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ABSTRACT

In this study, short-term prediction of aluminum foil thickness
time-series data recorded during cold-rolling process was
investigated. The locally projective nonlinear noise reduction
was applied in order to improve the predictability of the time
series. The higher-order statistics methods (bispectrum and
bicoherence) were used to detect the nonlinearity. The embed-
ding vectors with appropriate embedding dimension and time
delay were obtained via the false nearest neighbors and
mutual information methods, respectively. The maximum pre-
diction horizon was determined depending on the maximal
Lyapunov exponent. For various prediction horizons, the
embedding vector and corresponding thickness value pairs
were used as the dataset to assess the prediction performance
of various machine learning algorithms (i.e., multilayer percep-
tron neural network, support vector machines with Pearson VIl
function-based kernel, and radial basis function network). The
n-step ahead prediction outputs of the machine learning algo-
rithms were globally combined with simple voting in favor of
the one having minimum absolute error. The accuracy of our
proposed method was compared with nonlinear autoregres-
sive exogenous model for various thickness time-series data
using mean absolute percentage error measure.

Introduction

The fundamental principle of cold-rolling process is the tension produced by
the coiling and uncoiling motors of the rolling machine. The tension and its
regulation are very important factors for maintaining the stability of the
desired thickness over the whole surface of the aluminum foil. The elastic
deformation values of the rollers and other mechanical systems of the rolling
machine change accordingly depending on the tension. If the tension is not
properly regulated, rupture may occur on the aluminum foil. This will stop
the rolling process, large amount of aluminum metal will go to the scrap, and
even rollers will be damaged. Therefore, short-term prediction of the
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aluminum foil thickness plays a very important role to control the cold-
rolling process. The angular velocity of the uncoiling and coiling motors
determines the amount of the tension applied to foil. The angular velocity of
the uncoiling motor must decrease and the angular velocity of the coiling
motor must increase accordingly to keep the tension constant during cold-
rolling process. Depending on the radius of the aluminum roll, the angular
velocity of the motors must change. This value is determined by the armature
and field currents applied to the motors. The existing programmable logic
controller (PLC) system includes one thickness measurement device on the
output side of the cold-rolling machine. The thickness value measured by this
device is used to regulate the tension applied to the aluminum foil every
second in when 5 m of aluminum foil passes through the mills. This
instantaneous manner of regulation affects the precision of the thickness
due to the mentioned latency. Therefore, short-term prediction is necessary
for more effective regulation of the velocity of the rollers. This will improve
the effectivity of the overall process by preventing ruptures.

There are many studies in the literature on the prediction of observed
time-series data. In Nesreen et al. (2010), several machine learning algo-
rithms and preprocessing methods were compared against monthly M3 time-
series competition data for only 1-step ahead prediction. The authors found
that multilayer perceptron and Gaussian processes have the best perfor-
mance. Self-organizing map (SOM) and support vector machine (SVM)
models were used to forecast day-ahead electricity prices in Niu, Liu, and
Wu (2010). SOM was used to cluster the data automatically to avoid the
problem of insufficient training data. Different SVM models were built on
the SOM clustered categories. Bontempi, Ben Taieb, and Le Borgne (2013)
investigated the machine learning and mutistep time-series forecasting stra-
tegies. They divided machine learning approaches into supervised and local
learning settings for modeling the time dependencies of the observed data.
The local learning approach utilizes either nearest neighbor or lazy learning
techniques. Unlike n-step ahead (direct) prediction where actual past obser-
vations are used for the prediction, in iterated prediction strategy, the pre-
dicted output is fed back as input to the next prediction. In some cases, direct
prediction strategy gives better results than iterated method (Sorjamaa et al.
2007). Iterated or direct methods have a common feature that they model a
multiinput single-output mapping from historical data. There are also studies
for long-term prediction in the literature where multiple-input multiple-
output strategy was used (Bao, Xiong, and Hu 2014; Ben Taieb et al. 2012;
Mao, Tian, and Yan 2012). However, in our study, we are interested in short-
term prediction with higher precision. According to chaos theory, an under-
lying dynamical process which generates a chaotic time series depends on a
certain deterministic nonlinear equation. Although long-term prediction is
meaningless due to nonlinearity and sensitive dependency on initial
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conditions, very accurate short-term prediction is possible on a chaotic
attractor using neighborhood information of embedding vectors. Therefore,
until the deterministic causality is lost, accurate short-term prediction can be
made from an observed data. The key point here is reconstructing the time-
series data in an n-dimensional embedding state space to obtain the trajec-
tories of the chaotic attractor which corresponds to the observed one-dimen-
sional time-series data. Basharat and Shah (2009) applied chaos theory
methods to human action modelling and dynamic texture synthesis by
using the embedding vectors obtained from the original multivariate time
series of image data. In Tran, Yang, and Tan (2009), multistep ahead
prediction of the operating conditions of machine was investigated.
Regression trees and adaptive neuro fuzzy inference system were compared
with direct prediction strategy. The training data were the embedding vectors
obtained from the original time series with appropriate time-delay and
embedding dimension. In Yang and Duan (2003), the chaotic characteristics
of electricity price were investigated and a price forecasting model with
recurrent neural network was proposed. In Iokibe and Fujimoto (2001), a
local fuzzy reconstruction method of time-series data was proposed for
nonlinear short-term prediction of peak injection pressure for the motor
cylinders. In Wang, Chen, and Lee (2004), the daily change and prediction of
the stocks in Shenzen and Shangai stock markets were investigated. The
maximum prediction horizon (T,,) where the accuracy has been lost was
found as 156 days using the maximum Lyapunov exponent as T;,, = 1/A;. The
prediction errors were less than 0.05 for T}, < 156 and 0.30 for T}, > 220. The
nonlinear short-term prediction of the earthquake magnitude using artificial
neural networks was studied in Plagianakos and Tzanaki (2001) using
20 years of earthquake time-series data. In Xie, Liu, and Huang (2008), a
prediction model of short-time traffic flow based on chaotic time-series
analysis methods was presented and applied to predict the real traffic flow.

There are also studies in the literature about neural network-based
estimation of aluminum strip thickness using electrical current variables
of the cold-rolling machine (Marcellos, Denti, and Saousa 2009). In Zarate
(2005), a neural network was trained with the data of the rolling process
during the deformation of the material in order to control the output
thickness of the aluminum strip. The short-term prediction of aluminum
strip thickness was first introduced in Ozturk and Seherli (2015) where the
performance of SVMs with various kernel functions was compared for
different prediction horizons. In this study, a short-term prediction system
was proposed which globally combined multiple regressors to improve the
prediction accuracy after applying nonlinear noise reduction to the origi-
nal time-series data. The experimental results indicated that the proposed
system was very promising in short-term prediction of aluminum foil
output thickness.
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The NARX model

The autoregressive exogenous (ARX) models are linear and they are an
adaptation of discrete-time filtering methods developed by Wiener (1949)
and then applied to business and economic data by Box, Jenkins, and Reinsel
(1994). These models yield successful results especially in prediction of
stationary and seasonal time series. However, nonstationary signals are very
common in particular when observing natural and cultural phenomena
(Kantz and Schreiber 2005).

Nonlinear ARX models are an extension to linear models and define the
predicted output as a nonlinear function of past inputs and outputs. A linear
single-input-single-output ARX model predicts the current output y,(f) as a
weighted sum of its regressors. In the simplest case, regressors are delayed
inputs and outputs and called standard regressors. We used two standard
regressors in this study, namely y(t — 1) and y(t — 2).

yp(t) = [—(11, —ay, ..., —Qugq, bl,bz, e 7bnh]
X [yt —1),9(t—2),...,9(t —na),u(t),u(t —1),...,u(t —nb—1)]"
(1)

where y(t —1),y(t —2),...,y(t —na),u(t),u(t —1),...,u(t —nb—1) are
delayed input and output variables, called regressors.

Nonlinear ARX models have more flexible nonlinear function instead of
the weighted sum, as in the following

yp(t) :f(y(t_ l)vy(t_ 2)’y(t_ 3)7""u(t)7u(t_ 1)7u<t_ 2>a . ) (2)

where f is a nonlinear mapping function and inputs to f are model regres-
sors. Nonlinearity estimators in a nonlinear ARX model structure map the
regressors to the model output using a combination of both nonlinear and
linear functions. There are various nonlinearity estimators such as tree-
partition networks, wavelet networks, or sigmoid networks. In this study,
we used sigmoid network with 15 units as the nonlinearity estimator.

Nonlinear time-series analysis

If a time series generated by a nonlinear dynamical system is handled by
standard linear methods like power spectrum analysis, linear transforma-
tions, or parametric linear modeling, then some critical features of this time
series will be undetected or most of the time series will be considered as noise
(Tong 1990). Since linear equations can only lead to exponentially changing
or periodically oscillating data, all irregular behaviors of the system are
because of some random external input to the system (Kantz and Schreiber
2005). However, chaos theory says that the random input is not the only
possible source of irregularity in a system’s output. A noise-like time series
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with random appearance can be generated by a deterministic equation.
Furthermore, properly embedding an observed time-series system into a
higher-dimensional phase space can provide information about the under-
lying dynamics. By exploiting this information, we can make precise short-
term prediction using local vicinity of embedding vectors in the phase space.

Nonlinearity test with higher-order statistics

The nonlinearity in an observed time series must be verified before applying
nonlinear methods. Hinich (1982) has developed algorithms to test for
Gaussianity and linearity. The basic idea is that if the third-order cumulants
of a process are zero, then its bispectrum is zero, and hence its bicoherence is
also zero. If the bispectrum is not zero, then the process is non-Gaussian; if
the process is linear and non-Gaussian, then the bicoherence is a nonzero
constant. The hypothesis testing problem for non-Gaussianity (nonzero
bispectrum) is given below:

H1: the bispectrum of y(n) is nonzero

HO: the bispectrum of y(n) is zero

If hypothesis H1 holds, we can test for linearity, that is, we have a second
hypothesis testing problem

H1": the bicoherence of y(n) is not constant

HO'": the bicoherence of y(n) is a constant

If hypothesis HO" holds, the process is linear.

If an observed S is consistent with a central chi-squared distribution, this is
revealed as probability-of-false alarm (Pfa) value which is the probability of
being wrong in assuming that the data have a nonzero bispectrum. If this
probability is high, say 0.95, the assumption of zero bispectrum is accepted,
that is, the Gaussianity assumption cannot be rejected. In this case, the results
of the linearity test should be ignored since the data are Gaussian and hence
also linear.

If the data are non-Gaussian where Pfa is very small or zero, an estimate of
the constant A (lambda) value is obtained by computing the mean value of
the bicoherence over the points in the nonredundant region. The squared
bicoherence is chi-squared distributed with two degrees of freedom and
noncentrality parameter A. Then, the estimated sample interquartile range
(R-estimated) of the squared bicoherence can be compared with the theore-
tical interquartile range (R-theory) of a chi-squared distribution with two
degrees of freedom and noncentrality parameter A. If the estimated inter-
quartile range is much larger or much smaller than the theoretical value, then
the linearity hypothesis is rejected.
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Nonlinear noise reduction and stationarity

The chaotic time series as well as the time series obtained from natural
processes exhibit randomness in between pure deterministic signals like the
output of sinus function and pure stochastic signals like the output of white
Gaussian noise. For a fully random process with a slowly decaying autocor-
relation function, making a precise prediction is impossible even with an
absolute knowledge of the present value due to the fact that the underlying
Autoregressive Moving Average (ARMA) models are stochastic. On the other
hand, if there is a strong correlation in a time series, then the future values
will be a linear combination of the preceding observations. The nonlinear
deterministic dynamical systems represent another kind of temporal correla-
tion. In contrast to the correlations extracted with the autocorrelation func-
tion for the linear signals, the ones for nonlinear deterministic dynamical
systems may be visible only by using nonlinear statistics like nonlinear cross-
prediction errors (Schreiber 1997). According to the nonlinear cross-predic-
tion errors method, the time series is broken into segments Si, where i = 1,
...» N and the root mean squared cross-prediction error is computed for
segments Si and §j. The cross-prediction error as a function of i and j reveals
which segments differ in their dynamics (Kantz and Schreiber 2005) and
gives a general idea about the stationarity of the time series.

In traditional signal processing, noise reduction means decomposing a
time-series value into two components, one of which contains the signal
value and the other contains random fluctuations called noise. This
approach is not valid for nonlinear time series because they generally
have broad-band power spectra and have spectral attributes that generally
exhibit random noise behavior. Nonlinear noise reduction methods exploit
the structure in the reconstructed phase space instead of the frequency
information of the time series. The curved structures formed by the non-
linear signals in delayed phase space are taken into account. Nonlinear
phase space filtering focuses on contaminated lower-dimensional mani-
folds formed by the noisy deterministic signals and project onto those
parts in order to reduce noise. There are several nonlinear noise reduction
methods discussed in the literature (Davies 1994; Grassberger et al. 1993;
Kostelich and Schreiber 1993; Schreiber 1993). In this study, locally pro-
jective nonlinear noise reduction method (Kantz et al. 1993) was used for
the thickness time-series data. This method assumes that the deterministic
part of the data would lie on a low-dimensional attractor while the effect
of noise is to spread the data off this attractor. The method tries to
identify the attractor and to project the data onto it.

The idea behind the locally projective noise reduction method is that for
each vector s, embedded in the attractor A, there exists a correction 8,,where
0, is small, in such a way that s, — 6, € A and 0, is orthogonal on A. In
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order to apply projection to the attractor, the vectors must be embedded in a
phase space which has higher-dimensionality than the attractor A.

The chosen orthogonality metric is important because the delay vectors
contain only temporal information. Euclidean distance is not the best choice
in this situation. Because the boundaries of the delay vectors will eventually
diverge due to the effect of Lyapunov exponents. Therefore, only the middle
parts of the delay vectors are corrected and the other parts are left
unchanged. This can be expressed with a weight matrix P as in the following

_Jlii=jand 1<ij<m
Py _{ 0: else where (3)

where m is the dimension of the over-embedded delay vectors.
Thus, the following minimization problem is solved for nonlinear noise
reduction

Z(@,P_IGZ-) é min (4)

1

with the constraints al,(s, — 0,) + b, =0, where i =g+ 1,...,m

And a;Paln = Jj;, where a; are the normal vectors of attractor A at the
points s, — 6,,.

The simple nonlinear prediction algorithm (Hegger, Kantz, and Schreiber
1999) is applied to the cross-segments of the time series in order to find the
effect of the nonlinear noise reduction. The algorithm calculates the 1-step
ahead prediction error on the respective embedding vectors with appropriate
embedding dimension and time delay. In a delay embedding space, all
neighbors of s, are taken into account in order to make a prediction at
time #n + k as in the following.

1
Sntak = Sntak (5)
U(sn) ’ Sne%:(sn)

where |U.(s,)| is the number of elements in the neighbourhood U,(s,).

Reconstructing the time-series data

According to the Takens embedding theorem (Takens 1981), if the real
dimension of the attractor is D,, then the intersection of the trajectories
can be avoided by choosing the embedding dimension as Dy > 2D,4. The
embedded time-delay vectors are topologically equivalent to the original time
series. The inputs to the prediction system on time ¢ can be constructed as a
Dg dimension vector space Y(n), which includes Dy observed points with the
same 7 time-delay intervals on the observed time series x() (Kuremoto et al.
2003)
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Y(n) = (x(n),x(n+ 1),....,x(n+ (Dg — 1)7)) (6)

The variation of the embedding vectors in time can be shown as Y(n)—Y
(n + 1). In order to reconstruct the attractor correctly, calculation of the
time-delay (7) and minimum embedding dimension (Dg) is very
important.

The time-delay value is a multiple of the sampling times of the observed
data. If it is too small, then x(n) and x(n + 7) coordinates in the embedding
vectors will be very close to each other and the information gain between
delay vectors will be less which leads to data redundancy. If it is too big, x(n)
and x(n + 1) coordinates will be totally irrelevant and the attractor will not
exhibit the dynamics of the underlying system. In this study, mutual infor-
mation (MI) method proposed in Fraser and Swinney (1986) was used. To
find the optimum time delay, MI S is calculated for different 7 values as in
the following

s=-3 py(r)nk i(7) %
where p; is the probability of finding an observation value in the ith interval,
pj is the probability of finding an observation value in the jth interval, and
pii(7) is the joint probability of finding an observation value in the ith
interval and 7 times later observation value in the jth interval. The first 7
value on which S becomes minimum is the optimum time delay.

The method proposed in Hegger at al. (1999) was used to find the
minimum embedding dimension. This method made some small changes
to the false nearest neighbors (FNNs) algorithm proposed by Kennel, Brown,
and Abarbanel (1992) to avoid the wrong results due to the noise in the time
series. Assuming that the standard deviation of the time series is o, the
threshold of FNNGs is 7, and the distance between the vectors of the phase
space is found according to maximum difference, the FNNs statistics is
calculated as in the following

S(m+1)_s(m+1)

mrrre( Ll (- -4
S"m _Skr(nn)
X, = g
n=1 r n k(l’l)

where S,(('z;)) is the nearest neighbor of the vector S, and k(n) is the index of

the time series which is different than »n and supplying the condition of
|Sn — Sk| being minimum. The second Heaviside function in the nominator
is used to eliminate the vectors of which initial distances are higher than o/r.
The same function also exists in the denominator for the same reason.
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The maximal Lyapunov exponent

A positive maximal Lyapunov (1;) exponent means that long-term prediction
is impossible because of the exponential divergence of the nearby trajectories
on the chaotic attractor. However, especially a small Lyapunov exponent
means that short-term prediction is possible because of the local stability of
the trajectories. The algorithm developed by Rosenstein at al. (1993) com-
putes the local divergence rates of the state space distances over the whole
time-series data. The algorithm is fast, easy to implement, robust to changes
in embedding dimension, time delay, noise level, and independent of length
of the time-series data. It uses the following formula to find the stretching
factor S.

1 & 1
S = NZ]H(WXM > X, — Xn|> 9)

I’loil

where X, is an embedding vector on the attractor, X,, are the neighboring
vectors within diameter €, and Jy,, is the number of these neighbors. The
average distances are summed up for N vectors and the stretching factor is
obtained as the average of this value. The first slope of the curve obtained by
plotting S values for various N values on x-y coordinate system gives the
maximal Lyapunov exponent. In this study, the maximal Lyapunov exponent
(A1) was used to find the prediction horizon where the accuracy has been lost
in the embedded time-series data.

Short-term prediction

It is difficult to model complex, irregular signals by traditional nonlinear
analysis methods, because of the large quantities of parameters and their
complexity of characteristics. So, machine learning and soft-computing algo-
rithms, such as neural networks, radial basis function (RBF) networks,
reinforcement learning, fuzzy logic etc., were considered as effective non-
linear predictors (Kodogiannis and Lolis 2002; Kuremoto et al. 2003;
Oliveira, Vannucci, and Da Silva 1996).

After embedding vectors are obtained, they are used as training data for
various machine learning algorithms. The output value depends on the
prediction horizon where the range is found using maximal Lyapunov
exponent.

Neural networks are commonly used for prediction, matching, identifica-
tion, pattern recognition, optimization, and classification problems
(Marcellos, Denti, and Saousa 2009). They are easy to program, well suited
to nonlinear systems, and robust against noise (Chaudhuri and Bhattacharya
2000). The multilayer perceptron neural network (MLPNN) used in this
study is a feed-forward network using back propagation with stochastic
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gradient descent algorithm. The number of hidden nodes in the built net-
work model depends on the time series. The network which was built for
training 27 pm time-series data included five neurons in a single hidden
layer. On the other hand, a network of three neurons in a single hidden layer
was built for the 20 pum time-series data. The optimal momentum and
learning rate values were empirically found as 0.2 and 0.1, respectively.
Sigmoid was used as the transfer function in the nodes. The MLPNN was
trained for 500 epochs for each of the time series. Using longer epochs did
not improve the accuracy significantly.

SVMs has strong nonlinear approximation ability by using kernel tricks
(Zhang et al. 2013). SVM is based on statistical learning theory (Mohandes
and Halawani 2004) and the basic idea is to map the input dataset X into a
high dimensional feature space F via a nonlinear mapping function by
constructing an optimal hyper plane in this new space (Osowski and
Garanty 2007). The particular choice of the kernel function K(X;,X;) =
P(X;)?(X;) which transforms the input space to high-dimensional feature
space, depends on the nature of the data which is usually unknown.
Therefore, the best input-output mapping function can be determined by
applying various kernel functions and setting best parameters which will
yield the highest generalization performance. In this study, the Pearson VII
function-based kernel (PUK) which was proposed by Ustun B et al. (2006)
was used after comparing it with polynomial and RBF kernels.

RBF networks are feed-forward neural networks which have a single
hidden layer of nonlinear units whose activation function are Gaussian or
some other basis kernel function. The training of the RBF network is
formulated as a nonlinear unconstrained optimization problem. They are
trained with supervised training algorithm but much faster than back pro-
pagation networks. Because of the RBF hidden units, they are less susceptible
to nonstationary inputs. The basis kernel function was Gaussian and the
clustering algorithm was k-means in this study.

Global multiexpert combination

According to the No Free Lunch Theorem, no single algorithm in a domain
always induces the most accurate learner (Alpaydin 2010) and by combining
multiple prediction algorithms suitably, accuracy can be improved
(Kuncheva 2004). The multiexpert combination method proposed in this
study assumes that the prediction algorithms work in parallel and given an
input, the best output generated by the regressors is chosen. The accuracy
level will always be better, because the method chooses the best prediction
with minimum absolute error for each instance found by each algorithm
individually. In Figure 1, the proposed global multiexpert combination
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[xt,xt+rr “ey xt+(d—1)r]

Figure 1. The model of global multiexpert combination (GMEC) with simple voting.

(GMEC) method is given. For each [xt,xtJrT, e ,xt+(d,1)f] input vector, the
output of each regressor is found as the predicted value at time t 4 d7. The
global function f(-) linearly combines the outputs of the prediction algo-
rithms by selecting the one with the minimum absolute error (min AE) and
generates the output y;, 4. Let MLPNNyg = |MLPNNx, e — Xiydr|s SVMap =
|SVM,, ., , then the f(-) selects the
output of the regressor with minimum AE as y; 4.

— Xiyar| and RBFsp = |RBFy,,, — Xiar

Aluminum foil thickness prediction system model

The sequential steps of the system proposed in this study for aluminum foil
thickness prediction are shown in Figure 2 diagrammatically. The details of
each step are given below.

Step 1 Data acquisition: The aluminum foil thickness data are obtained
from the PC connected to the PLC device for a certain period of time.
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Acquire thickness data from PLC for a certain period
of time (training data)

>

| Nonlinear nc\use reduction |

Nonlinearity detected?

Yes
ITime delay estimation i_>| Find embedding dimension

Estimate the maximal Lyapungv exponent
(Identify the maximum prediction horizon)

v

Obtain the embedding vectors for different
prediction horizons

Train the regressors (i.e., MLPNN, RBF, SVYM)

v

Acquire new thickness data from PLC
device (test data)

v

Make predicton by GMEC method for
different prediction horizons

I Provide the predicted thickness value to PLC |

Yes

y

No

Figure 2. Aluminum foil thickness prediction system model.

Step 2 Nonlinear noise reduction: Identify the deterministic part of the
attractor and project the data onto it.

Step 3 Nonlinearity detection: Verify that the time-series data is nonlinear
or not.
Step 4 Find the time-delay and embedding dimension: The time-delay and

embedding dimension information are crucial for the remaining steps of
the system.
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Step 5 Estimate the maximal Lyapunov exponent: The maximal Lyapunov
exponent gives the time horizon where prediction accuracy is lost.

Step 6 Obtain the time-delay vectors: The time-delay vectors are used for
training and testing the proposed system for different prediction
horizons.

Step 7 Train the regressors: MLPNN, RBFN, and SVM are trained using
training subset.

Step 8 Make prediction on the test subset for different time horizons: The
output of the regressor with minimum absolute error is chosen as the
prediction of the GMEC for the test subset.

Experimental results and discussion

The output thickness values of the aluminum foil are continuously recorded
every second on the computer where PLC software resides. The thickness is
measured via an x-ray device, while the foil is passing through the rolling
mill.

The experimental results were obtained for two different thickness
time series of 20 um and 27 pm, respectively. In the study, no normal-
ization was applied to the data because of the online nature of the
proposed system, but the thickness difference values were used instead.
Figure 3 shows the thickness difference values obtained from the
recorded data for 12,629 s during a production process of 20 um alu-
minum foil. The spikes which correspond to the points where rupture
has occurred were eliminated from the signals. The production stops at

0.4 T T v T T T

0.3} 4

0.2+ -

thickness difference (micron)

_0\4 A A A A ' 1

2000 4000 6000 8000 10000 12000
time (sec)

Figure 3. The thickness difference values of 20 um aluminum foil production.
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Figure 4. The thickness difference values of 27 pum aluminum foil production.

those points and these data have no meaning for the evaluation of the
prediction performance of the proposed method.

The thickness difference values of a 27 pm aluminum foil production recorded
for 10,323 s are shown in Figure 4.

The bispectrum and bicoherence methods were applied in order to detect the
nonlinearity in the aluminum foil thickness time-series data. According to the
Gaussianity test results, the Pfa value for the 20 pm time-series data before non-
linear noise reduction is 0. So the assumption of zero bispectrum is not accepted,
which means the Gaussianity assumption is rejected. We continued to the non-
linearity test in this case. The R (estimated) and R (theory) were found as 23.0288
and 10.3963, respectively. The R values are not close, so we cannot accept the
linearity hypothesis for 20 um time-series data. After nonlinear noise reduction,
the Pfa value still remained as 0 which indicated non-Gaussianity. The R (esti-
mated) and R (theory) were found as 463.4785 and 46.6494, respectively, which
indicated nonlinearity more evidently.

For the original 27 pm time series before nonlinear noise reduction, the Pfa
value was found 0.932 which means that the Gaussianity cannot be rejected. So,
the results of linearity test were ignored in this case. After nonlinear noise
reduction, the Pfa value became 0 which means the Gaussianity assumption is
rejected. The R (estimated) and R (theory) were found as 21.4375 and 9.9718,
respectively. The R values were not close which indicated nonlinearity after non-
linear noise reduction.

The contour plots of the estimates of the bispectrum for the thickness difference
time series of 20 um and 27 ym aluminum foils are shown in Figure 5 and
Figure 6, respectively. The presence of pronounced peaks in the bispectrum is
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Bispectrum estimated via the indirect method
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Figure 5. Bispectrum plot for 20 um time-series data.
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Figure 6. Bispectrum plot for 27 um time-series data.
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Figure 7. Effect of the nonlinear noise reduction of the nonlinear cross-predictability of the
20 um thickness time-series data.
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Figure 8. Effect of the nonlinear noise reduction of the nonlinear cross-predictability of the
27 pm thickness time-series data.

indicative of nonlinear phenomena. The effect of nonlinear noise reduction on
nonlinear cross prediction errors is shown in Figure 7 and Figure 8, respectively.

The time-delay and embedding dimension are crucial for correctly recon-
structing the time series in the phase space. The time-delay vectors are obtained
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Figure 9. Finding time delay (1) for each of the thickness time-series data.
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Figure 10. Finding embedding dimension (DE) for each of the thickness time-series data.

by using the time-delay and embedding dimension values. Figure 9 shows how
the time-delay value 7 is found for each of the thickness time-series data. The first
7 value where § is minimum is chosen as the optimum time delay. Here, S takes
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the first minimum when 7 is 5 for 20 pm time-series data and when 7 is 8 for
27 pum time-series data.

Figure 10 shows how the embedding dimension Dy, is found for each of the
time-series data. The dimension where FNN becomes zero is chosen as the
minimum embedding dimension for the thickness time-series data. According
to the figure, D is taken 9 to reconstruct the time-series time in phase space. The
Dy is the found as 9 for any value of the Theiler window ¢ greater than 0.

The maximum Lyapunov exponents (A;) were estimated for the 20 um and
27 um thickness time series as 0.0473 and 0.0359, respectively. The maximum
prediction horizons where accuracy is lost were found approximately as 21 and 28,
respectively, which corresponds to 1/A;.

The mean absolute percentage error (MAPE) which is used for the evalua-
tion of the machine learning algorithms is given in the following.

1 n
MAPE = NZ

i=1

(10)

T, - O,
T;

where O; is the observed value and Tj is the target value.

Each of the time series was divided into training and test subsets. The first two-
third of the time series is the training subset, while the remaining one-third is the
test subset. The MAPE values for the training subset of 20 pm thickness time-
series data are given in Figure 11 for different prediction horizons. According to

—¥— MLPNN (Original)
—y¢— RBF (Original) 4
~——&— SVM (Original)

Proposed Model (Original)
~—#—— MLPNN (Denoised)

- RBF (Dencised)

SVM (Denoised) 1

—4— Proposed Model (Denoised)

8 10 12 14 16 18 20
Prediction horizon

Mean Absolute Percentage Error

Figure 11. Comparison of the machine learning algorithms for the training subset of 20 pm
time-series data.
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Figure 12. Comparison of the machine learning algorithms for the training subset of 27 um
time-series data.

25

—¥— MLPNN (Original)
~—»¢—— RBF (Original) 1
. ——&— SVM (Original)
Proposed Model (Original)
NARX (Original)
~—3—— MLPNN (Denoised)

»—— RBF (Denoised)
—&— SVM (Dencised)
———— Proposed Model (Denoised)

NARX (Dencised)

0 A A A A
2 “ 6 8 10 12 14 16 18 20

Prediction horizon

Mean Absolute Percentage Error

I i 1 1

Figure 13. Comparison of the machine learning algorithms for the testing subset of 20 pm time-
series data.

the results shown in Figure 11 and Figure 12, SVM model with PUK had the best
accuracy among the learners. As expected, the proposed model of GMEC gave
better accuracy for all prediction horizons.
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Figure 14. Comparison of the machine learning algorithms for the testing subset of 27 um time-
series data.
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Figure 15. Actual and predicted values of NARX model for 20 pm time-series data.

The MAPE values for the training subset of 27 um thickness time-series
data are given in Figure 12 for different prediction horizons.

The MAPE values for the testing subset of 20 um and 27 pm thickness
time-series data are given in Figure 13 and Figure 14, respectively, for
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Figure 16. Actual and predicted values of GMEC model for 20 pm time-series data.

different prediction horizons. These figures also include the MAPE values of
nonlinear autoregressive exogenous (NARX) method. In Figure 13, NARX
has lower MAPE on the nonlinear denoised time series for the first four
prediction horizons. After that point, the MAPE for NARX linearly increases,
while it is remaining approximately constant for the proposed (GMEC)
model. The MAPE values of NARX on the original time series were higher
than GMEC for all prediction horizons.

In Figure 14, NARX is better than GMEC model only for 1-step ahead
prediction. After then, the MAPE of NARX linearly increases until 8-step
ahead prediction and then remains constant but always higher than GMEC
for the following horizons. The MAPE values of NARX on the original 27 um
time-series data were higher than GMEC for all prediction horizons.

The actual and predicted thickness difference values of 20 um time-series
data are given in Figure 15 and Figure 16, for NARX and our GMEC model,
respectively. The plots are for the first 100 values of the test subset. There is a
7 x m difference at the beginning of x axis between two figures which
corresponds to the embedding vector size. The accuracy for NARX model
is better than GMEC model for 1-step ahead prediction horizon as expected,
but terribly deteriorates for 10-ahead and 20-ahead prediction horizons.

The actual and predicted thickness difference values of test subset of
27 pm time-series data are given in Figure 17 and Figure 18, for NARX
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Figure 17. Actual and predicted values of NARX model for 27 um time-series data.
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Figure 18. Actual and predicted values of GMEC model for 27 ym time-series data.
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and our GMEC model, respectively. Again, the accuracy of NARX model is
higher than GMEC model for 1-step ahead prediction, but deteriorates
later on.

Conclusions and future work

The thickness predictions obtained from the proposed model will be used to
effectively regulate the tension applied to the aluminum foil. In the current
instantaneous manner of regulation approach, 5 m of aluminum foil passes
through the mills in each second when the thickness value is measured. This
latency affects the precision of the aluminum foil thickness. By means of
short-term prediction, the velocity of the rollers will be more effectively
regulated using the n-step ahead thickness prediction value and thus avoid-
ing the latency in roller velocity regulation. The solution proposed in this
study can be used in practice by integrating the n-step ahead predicted
thickness value into the PLC system. The cold-rolling process itself is a
closed-loop system where the measured thickness value is used as feedback
to regulate the armature and field currents applied to the motors. The
process is currently running in online mode without human intervention.
Since the prediction in this study is n-step ahead, there will be enough time
to change the parameters accordingly. Some cold-rolling process experts state
that it is sufficient even if the system could tell the change in the thickness
will be positive or negative. Therefore, the proposed system has promising
chance of application in real production.
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