this time, we foresee potential for mitigation using two methods:

(a) Use transformed observables which enforce easily-parameterized boundaries. For example,modelling the
pair of observables {pj1T ,p

j2
T} risks predicting a non-zero density in the unphysical region p

j2
T > pj1T . Instead

we can model {pj1 ′T ,pj2T} where p
j1 ′
T = pj1T − pj2T is required to satisfy pj1 ′T ⩾ 0, preventing such unphysical

behaviour. A drawback is that we cannot enforce the original boundary limits of pj1T , because these must

now be defined relative to the value of pj2T . Furthermore, most physical boundary conditions may not be
easily enforced by such a transformation, either because they are too complicated or because the user is
not aware of them.

(b) In high energy physics, one canmodel the components of object four-vectors and reconstruct observables
accordingly. This naturally imposesmany physical constraints, although not all, and once again we cannot
enforce simple boundary conditions for high-level observables.

With these caveats, figures 6 and 7 demonstrate that the 2D projections of events sampled using density
model are qualitatively very similar to the ground truth events throughout most of the space. The
comparison is quantified in figure 8. This shows the pull on the ratio of these histograms, defined as:

Pull on
pmodel

pMG5
=

pmodel−pMG5

pMG5

∆
(

pmodel

pMG5

) , (13)

where pmodel and pMG5 are the densities estimated using events sampled from the density model and MG5
respectively, and∆

(
pmodel

pMG5

)
represents the estimated statistical uncertainty on the ratio between them. This

dominated by the estimated statistical uncertainty on pMG5. The pull can be interpreted as ‘the number of
standard deviations by which the ratio differs from unity.’ It therefore shows the sign and statistical
significance of the difference between the two distributions.

If the density model represents an unbiased fit to the MG5 events then we expect O(68%) of bins to fall
inside the interval [−1,+1]. Due to random fluctuations in the event sampling, we still expect O(32%) to fall
outside of this interval by chance, even when the density model is equal to the ground truth. Extending this
idea, we expect O(5%) of bins to fall outside the interval [−2,+2] and O(0.3%) outside [−3,+3] due to
random fluctuations. If the density model is over-trained, we expect to observe an excess of bins with small
pulls. Where mis-modeling occurs, we expect to observe a systematic trend of large pulls.

This allows us to study the agreement between the density model and training events in the following
way. All bins with pulls less than 1 in magnitude are shown in green in figure 8. These are bins where the
agreement between the density model and training data is better than the estimated statistical uncertainty.
Bins with pulls above+1 (below−1) are shown in increasingly dark shades of red (blue). Since we expect
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Table 4. Frequencies of pulls observed in figure 8, ignoring black and white bins which contain zero sampled events.

Pull range Observed frequency Expected frequency

Below−4 ≪0.003% O(0.003%)
−4 to−3 0.58% O(0.13%)
−3 to−2 3.4% O(2.1%)
−2 to−1 13.4% O(13.6%)
−1 to 0 31.6% O(34.1%)
0 to+1 35.0% O(34.1%)
+1 to+2 13.7% O(13.6%)
+2 to+3 1.8% O(2.1%)
+3 to+4 0.17% O(0.13%)
Above+4 ≪0.003% O(0.003%)

that O(32%) of bins will be coloured red or blue, the presence of these bins does not indicate mis-modeling.
Instead we search for the following signatures:

• Adjacent dark red or blue bins indicate that the difference between the density model and training data is
unlikely to occur by chance. These regions are likely mis-modeled.

• Multiple adjacent bins which are all coloured red or blue suggest an effect of systematic mis-modeling rather
than statistical fluctuation.

• More bins shaded in red or blue than expected, indicating that more bins than expected exceed the statistical
variance due to sampling, suggesting that mis-modeling is present in some of these regions.

Since most bins in figure 8 are coloured green or light red/blue, we observe that most of the space is
well-described within±2 standard deviations. This indicates that, in general, the model is able to describe
the high-dimensional distribution of the data at a level comparable with the statistical precision of the
training data.

Some red or blue bands are observed, for example (i) in the steeply falling tail of the∆y( j, j) distribution
when projected along withmjj and |yjj|, and (ii) in the region pj1T ≈ pj2T in the projection of the two. This
suggests some systematic mis-modeling in these regions, and scope for tuning using the optimization
methods suggested in section 3.

White regions indicate that no density is present, whilst black regions indicate that events are present
when sampling the density model but not MG5, repeating the observations discussed above. Table 4
summarizes the total frequency with which pulls are observed in the different colour bins.

5. EW Zjj with 4 observables and 2 external parameters

We now train a model which captures the dependence of EW Zjj data on the external parameters
c⃗= {cHWB, c̃W}. Such a model may be used to perform maximum likelihood estimation or derive exclusion
limits on the space of c⃗ based on an observed dataset6.

In this case, two SMEFT coefficients would be profiled with all others assumed to be 0. This is consistent
with experimental analyses in the Higgs and electroweak sectors, in which only one or two parameters are
usually profiled at a time. In general, it is not possible to constrain many more parameters. This is because we
must simulate training data at regular intervals in all directions of c⃗. The number of required simulations
therefore grows exponentially with the number of parameters profiled, which quickly becomes
computationally intractable7.

We note that the external parameters also impact the rate σfid (⃗c) at which signal is expected to be
produced within the observable phase space. When performing an experiment with a fixed exposure (rather
than a fixed number of events), we expect to observe events at a point x in phase space at a rate of:

dσ (x|⃗c)
dx

= σfid (⃗c) · p(x|⃗c) . (14)

6 We emphasize that detector effects have not been applied to our training data, but would be for such an analysis.
7 We note that global fits of SMEFT parameters are possible when using binned measurements [27, 44, 45]. This is because the prediction
for a given c⃗may be decomposed into a parametric relationship between a number of pure-SM, pure-SMEFT and interference terms. In
this case, since the number of unique terms rises slower than exponentially with the number of parameters, all parameters which impact
EW Zjj events may be profiled together. However, for general new physics models where no such parameterization exists, the number of
parameters profiled will be limited by the curse-of-dimensionality. Exploiting this special case is not possible using our method because
we cannot express negative event densities which may arise in the interference term.
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Table 5. Constants used to construct and train a density model describing EW Zjj data with 4 observables and 2 external parameters.

NG = 30 A1 = 50 A2 = 0 B1 = 50 B2 = 20
C= 2 D= 3 sf = 0.125 sµ = 0.125 sσ = 0.125

fσ = 0.25 batch size= 5k λlr = 0.001 λ
update factor
lr = 0.5 λ

patience
lr = 3

In this work we consider the modeling of p(x|⃗c). We note that σfid (⃗c)may typically be modelled using a
simple feed-forward neural network, allowing the event rate to be used as a discriminating observable if
desired.

We also note that we are not modeling any backgrounds to the EW Zjj process. This is because we wish to
test our ability to model multi-dimensional data with a non-trivial parameter dependence. This is best
achieved by isolating the signal component, since in general background processes will not depend on the
same parameters. However, we note that background modeling must be considered when performing
parameter inference using detector-level data, and in particular a large irreducible background from
non-electroweak Zjj production would exist in a ‘real-world’ EW Zjj analysis. For such an analysis, a
statistical model combining individual components psig (x|⃗c) and pbkg (x) with expected cross-sections σsig (⃗c)
and σbkg may be constructed as:

p(x|⃗c) =
σsig (⃗c) · psig (x|⃗c)+σbkg · pbkg (x)

σsig (⃗c)+σbkg
, (15)

assuming that interference is either small or absorbed into the background model.
For simplicity we select four observables to model, in the sequential order pllT, p

j1
T ,mjj and finally∆ϕ( j, j),

excluding the other eight from consideration. All four observables are expected to depend on the external
parameters, and we aim to capture this dependence within our model.

The projection onto the latent space is performed using the same f -values as presented in table 2 and
used in the previous section. Table 5 presents the constants used to configure the neural networks which
contain 18k–85k trainable parameters. Compared with those in table 3, we note that larger values of sf , sµ
and sσ are used. This initializes the model such that external parameter variations deform the kinematic
spectra, and so impact the log-likelihood, significantly enough that we find an improved parameter
dependence to be learned during training. However, we note that large values may excessively enhance
fluctuations and lead to an unstable initial state, and the final constants are chosen to balance these effects.
The constant f σ is tuned to ensure that the initial Gaussian width is not much larger than the scale of latent
space features which are deformed by parameter variations.

Each neural network is trained for up to 200 epochs, stopping early if the log-likelihood does not
improve by an amount greater than 10−10 over a period of 15 epochs. Figure 9 shows the 1D marginal
distributions evaluated at the SM hypothesis of c⃗= (0,0), obtained by sampling 4M events from the density
model. Figure 10 shows the corresponding pulls on the 2D marginal spectra. Replicating the results of the
previous section, these demonstrate that the model describes the 1D distributions to within±5% at this
point in parameter space, and without significant pulls in the 2D projections.

To investigate whether the parameter dependence has been learned, we scan across all hypotheses in the
c⃗-plane and study the ratio of the 1D marginal distributions when compared with the SM. To reduce
sampling variance when studying the density model, we form this ratio using importance sampling. We first
sample 100k events from the model assuming the SM hypothesis. We then use the density model to evaluate
the probability density of every datapoint under both the SM and c⃗ hypotheses, labelled pSM and pc
respectively. The distribution under the c⃗ hypothesis is then obtained by assigning a weight of pc

pSM
to every

datapoint. This approach assumes that the probability distribution under the SM hypothesis fully spans the
support of that of the c⃗ hypothesis. The result is that the distributions obtained under the SM and c⃗
hypotheses have strongly correlated statistical fluctuations. These largely cancel when we take the ratio,
which can be estimated using fewer samples than if the hypotheses were sampled independently.

Figure 11 shows how the pllT PDF, expressed as a ratio with respect to the SM, varies as a function of the c⃗
hypothesis which is indicated by the green box in every panel. Events generated with MG5 are shown in red,
and those sampled from the density model are shown in black. We observe a significant enhancement of the
high energy tail when c̃W is large in magnitude, approximately independent of its sign. We observe that
negative values of cHWB lead to a modest enhancement of the tail, whilst positive values suppress the tail by a
comparable factor. The combination of these effects, plus any interference between them, manifests as a
non-trivial structure throughout the plane of c⃗. We observe that the density model has captured this external
parameter dependence well, since it is able to describe the deformations with an accuracy significantly better
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Figure 9.Marginal distributions of events sampled using the density model (black) compared with those generated using MG5
(red) for a value of (cHWB, c̃W) = (0,0). Shaded areas show sampling uncertainties. Note that the two spectra are not statistically
independent, since the density model was trained using the MG5 events.

Figure 10. Pull on the ratio between the 2D marginal distributions comparing events simulated with MG5 (denominator) with
those sampled from a GMM trained on a latent space (numerator), both assuming the SM hypothesis of (cHWB, c̃W) = (0,0). The
model accepts cHWB and c̃W as input parameters.

than the size of the deformations themselves. The double ratio, quantitatively comparing the two histograms,
is presented in figure A1 of appendix A.

Figure 12 shows how the pj1T PDF varies as a function of c⃗. We observe an enhancement of the high-energy
tail when c̃W is large in magnitude. We also observe a low-energy enhancement when cHWB is highly negative,
resulting in another non-trivial structure as we scan the plane of c⃗. Once again, we find that the density
model has captured this external parameter dependence well. The double ratio, quantitatively comparing the
two histograms, is presented in figure A2 of appendix A.
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Figure 11. Evolution of the pllT PDF as a function of (cHWB, c̃W), presented as a ratio with respect to the SM hypothesis. The
dependence is well captured by the density model. The double ratio comparing the two histograms is shown in figure A1.

Figure 12. Evolution of the pj1T PDF as a function of (cHWB, c̃W), presented as a ratio with respect to the SM hypothesis. The
dependence is well captured by the density model. The double ratio comparing the two histograms is shown in figure A2.

Figure 13 shows how themjj PDF varies as a function of c⃗. We observe that highly negative values of cHWB

lead to significant structure atmjj ∼ 0.15 TeV. As shown in figure 9, this is also where the bulk of the data is
expected to be measured. When measuring other observables, experimental analyses typically apply
pre-selection criteria requiringmjj to exceedO (1 TeV) in order to preferentially reject non-electroweak
processes. By instead modelling an inclusive range ofmjj simultaneously with all other observables and
performing a high-dimensional unbinned analysis, such a restrictive requirement would not be required,
provided that all backgrounds can also be sufficiently well modelled. The double ratio, quantitatively
comparing the two histograms, is presented in figure A3 of appendix A.

Figure 14 shows how the∆ϕ( j, j) PDF varies as a function of c⃗. We observe that c̃W modulates the
amplitude of an approximately sinusoidal oscillation introduced into the∆ϕ( j, j) spectrum. We observe that
negative values of cHWB modulate an enhancement at∆ϕ( j, j)∼ 0, whereas positive values of cW cause a
suppression. This observable is therefore sensitive to the sign of both parameters. Once again we note that
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Figure 13. Evolution of themjj PDF as a function of (cHWB, c̃W), presented as a ratio with respect to the SM hypothesis. The
dependence is well captured by the density model. The double ratio comparing the two histograms is shown in figure A3.

Figure 14. Evolution of the∆ϕ( j, j) PDF as a function of (cHWB, c̃W), presented as a ratio with respect to the SM hypothesis. The
dependence is well captured by the density model. The double ratio comparing the two histograms is shown in figure A4.

the distribution shows a significantly non-trivial dependence as a function of c⃗, and that this dependence is
captured well by the model. The double ratio, quantitatively comparing the two histograms, is presented in
figure A4 of appendix A.

6. Demonstration of statistical interpretation using a toy model

In the previous two sections we have demonstrated that we can construct density models which replicate the
behaviour of simulated training data when sampled. Whilst this implies that good behaviour should also be
obtained when performing inference tasks at the trained points in parameter space, this cannot be
demonstrated because we are not able to evaluate the ground truth PDF for any given datapoint.

Nonetheless, we consider such a demonstration to be important. This is because the quality of inference
is impacted not only by the ability to fit the training data but by (1) the degree of under- or over-training and
(2) the way in which the probability distribution is interpolated between training points, hereafter referred to
as the inductive bias. Whilst the probability distribution may be learned with arbitrarily high accuracy at the
training points, depending on the complexity of the model configuration and number of training samples
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provided, it is likely that the interpolation between training points will not exactly match the true behaviour,
which is unobserved. We aim to show that the approximate behaviour of the model can work sufficiently well
for inference tasks, provided that training data are provided at dense enough points in parameter space.

To achieve this, we construct a toy model from which to sample ground truth training data. This is
projected onto a latent space and used to train a density model using the method proposed in this paper. The
toy contains four observables which vary according to two external parameters. Several pseudo-datasets are
sampled from the true model assuming different parameter hypotheses. For each dataset, the density model
is used to compute exclusion bounds on the latent space, and the results are compared with ground truth
exclusion bounds computed using the true PDF on the data space. The level of agreement is then analyzed.
Use of a toy model allows us to compute these ground truth bounds, which are typically intractable for real
simulations.

We define a toy model with four observables x= {x0, x1, x2, x3} and two external parameters
c⃗= {cx, cy}. These observables are defined over the intervals x0 ∈ [100, 800], x1 ∈ [100, 800],
x2 ∈ [−π, π] and x3 ∈ [−∞, ∞]. Appendix B defines the ground truth PDF and documents how samples
are drawn. 50 k datapoints are sampled at each of the 49 parameter points in a two-dimensional grid
spanning all permutations with cx ∈ [−1.5,−1,−0.5,0,0.5,1,1.5] and cy ∈ [−1.5,−1,−0.5,0,0.5,1,1.5].

Figure 15 (top) shows the 1D marginal distributions at the null hypothesis c⃗= (0,0) as well as several
alternative hypotheses in the c⃗-plane. Observables x0 and x1 are highly correlated falling distributions, where
variations of cx away from 0 enhance the amplitude in the tail. These observables are insensitive to cy as well
as the sign of cx. Observable x2 is an angular observable for which cx and cy induce sinusoidal oscillations
with a phase difference of π

2 . This observable is sensitive to the sign and amplitude of both external
parameters. Observable x3 follows a smooth-peak distribution with no physical limits, and is correlated with
all observables and external parameters.

Data are projected onto the latent space using values of f = 0.5 for all observables. Neural networks are
configured using the constants presented in table 6 and contain 18k–85k trainable parameters. Each network
is trained on 60% of the available data until the log-likelihood evaluated over the other 40% no longer
improves by an amount greater than 10−6 over a period of 8 consecutive epochs, after which the solution
with the least-positive (or most-negative) validation loss is chosen. Training is found to terminate after 33–46
epochs. Figure 15 (bottom) shows the latent space distributions. A third panel compares the 1D marginal
distributions obtained from the ground truth data and from drawing 50 k samples from the resulting density
model. The level of agreement is found to be comparable with the statistical precision of the data.

We now test the accuracy of inference performed using the density model. We select nine different ‘true’
hypotheses c⃗true in a 2D grid with edges at cx ∈ [−0.8,0,0.8] and cy ∈ [−0.8,0,0.8]. For each value of c⃗true, a
pseudo-dataset with a size of 400 events is created by sampling the true PDF. We assume that the expected
number of observed events is identical for every value of c⃗. Figure 16(a) shows nine panels in which the
different c⃗true hypotheses are presented as black dots. Open circles show the points in parameter space c⃗trained
at which the model was trained, excluding those which lie outside of the axis range.

The true PDF is used to profile the likelihood of the dataset. Using this method we evaluate (1) the true
maximum likelihood estimate (MLE) and (2) the frequentist 68% and 95% confidence limits, assuming that
the expected distribution of the profile likelihood ratio follows the asymptotic approximation described by
Wilks’ theorem [46, 47]. In figure 16(a), orange crosses present the MLE evaluated using the true PDF, whilst
orange contours present the confidence limits. We note that, since the pseudo-datasets are stochastically
sampled from the true PDF, we expect each MLE to fluctuate away from c⃗true as observed. The datasets are
then transformed onto the latent space, and the same analysis is performed using the density model to
evaluate the likelihood. Blue crosses present the MLE evaluated using the density model, whilst blue contours
present the confidence limits.

Figure 16(a) demonstrates generally good agreement between the exclusions bounds evaluated using the
density model and ground truth PDF, although we observe a mild over-coverage when cx ∼ 0 or cy ∼ 0. We
expect that this is because these axes represent turning points in the function p(x|⃗c), the form of which is
only approximated by the inductive bias of the density model. To test this, we train a second model which
contains additional training data at cx =±0.2 and cy =±0.2. The resulting contours are shown in
figure 16(b). We observe that the additional training data have constrained the model at |cx|, |cy| ∼ 0,
resulting in an improved agreement with the ground truth. We conclude that the most reliable results will be
achieved when the spacing of c⃗trained points is smaller than the size of the expected exclusion bounds.

In both cases, figure 16 shows that accurate MLEs and exclusion contours have been estimated using
density models on the latent space. Reliable results could therefore be obtained in this example without
having access to the true PDF.

22



Mach. Learn.: Sci. Technol. 3 (2022) 015021 S B Menary and D D Price

Figure 15. Kinematic distributions of toy model data before (top: ‘Data space’) and after (bottom: ‘Latent space’) projecting onto
the latent space. Secondary panels highlight how these are modified by variations of the conditional parameters c⃗= (cx, cy). On
the latent space, a third panel compares ground truth events with those sampled from the learned density model, demonstrating
agreement within the statistical precision of the training data for all values of c⃗.

Table 6. Constants used to construct and train a density model describing toy data with 4 observables and 2 external parameters.

NG = 20 A1 = 50 A2 = 0 B1 = 50 B2 = 20
C= 2 D= 3 sf = 0.01 sµ = 0.01 sσ = 0.01

fσ = 0.25 batch size= 500 λlr = 0.001 λ
update factor
lr = 0.5 λ

patience
lr = 2
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Figure 16. 68% and 95% confidence level contours in the c⃗-plane for nine separate datasets of size N= 400 randomly sampled
around the hypotheses c⃗true shown in black. Contours are evaluated on the data space using the true probability model (orange)
and on the latent space using the density model (blue). Crossed markers show the corresponding maximum likelihood estimators
(MLEs). Good agreement is observed. Open circles show the points in parameter space c⃗trained at which the model is trained.

7. Conclusion

We present a method for modelling probability distributions over a high-dimensional space of observables
with dependence on external parameters, a dataset type which is common within the physical sciences. The
method uses a novel transformation of input data and a targeted network architecture to improve the
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expressive power of GMMs. It is designed to capture smooth deformations of the probability density induced
by external parameter variations, and respects strict boundaries on the observables. The model may be used
to perform inference on observed data, or sampled to act as a stochastic generator.

We demonstrate the power of the method by applying it to two high-energy particle physics datasets: one
which contains twelve highly correlated observables, and one which depends on two external parameters. We
then use a toy model to demonstrate that fast and accurate inference may be performed from experimental
data. We demonstrate that the problem-of-interest may also contain discrete observables, which are
modelled with a relatively simple categorical model. Whilst the method enables interpretations to be
performed using unbinned multi-dimensional data, it may also be used within the experimental design of
binned measurements (which are intended to characterize observed data with minimal physical model
assumptions). Such an analysis may proceed as follows. An experimenter may assign benchmark hypotheses
to which a planned measurement should have reasonably optimized sensitivity. We expect that a
near-optimal classifier8 for a given parameter hypothesis may be created using the ratio of the PDFs
evaluated at the null and alternative hypotheses. By isolating the regions of the high-dimensional space which
provide the most discrimination power, they may ensure that these regions are targeted by dedicated bins.

The method presented is not domain-specific, and may be used to model any dataset of continuous
observables which follow a smooth PDF, and to subsequently perform statistical inference from experimental
data for the purposes of scientific discovery.
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Appendix A. Double ratio plots comparingMG5 events with those sampled from the
density model constructed used in section 5

This appendix presents further results concerning the experiments shown in section 5. In that section,
figures 11–14 present the single-ratios comparing pbin (cHWB, c̃W) with pbin (0,0), visually demonstrating that
the density model is able to capture deformations to the four observable spectra as cHWB and c̃W are varied.
Here, figures A1–A4 show the double-ratios which quantitatively compare the single-ratios evaluated using
MG5 events with the single-ratios evaluated using events sampled from the density model.

In figures A1–A4 we observe that the double-ratio is consistent with unity at a level comparable with the
estimated statistical uncertainty on the training data, which is presented as the red shaded area.

Appendix B. Ground truth probability density and sampling for the toy model used in
section 6

For observables x⃗= {x0, x1, x2, x3} and external parameters c⃗= {cx, cy}, the toy model described in
section 6 is defined by a probability density:

8 The Neyman–Pearson lemma states that the PDF ratio is the test-statistic with the highest fake rejection rate for a given true positive
rate [48].
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Figure A1. Double ratio comparing pbin (cHWB, c̃W)/pbin (0,0) estimated using MG5 events with those sampled from the density
model, shown as a function of pllT. The corresponding single ratios are shown in figure 11.

Figure A2. Double ratio comparing pbin (cHWB, c̃W)/pbin (0,0) estimated using MG5 events with those sampled from the density

model, shown as a function of pj1T . The corresponding single ratios are shown in figure 12.

ptrue (⃗x|⃗c) = p(0)true (x0|cx) · p(1)true (x1|x0) · p(2)true (x2 |⃗c) · p(3)true (x3 |⃗c,x1,x2) , (B.1)

with the conditional probability densities:

p(0)true (x0| cx) =
1

700
· 2(2− |cx|)(

1− e−2(2−|cx|)
) · e−2(2−|cx|)·x ′

0

p(1)true (x1| x0) =
1

700
· 1√

π
2 ·σ1 ·

(
erf x ′

0√
2σ1

− erf x
′
0−1√
2σ1

) · e
− (x ′1 −x ′0 )

2

2·σ2
1

p(2)true (x2| c⃗) =
(
α2 +β2x22 + γ2x42

)
·
(
1+ δ2 (cx) sinx2 + ϵ2

(
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)
cosx2

)
f2 (⃗c,π)− f2 (⃗c,−π)

p(3)true (x3| c⃗,x1,x2) = q3

(
x3 +

3

5

(√
4+ |cx|+ |cy|

)
(x ′1 + x ′2)

)
, (B.2)
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Figure A3. Double ratio comparing pbin (cHWB, c̃W)/pbin (0,0) estimated using MG5 events with those sampled from the density
model, shown as a function ofmjj. The corresponding single ratios are shown in figure 13.

Figure A4. Double ratio comparing pbin (cHWB, c̃W)/pbin (0,0) estimated using MG5 events with those sampled from the density
model, shown as a function of∆ϕ( j, j). The corresponding single ratios are shown in figure 14.

defined over the intervals:

x0 ∈ [100, 800]

x1 ∈ [100, 800]

x2 ∈ [−π, π]

x3 ∈ [−∞, ∞], (B.3)

where

x ′0 = 2
x0 − 100

700
− 1, x ′1 = 2

x1 − 100

700
− 1, x ′2 =

x2 +π

π
− 1, (B.4)

with α2 = 1, β2 =
4
π2 , γ2 =− 5

π4 , δ2 (cx) =
2
5 cx, ϵ

(
cy
)
= 1

2 cy, α3 = 10, β3 = 1, γ3 = 1 and
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Samples are drawn according to:
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where I−1
2 is evaluated numerically as the inverse function of:

I2 (⃗c, x) =
f2 (⃗c, x)− f2 (⃗c, −π)

f2 (⃗c, π)− f2 (⃗c, −π)
, (B.7)

and,
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