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Context-Awareness
J. Augustoa, A. Aztiriab, D. Kramera, and U. Alegrea
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Middlesex University, London, UK; bFaculty of Engineering, Mondragon Unibertsitatea, Spain

ABSTRACT
The notion of context has been considered for a long time in
different areas of Computer Science. This article considers the
use of context-based reasoning from the earlier perspective of
artificial intelligence as well as the newer developments in
ubiquitous computing. Both communities have been somehow
interested in the potential of context-reasoning to support
real-time meaningful reactions from systems. We explain how
the concept evolved in each of these different approaches. We
found initially that each of them considered this topic quite
independently and separated from each other; however, latest
developments have started to show signs of cross-fertilization
amongst these areas. The aim of our survey is to provide an
understanding on the way context and context-reasoning were
approached, to show that work in each area is complementary,
and to highlight there are positive synergies arising amongst
them. The overarching goal of this article is to encourage
further and longer term synergies between those interested
in further understanding and using context-based reasoning.

Introduction

The notion of context has been considered from different perspectives within
Computer Science. Initially, it sparked interest within traditional artificial
intelligence (AI), especially in the 1980s–1990s. Most of those efforts con-
centrated on discussing notations which can distinguish amongst different
contexts and a way to tell the system that in different contexts, it should react
accordingly; that is, the decisions of a system should be moderated and
adjusted when dealing with the same decision in different contexts.

Recently, new areas have emerged with Computer Science: first perva-
sive computing and communications (Percomm) and ubiquitous comput-
ing (Ubicomp) (Weiser, 1991), then internet of things (IoT) (Atzori, Iera,
and Morabito, 2010), ambient intelligence (AmI) (Aarts and Roovers,
2003) and intelligent environments (IE) (Augusto et al., 2013a). These
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areas follow more of a bottom-up approach, systems in these areas are
more service oriented (see e.g., Cook, Augusto, and Jakkula, 2009). Some
examples of applications driving development in those areas are domotics
in smart homes, safety in ambient-assisted living (AAL), efficiency in
smart offices, pedagogical support in smart classrooms, improved user
experience and sales in smart shopping, improving health of those in an
intensive care unit of a hospital and so forth. Once the target services are
identified, an infrastructure (sensors, actuators, network, interfaces and
intelligent software) is created which is capable of delivering those services.
The system has to be not only reactive but also anticipatory and there are
all sorts of subtleties to consider which can affect the satisfaction of the
user with the system. A missed opportunity to help can be fatal in a
health-care environment, too much insistence or a reminder in the middle
of an important meeting may not be welcomed. The more knowledge the
system has of the user and the subtler the understanding of the contexts as
well, as the dos and don’ts associated with those different contexts, the
most effective the system can be. Clearly, there are interesting tensions
between knowledge of the user and privacy but that will not be the focus
in this article. The focus will be instead on how these systems know which
contexts are important for specific applications, how the system can
recognize that it has reached one of contexts of interest and how to
react appropriately in each of those. From here onwards, we will group
all those areas mentioned at the beginning of this paragraph under the
umbrella term “intelligent environments.” Not that we think all those areas
are the same. Nor do we suggest that IEs are the best representative of the
work conducted in all of them. Our choice is purely pragmatic to facilitate
reference to those within this article and also because at the intersection of
all of them is, precisely, context-awareness.

This article considers the different perspectives of analysis of context and
context-awareness both from the AI and the IE communities. These com-
munities have approached the concept from different directions. AI has been
traditionally more concerned with ways of representing concepts and their
role in commonsense reasoning and in doing so has often interacted with
areas like Philosophy, Logic, Linguistics, Psychology and Mathematics. AI
systems can be designed following any possible strategy; however, given the
interest in the area for capturing how humans solve problems (in some
branches, even the focus is mimicking how humans behave) meant that
overall AI systems tend to arrive to their concepts, including context, more
in a top-down fashion. IEs (and similar areas) have followed quite a different
path. Whilst AI has been mostly motivated to larger extent by a philosophical
enquiry on human problem solving, IE on the other hand has been more
driven by technological developments. Of course, technological advances
have also influenced AI and, on the other hand, philosophical concerns
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have also guided some researchers in IE; however, in the previous sentences,
we are referring to a significant difference in emphasis, the dominant con-
cerns in each area.

A group of researchers has been advocating for a decade on the benefits of
increasing the use of more AI within the IE-related areas and firmly believes that
it is mutually beneficial to increase the understanding these two communities
have of each other’s work. This advocacy for interaction has been reflected
through publications (see e.g., Pollack, 2005; Augusto and Nugent, 2006;
Augusto, 2007; Ramos, Augusto and Shapiro, 2008), workshops1 and tutorials2,3

at mainstream conferences. This article provides a more focused analysis on one
of the many topics which highlights the importance of AI for IE. We provide a
state of the art in context-awareness from the specific perspective which allows
us to compare how this topic has been explored in both AI and IE and will
highlight the synergies and opportunities between these two communities. First,
we describe a scenario which represents the typical daily life challenges where
context-reasoning provides a valuable support for an IE system trying to provide
a service. Then, we will provide surveys on how the notion of context has been
addressed both within the more traditional realms of AI and also within the
newer areasmentioned at the beginning of this section.Wewill complement this
with a survey on the interaction between the communities of machine learning
and context learning.

Contextual scenario

IEs designed to support people on their daily activities are typically referred
as AAL systems Augusto et al. (2012). Their focus is on supporting people
with specific needs and some of the most popular applications are those to
help people with cognitive or physical impairments (e.g., people with symp-
toms of Alzheimer’s or Parkinson’s, or people with Down’s syndrome or
some form of autism) to stay active and live independently. An essential step
to achieve these goals is to help the main intended beneficiary of the services
to reach places where they can learn, develop a profession, improve their
health or socialize (see Figure 1).

Imagine such a person living at home and preparing to go out to the city
in the morning to go to work. They encounter challenges in all places,
remembering and taking decisions. At home, they need to prepare adequately

Figure 1. Essential independence support to vulnerable users.
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and then they face the challenge of navigating safely through a busy city. The
following scenario describes some of the situations where a system can find
opportunities to help:

Michael is a 60-year-old man who lives alone and enjoys an assistance system that
makes his daily life easier. On weekdays, Michael’s alarm goes off a few minutes after
08:00 a.m.; approximately 10–15 minutes later, he usually steps into the bathroom.
At that moment, the lights are turned on automatically. On Tuesdays, Thursdays
and Fridays, he usually takes a shower; Michael prefers the temperature of the water
to be around 24–26 degrees Celsius in the winter and around 21–23 degrees Celsius
in the summer. Before he leaves the bathroom he turns off the fan and the lights.
When he goes into the kitchen the radio turns on so that he can listen to the news
while he prepares his breakfast. Before he leaves the house, the system suggests to him
that he should wear appropriate clothing because it is raining, and he usually prefers
walking even in this situation. He leaves the house 15–20 minutes after having
breakfast.

Once outside Michael walks towards the bus station where he expects to take a bus at
9AM. Sometimes Michael stays longer in bed, takes longer in the shower or to take
breakfast and as a result he arrives at the bus stop after 9AM. The system issues
reminders for these activities but Michael sometimes ignores them. Depending on the
time when Michael is arriving at the bus stop the system may recommend to wait for
the next bus or to take a taxi. If Michael agrees to the suggestion offered then the
system provides further guidance otherwise it contacts the carer to help resolve the
situation in a safer manner.

This scenario will be used as a running example showcasing different
approaches in the remainder of the article.

Context in KR and reasoning

We start with an analysis of how context evolved within knowledge repre-
sentation (KR) and reasoning. First, we look at how classical AI approached
this topic and then how IEs did. We end up highlighting differences, simila-
rities and complementarity between them.

Context in traditional AI

Discussions on “context” can be traced a long time back within philosophy,
linguistics and logic; see for example, Frege (1892) and Frege and Gedanke
(1918). The notion of context has been present since the initial stages of
computing when the study of formal languages (e.g., Chomsky’s hierarchy;
Chomsky, 1959) was influential in the formation of a theory of Computer
Science. These discussions have survived, adapted and specialized to different
interests in areas like natural language processing (sentences within a con-
text) and AI (context dependent KR and reasoning). Here, we focus mostly
on the debates sparked within this second community of KR and reasoning.
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Within the AI community, we can say that the topic was brought into a lively
debate by John McCarthy in a series of articles, the most specific of which
were in the 1980s and 1990s. Although those discussions considered lan-
guage-related and problem-solving-related notions of contexts, it is the later
one we will focus in this article.

Toward the end of his Turing Award Lecture McCarthy (1987), McCarthy
started by motivating the notion of context as

Whenever we write an axiom, a critic can say that the axiom is true only in a
certain context. With a little ingenuity the critic can usually devise a more general
context in which the precise form of the axiom does not hold.

This highlights the problem that in areas like IEs where the aim is to provide
services to humans in daily life situations, there are few inferences which are
always valid. Clearly, we can say that all humans will have to be somehow
conceived to exist and they will eventually die. We can state permanent
truths in mathematics but daily life is more dynamic, unpredictable and
loaded with exceptions. It is difficult to program systems which can take
every possibility into account and have a pre-planned specific reaction but we
can at least highlight which are some of the situations of interest we can aim
to react to appropriately.

The next few articles then pursued an initial formalization of the idea of
contexts. Through a sequence of articles (see e.g., McCarthy, 1993; McCarthy
and Buvac, 1998), some of them revisions of previous versions, a formal
framework is discussed, starting with the notation ist(c,p) to express that a
proposition p is true in context c. Then, ist(c0,ist(c,p)) will mean that in
context c0, it is known that “ist(c,p)” is true. McCarthy highlights the complex-
ity of describing contexts in general:

Contexts are abstract objects. We don’t offer a definition, but we will offer some
examples.. . . For example, the context associated with a conversation is rich; we
cannot list all the common assumptions of the participants. Thus we don’t purport
to describe such contexts completely; we only say something about them. On the
other hand, the contexts associated with certain micro-theories are poor and can
be completely described.

The theory includes ways of associating values to contexts, for example, time,
and of expressing the relationships amongst contexts to indicate for example
that some contents are contained within other contents (specializations).
Then, McCarthy explains why in his opinion, ist(c,p) should not be confused
with c � p in a natural deduction system.

. . .contexts contain linguistic assumptions as well as declarative and a
context may correspond to an infinite and only partially known collection
of assumptions.

Other concepts discussed are those of entering and exiting contexts, lifting
axioms on contexts (i.e., the process of inferring what is true in one context
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based on what is true in another context), transferring statements from one
context to another and of de-contextualization. These concepts are illustrated
with examples of databases integration and plan integration.

Meanwhile, one of McCarthy’s students wrote a thesis on the subject
(Guha, 1991). Guha’s thesis offers a quantified theory of context and revisits
many of the concepts listed above when we described McCarthy’s related
work. Guha was related to the well-known project CYC where the concept of
contexts was used in the form of micro-theories. The work by Guha and the
work by McCarthy and other colleagues at that time coexisted temporally
and informed each other. As a follow up on these developments, Buvac
(1996) provided a quantified version (predicate calculus extension). This
extension enabled expressing arbitrary first-order properties of contexts as
well as expressing that an arbitrary predicate calculus formula is true in a
context. Most recently, Bouchard (2017) has revisited McCarthy’s and
Buva˘c’s ideas through a concept called epistemic contexts, supported by a
natural deduction inference system, in a system which enables classical
reasoning among contexts governed by different concepts of knowledge.

Giunchiglia, a visiting fellow at Stanford, explored another view of context
together with other colleagues in Trento. Giunchiglia (1993) proposed a
formalization of contexts as multi-view epistemological theory which will
form the basis for another branch of analysis on contexts as it was developed
by various scholars in Trento. Context is taken as “a subset of the complete
state of an individual that is used for reasoning about a given goal.” This is
contrasted in the paper with the notion of a situation which is taken as “the
complete state of the universe at an instant of time.” Each context is
represented as a logical theory L;A;Rh i, where L is the language of the
context, A is a set of axioms and R is a set of inference rules defined over
L. This gives place to multiple coexisting first-order theories and overall to a
system called multilanguage system and the influence of a context ci over
another context cj is represented through bridge (inference) rules which are of
the form:

<Ai; ci >
<Aj; cj >

ðAi; Aj formulas in contexts ci; cj resp:Þ

Work on contexts as explored by Giunchiglia had in common the tools
and logic; however the objectives were slightly different. The vision there was
that contexts allow to represent localized reasoning and that common sense
reasoning is conducted in such a way only small parts of our knowledge are
used for specific inferences and other knowledge allows us to connect these
isolated partial inferences. Each context is assumed to have its own associated
language and inference engine forming a self-contained logical theory. The
novel work is then at the level of treating contexts as complex objects and on
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the process of connecting the outcomes of those different mini-theories, this
is achieved through bridge (inference) rules, all together forming multi-con-
text systems (MCS).

Giunchiglia and Bouquet addressed the relation between the multi-view
approach to contexts and previous work at the time in Giunchiglia and
Bouquet (1996). The authors considered two main uses of context within
AI up to that time. The one they refer to as pragmatic context considers
context as part of the structure of the world whilst the one they refer to as
cognitive context considers context as part of the structure of an individual’s
representation of the world. The core of the paper revolves around assessing
to what extent contexts are needed for modeling reasoning. Their conclusion
is that what they called pragmatic contexts can be either subsumed in the
notion of cognitive context or does not play any role at all. On the other
hand, they argue that cognitive context is needed: it is not true that “any
context dependent sentence can be transformed into a sentence whose
semantic value is independent of context” given that (a) on one hand,
“there are dependencies that cannot be accessed by an agent;” (b) on the
other hand, “context-dependence can be so complex and deep that no finite
agent can in general have a full knowledge of it.” Their theory is summarized
through the proposition that contextuality = locality + compatibility. Locality
and compatibility are taken here relative to the formalization of contexts
given in Giunchiglia (1993); that is, a logical theory L;A;Rh i as explained
before. Locality refers to the assumption that each context has its own logic
and this allows distinct languages in each of them, so expressivity is local.
Compatibility means that despite contexts having their own language, they
can still allow that the truth of a sentence (or set of sentences) in one of them
entails the truth of some other sentences in the second. They refer to knowl-
edge which is perceived to be the same but expressed or referred to in
different ways within different contexts.

By the mid-1990s, workshops and conferences started to be created to
discuss context specifically related topics. Other developments started to
appear in connections with different areas, for example, ontologies. The
two surveys from Brézillon (1999a,b), a pioneer in this area, provided an
overview of the different views, problems and applications.

Continuing with the Trento line of research, Benerecetti, Bouquet and
Ghidini (2000) classify contextual reasoning into three general forms: “loca-
lized reasoning,” “push and pop” and “shifting.” They associate these three to
notions to what they believe are three fundamental ways for context-depen-
dent representations: partiality (the portion of the world considered),
approximation (the level of detail at which the portion of the world is
considered) and perspective (the point of view from which the world is
observed). The authors distil two general principles of a logic of contextual
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reasoning which regulate the relation between models and contexts in the
theory.

Let us consider the practical scenario we introduced early on to relate these
concepts to practical IE situations. “Localized reasoning” is related to
McCarthy’s and Giunchiglia’s previous developments and refers to the reason-
ing which is specific to the context being considered; for example, if Michael
gets up on Friday, the system knows he should have breakfast in no more than
20 min so a reminder may be useful if he is exceeding that time, and also as he
usually takes the bus at 9 AM, again that offers an opportunity to help if
Michael is unaware he is getting late. The two mechanisms “push” and “pop”
allow a system to take a context as part of the reasoning assumptions, so for
example, a smart home should not need to bother explicitly reasoning on
whether he is or is not inside the home if the system knows he is inside the
bedroom when he is sleeping, this is implied by the structure of the house and
by previous information confirming that he indeed is at home (say the house
identified when he arrived). So “push” can be metaphorically understood as
pushing a concept inside a conceptual box, once there it is accepted and
assumed a given context so there is no need to mention it, it is not questioned
through reasoning whether that is the case or not, it is accepted as a fact. The
“pop” mechanism allows the system to revert that process, say Michael says in
loud voice he is going out and the house does not have a way to understand
whether he meant he was going to the garden (back door) or to the super-
market (front door). In one case, he may still be considered being “at home”
(although not inside the building called house) whilst in the second one, he is
not in the house and he is not at home so it is justified for the system to be able
to deliberate about this concepts as the context of being home is not trivially
obvious any more. “Shifting” refers to changing contextual parameters and
reinterpreting a piece of knowledge accordingly, so Michael getting up on
Friday can be classified by the system as “getting up on a working day” whilst
Michael getting up on Saturday can be classified by the system as “getting up
on a weekend day.” This will then connect with other areas of knowledge in
the system and the system will give priority to different issues which depend
on Michael being on a working day or not.

Context is a concept which different areas use and understand in different
ways and this problem of a lack of general consensus on what context is has
been a long-standing issue within Computer Science and branches from
other disciplines closely interacting with Computer Science. After two dec-
ades of wrestling with this issue, various researchers have pointed out this
problem and Bazire and Brézillon (2005) offer a survey of the various
definitions considered, in an attempt to extract from previous literature,
different lessons which can help the field to move forward based on a
more solid basis.
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Brezillion introduced (Brézillon, 2005) a context-based representation
formalism for modeling task accomplishment by users by means of so-called
contextual graphs:

A contextual graph is a context-based representation of a task execution.
Contextual graphs are oriented without circuits, with exactly one input and one
output, and a general structure of spindle. A path (from the input to the output of
the graph) represents a practice (or a procedure), a type of execution of the task
with the application of selected methods. There are as many paths as practices
Different solutions can be associated with the unique output, . . ..

Contextual graphs are a formalism of representation allowing the description of
decision making in which context influences the line of reasoning (e.g., choice of a
method for accomplishing a task).

Brezillion argued that contextual graphs are useful to facilitate the tasks of
incremental acquisition, learning and explanation of contexts. This concept
has been expanded in several directions; see for example, Brézillon (2017).

The paper by Brewka, Roelofsen and Serafini (2007) provides a multi-context
variant of Reiter’s default logic in the form of a logic they call contextual default
logic. This work was motivated by the observation of consistency problems
naturally occurring when more than one observer (e.g., sensor) collect partial
information on the same part of reality being monitored. The system includes
the use of paraconsistent reasoning to tackle some problems observed on
previous systems facing the same challenge. The problems addressed in
Brewka, Roelofsen and Serafini (2007) naturally lead to consider that there is a
need for better tools within systems of this characteristics to handle consistency.
One significant attempt to address this came from what we can call the Leipzig–
Vienna line of work, through the so-calledMCS (see e.g., Brewka and Eiter, 2007
and Brewka et al., 2011a) by allowing heterogeneous logical formalisms
exchange information in a potentially non-monotonic fashion. This framework
was generalized later on by Brewka et al. (2011b) into what they called “managed
MCS (mMCS)” to allow more flexibility of operations between contexts than
those originally allowed by “bridge rules”which only allowed to add information
to contexts. In the new system, generalization allows arbitrary operations on
context knowledge bases to be freely defined, for example, deletion or revision,
operators which can be useful to address the consistency problems mentioned
earlier so that instead of just adding new knowledge to the existing one, the new
incoming knowledge leads to a revision of the previous one to avoid incon-
sistencies. The addition of the new operations is encapsulated on the “context
manager.” A revised version of the mMCS system (Brewka, 2013; Brewka,
Ellmauthaler, and Pührer, 2015) focuses on reactive systems and “runs” or
streams of data which are continuously flowing. This paper extends previous
seminal work by Brewka on mMCSs and incorporates “observations” of streams
of data which allows the system to become reactive by continuously matching
sensor input to the existing belief sets in each context. The main contribution of
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the paper to previous reasoning on streams is that it combines a solution to both
knowledge integration and online reasoning. In this reactive reasoning frame-
work, the system keeps two different types of bridge rules. One type of bridge
rules work in the traditional sense, with knowledge internal to the system, and
other bridge rules operate with external data (e.g., coming from sensors). So in
Michael’s case, there will be bridge rules which reflect Michael’s activities in
getting up from bed, another group of rules handling the context of having a
shower, another set on the context of having breakfast and a separate set of rules
which takes input from sensors, for example, to regulate water temperature in
the shower or to monitor whether is getting close to 9 AM and warn he may be
getting late. Bridge rules can also relate contexts of emergency with time aware-
ness in the system so that if a suspected emergency is detected, then the system
can adapt the length of the time window to be considered for reasoning in an
analogous fashion to how it is used in stream-based languages like C-SPARQL.4

Other recent work which spans over several areas is (Halpin, Hayes, and
Thompson, 2015) exploring the confluence of context, ontologies and reasoning
in the semantic web.

IE approaches

Computational systems are not only becoming smaller but more available for
the general public. Tiny electronic devices can be interconnected to work
together as part of bigger and more complex systems located in diverse
environments that do not necessarily have to be in the classical desktop.
Devices can identify or measure a physical input from the world as well as
influence physical changes that are tangible to the users. There are different
means of sensing and actuating on different physical properties, as summar-
ized in Tables 1 and 2. These provide newcomers to the area with some

Table 1. Sensors transform real world stimuli into digital information.
Real-world stimuli Sensors

Light (luminosity) Photoelectrical sensors (LDR)
Light (image) Cameras
Sound Microphones
Motion and
acceleration

Accelerometers, infrared (active and passive), cameras, radio based, sound based,
magnetic

Touch and pressure Electromagnetic sensors, piezoelectric sensors, piezoresisitive sensors,
potentiometric sensors

Location and
distance

GPS, cameras, proximity sensors (e.g., RFID, NFC), sonars, radars, infrared thermal
sensors, magnetic sensors, electrical sensors

Temperature and
humidity

Mechanical sensors (e.g., thermometers) and electrical sensors

Biometrical Microphones, cameras, fingerprint sensors, eye recognizers (retina, iris), face
recognizers

Size Cameras

622 J. AUGUSTO ET AL.



examples of the number and diversity of tools available for us to collect data
supporting context-aware reasoning.

The access of users to many small different devices with different sensing
and actuating capabilities opens up new opportunities of interaction. Weiser
(1991) envisioned a future in which devices are anywhere and everywhere,
ubiquitously interconnected to offer a seamless experience to the users. His
vision materialized in what came to be “Ubicomp” and was largely influential
in the later development of areas such as Percomm, IoT, AmI and IE. All
these approaches need information of the situation, in order to adapt their
services accordingly. Inspired by this demand, Schilit, Adams and Want
(1994) first introduced the notion of context-aware computing applications
as software that examines and reacts to an individual’s changing context. The
most acknowledged definition of context which was related to the early
Ubicomp area was created few years later by Dey and Abowd (1999), who
considered it as “any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the
user and applications themselves.”

In terms of representation, one of the most well-known general purpose
context-related ontologies has been SOUPA (Chen et al., 2004). SOUPA was
built using a collection of reference ontology vocabularies including FOAF,
DAML-Time and the Entry Sub-ontology of Time, OpenCyc, Regional
Connection Calculus, COBRA-ONT, MoGATU BDI ontology and the Rei
policy ontology. This ontology is broken down into two distinct ontologies;
SOUPA Core for generic pervasive applications and SOUPA Extension for
specific pervasive domains. The standard in the area is the use of Protégé and
Description Logics for reasoning.

Context Modelling Language (CML) (Henricksen and Indulska, 2006) was
formulated using concepts from object-role modeling providing a relational
database query-based type of framework with a closed world assumption.
The representation of tuples has an associated semantics of a three-valued
logic (true/possibly true/false). A concept of situations (e.g., when a person is
occupied) is created out of lower level contextual information. Situations are
handled through a first-order logic with restricted quantification. This con-
cept is supplemented with a system of preferences, triggering situations in an
event-condition-action rule fashion (upon-when-do). CML has limitations

Table 2. Actuators transform digital information into real-world stimuli.
Real-world stimuli Actuators

Movement Motors and servos (electric, hydraulic, pneumatic, thermal, mechanical)
Visualization Displays and printers
Sound Speakers
Electronic Switches and circuits
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on the capacity to structure knowledge or to reason with different categories
as all contexts are at the same level.

There have been some attempts to define different logic-based systems, for
example, the Calculus of Context-Aware (Siewe, Zedan, and Cau, 2011), a
logical language for expressing context properties using context expressions.
Context expressions can be composed to form more complex expressions
and formulas using first-order operators. Many of these have been mostly
theoretical explorations which have not gained popularity and are not
applied in the construction of practical systems.

Chahuara, Portet and Vacher (2013) present a formal logical model for
taking decisions based on the context, which handles the uncertainty of
inferring facts from sensor information. They present an approach to repre-
sent knowledge based on ontologies and a set of logical rules. For supporting
uncertainty, they use a Markov logic network, which makes probabilistic
inferences from a model based on weighted logic rules. The authors apply
this system to a voice-controlled smart home system.

Providing intelligibility for context-aware applications, allowing for better
system understanding by users is nontrivial yet helps improve user trust (Lim
and Dey, 2010). An architecture for generating explanations from rules,
decision trees, naïve Bayes and hidden Markov models was given. The
Intelligibility Toolkit proposed extended the Enactor framework of the
Context Toolkit. These added components included a querier, explainer,
reducer and presenter. Using either of the four decision models supported
by the Intelligibility Toolkit, explanations are generated into disjunctive
normal form. These explanations can then be used at runtime to answer
questions from the user including why, why not, what, what if, how to.

A literature survey of context modeling and reasoning techniques was carried
out by Bettini et al. (2010). In that work, discussion on the requirements that
context modeling and reasoning should contain was given. For context model-
ing, it was proposed that these models should consider heterogeneity and
mobility, relationships and dependencies, reasoning and usability of modeling
formalisms. By considering heterogeneity contexts can differ in a number of
ways including rate of change, themethod of data collection, and the type of data
they collect. Relationships and dependencies are crucial for allowing different
contexts to create higher forms of context also known as compound contexts
based on lower level, atomic context data. Reasoning allows the system to
determine when a change has taken place allowing for higher level contexts to
redetermine their state and determining if a system adaptation is required. By
considering usability in modeling, the developer can more easily translate real-
world concepts into modeling constructs. High-level context abstractions and
uncertainty of context information were two highlighted issues that should be
addressed in any modeling framework. Lastly, it was proposed that hybrid
context models, those that integrate different models and reasoning, be used.
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Other more recent surveys on the notion of context but from slightly different
perspectives than those we are considering in this article are Perera et al. (2014)
and Alegre, Augusto and Clark (2016).

These are examples of systems which try to capture in their systems a
wider complexity of concepts. Other examples of research in the IE area
aiming at creating a bottom-up approach which allows for the representation
of layers in the system growing in complexity and ambition are based on the
definition of more complex contexts based on previously defined ones. Some
attempts at addressing this are presented in Gero and Smith (2009) and Ye,
Dobson and McKeever (2012) where they borrow the term situations, not
quite with the same semantics in the well-known situation calculus as used in
Lifschitz, V. (Ed.) 1990. Instead, “situations” is more of a catch phrase for
contexts which are defined in a hierarchy of increasing complexity.

Contexts can be categorized in several different ways and the categoriza-
tion selected provides an important link between the reasoning process and
the specific application as it interacts with the real world. For example, a
categorization which was adopted in the POSEIDON project (Augusto et al.,
2013), and suggested as a template for AAL systems, is the categorization of
contexts into three broad categories: user (e.g., mood, weight and allergies),
environment (e.g., location and weather) and system (e.g., device connectivity
level and device battery level). This categorization of contexts is then
reflected in an ontology which supports the implementation of the context-
reasoning. Contexts in each of these categories can be then classified in
primitive, that is, they cannot be decomposed, or composite, that is, they
are made up of other primitive and/or complex contexts, (some authors will
also call them in different ways, e.g., “primary” and “secondary,” or “simple”
and “complex”). The primitive and composite contexts we just mentioned
were related to any of the three categories mentioned above (user/environ-
ment/system), intra-category context. There can still be composite events
which are based on more than one contextual category, inter-category con-
text. We offer some examples in Table 3, where we assume Michael is waiting
for the bus and his mobile phone can give us an image of his face through the
camera, the GPS location, the time and the weather forecast through internet
services, whilst a wristband sensor provides his heartbeats ratio. Other

Table 3. Examples of different categories of contexts and their combination for reasoning.
Ontological category Intra-category contexts Inter-category contexts

User Primitive: normal heart beats ratio, relaxed face Safe public transport waiting
Composite: calm

Environment Primitive: sunny, dry
Composite: good weather

System Primitive: clock time, GPS location
Composite: timely at bus stop
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classifications of contexts are used in different systems with different aims;
see for example, Lindgren and Nilsson (2013).

AI and IE views compared

Historically, the motivations in both areas were different. In AI, it started
more as a philosophical enquiry which had connections to Linguistics,
Computer Science and Cognitive Science. One of the important differences
is that developments around the notion of context in IE were driven by
technology. IE stems from the idea of making machines fit the human
environment instead of forcing humans to enter theirs. In order to make
systems “disappear” from our daily lives, end users need a more natural
interaction with computational systems. This notion of context stems from
the need of a more comfortable interaction with technology. If machines
would not have the need of being explicitly told what the user wants, but
instead would be able to easily get that information from the context, the
users could enjoy a richer and more natural human–computer interaction
experience. When creating IE systems, developers are mainly interested in
the contexts the system can “perceive” and what that can enable a system to
do. The system can gather meaningful information data which can contribute
to the notion of contexts in a variety of forms: user input (e.g., preferences of
the user indicated through an interface), data collected online (e.g., current
weather), time (from the machine clock) and learning from past (e.g., that a
specific day is special for a given user). However, the recent availability of
sensors which can capture a wide range of physical phenomena in real time
has triggered the curiosity of developers exploring what type of services they
can create based on sensing (and actuation).

On the other hand, AI stems from the idea of creating computational
systems that are able to exhibit intelligence, through models that describe the
human process of thinking. In this approach, the efforts concern the repre-
sentation of contexts nested with knowledge Brézillon (1999a). The initial AI
analysis on how some deductions are context-dependent, the assumptions
which supported a deduction, a statement P is true in the context of assum-
ing the context of p1; . . . ; pn. Developments in IE use the notion of context as
in context-awareness, a system is notified of different facts and the system
makes inferences taking those as departing assumptions.

Potential synergies between both approaches

McCarthy’s approach and the more recent use of context-awareness as in IE-
related areas are different in style. In the initial classic AI approach, the aim
was to create a self-contained formalism which included the notion of
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context within it and the consistency came from using an elegant formal
theory with nice meta-theoretical properties.

In the IE approach, systems are designed by programmers with less affinity
with the theorem proving background AI researchers would have been
familiar in the 1990s. Systems are programmed mainly as a combination of
database query languages, Java and AI modules. The AI component may
consist of learning components and reasoning components using a variety of
techniques the developers are familiar with or borrow as they were produced
by others, for example, from repositories like WEKA Hall et al. (2009). In
these more recent approaches, systems are too heterogeneous to rest the
responsibility of consistency within the system, instead there is a combina-
tion of probably internally consistent parts of the system and the program-
mer holds the responsibility to assess coherence and consistency amongst
this collection of modules, that is, the programmer instills the “lifting
axioms” using some “gluing language,” most probably Java. There is a wide
range of attitudes toward this issue which go from some developing teams
using formal model checking tools to increase the possibilities to assess
consistency in core parts of the system to those who do not know the
meaning of the word consistency.

Say, we expect our IE system to warn us whether it is worth to be better
prepared for weather. In today’s approach, it will know the person is at home
given the in-house presence sensors, will check the time to leave home from
the calendar and the weather from the web. Whilst in McCarthy’s approach,
it will require temporal reasoning combined with weather reasoning, facts
and inference system about place of the user and a theory about contexts
handling, all self-contained.

One of the motivations for the exercise conducted in this article is the
hope that in getting the approaches of these two communities better known
to each other a middle ground will be reached were “formalists” and “prag-
matists” can put together the best of each experiences. With few exceptions,
the collaboration landscape can be metaphorically recreated as in Figure 2.
Hopefully, after some trial and error with different levels of contribution
from each side, the best mixed approaches will survive to support the next
generation of systems in this area.

As Euzenat, Pierson and Ramparany (2008) pointed out, the approach
originally explored by McCarthy, Guha, Buvac and others at Stanford as well
as the one investigated by Giunchiglia, Bouquet, Serafini and others at Trento
are of interest to modern sensor-based context handling in the following
sense. In the original Stanford-led explorations, each context was considered
independent theories which can be related by lifting. Whilst in the Trento-led
analysis contexts were partial or approximate views of the same theory. The
independent theories can represent each of the independent sensor streams,
each stream of data with its own theory to interpret that data. The partial

APPLIED ARTIFICIAL INTELLIGENCE 627



views approach is meaningful to the process of data fusion where some of the
sensors provide complementary interpretations (sometimes incomplete,
sometimes contradictory with other views) of the same phenomenon being
sensed. More recent work on MCS and mMCS led by Brewka is a good
example of converging work originated in AI.

Learning for context-awareness

As stated previously, it is already assumed that IEs have to be transparent to
the user in all senses. Thus, techniques that allow to extract and learn new
knowledge from data have become necessary. Let us consider the scenario
showed in Section 'Contextual Scenario' that illustrates an IE that makes the
life of the users easier and safer.

One of the hidden and most important assumptions in IEs is that they
propose a transition from techno-centered systems to human-centered sys-
tems. IEs suppose a change of roles in the relationships between human and
technology. Unlike current computing systems where the user has to learn
how to use the technology, an IE adapts its behavior to the user, even
anticipating his/her needs, preferences or habits.

For that shift to take place, an environment should learn how to react to
the actions and needs of the user, and this goal should be achieved in an
unobtrusive and transparent way. Due to the complexity of IEs (hardware,
software and networks must cooperate in an efficient and effective way to
provide a suitable result to the user), initial developments have been focused
upon the needs associated with hardware and network as supporting infra-
structure. This focus has resulted in a simple automation that implements a
reactive environment, which does not take into account the personalized and
adaptive features of IEs. There exist sensing systems that are wrongly con-
sidered to be intelligent because they act over the user using manually

Figure 2. Gap between different approaches to context.

628 J. AUGUSTO ET AL.



predefined patterns of behavior. In order to provide personalized and
adapted services, context awareness is essential, and to create a context
awareness which is relevant to people knowing their habits is useful. Thus,
the ability to learn patterns of behavior, including the context, becomes an
essential aspect for the successful implementation of IEs, because knowing
such patterns allows the environment to act intelligently and proactively
when it matters. In IEs, learning is mainly focused on supporting the
environment to gain knowledge about the preferences, needs and habits of
the user, along with context information, in order to better assist the user
(Galushka, Patterson, and Rooney, 2006; Leake, Maguitman, and
Reichherzer, 2006; Kyriazakos et al., 2016).

The area of learning for context awareness has been acknowledged as an
important area (Brézillon, 1999a). It has already attracted a significant num-
ber of researchers, and some applications are already being deployed with
different degrees of success.

A brief analysis of initial applications developed by different groups shows
that current applications are very specific with focused goals, where the
context plays a key role in all them. In addition to analyzing the knowledge
learned in each application, strong and weak aspects of each ML technique
used in the applications are analyzed.

Artificial neural networks

Mozer et al. (1995) and Chan et al. (1995) were amongst the first reports on
applications for IEs in which user patterns and context were considered. The
aim of the system developed by Mozer et al. and installed in the adaptive
house was to design an adaptive control system that considers the lifestyle
and energy consumption of the inhabitants. Such an environment was
provided with different types of sensors (temperature, light status, illumina-
tion and so on) that reported the state of the environmental context.
Moreover, the system had the ability to control the status of the lights, the
water heater and the gas furnace. Based on this context and using a feed-
forward neural network, they developed two applications. The first applica-
tion, an occupancy predictor, predicted the expected amount of time spent in
the home by the inhabitants in the next 30, 60 or 90 min. The second one, a
“zone anticipator,” predicted whether a particular zone was going to be
occupied in the coming 2 s so that the lights were turned on prior to a
zone being entered. Chan et al. developed an application in order to assess
whether a situation was normal or abnormal. For this application, they
assumed an elderly person had fairly repetitive and identifiable habits.
Training Artificial Neural Networks (ANNs) with these regular habits, they
were able to detect discrepancies to his/her usual behavior. After validating
this application in an institution for elderly and disabled people, they claimed
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that the system had 90% chance of providing correct predictions. Boisvert
and Rubio (1999) also used ANNs to develop an intelligent thermostat.
Learning about the behavior of the occupants, the objective of this applica-
tion was to reduce the number of interactions with the user and eliminate the
need for users to learn how to program the device. Additionally, the thermo-
stat reduced energy consumption by turning off whenever occupants were
absent. Thus, people who have fairly foreseeable behavioral patterns signifi-
cantly reduced (9–16%) their energy consumption by using a prototype of
this thermostat. Campo et al. [Cam06] developed a system that calculated the
probability of each area of the home being occupied at a given moment based
on continuous observation of the users’ habits. See Begg and Hassan (2006)
for a survey focused on ANNs for smart homes.

Most of the authors who have used ANNs for the learning process high-
light their ability to generalize as well as their robustness when faced with
complex data (e.g., noisy or missing values). In order to clarify the strengths
and weaknesses of ANNs, Michael’s scenarios will be used as an example.
Due to the capacity of ANNs to manage complex data and create complex
models, a system based on ANNs will provide correct responses in situations
such as turning on the lights when Michael goes into the bathroom or getting
the shower ready on Tuesdays, Thursdays and Fridays. There are already
systems (see applications mentioned above) that use ANNs to predict the
presence of the user or the occurrence of an action. In that sense, ANNs are
one of the techniques that better accommodate the complexity (type of data,
data inconsistency etc.) of IEs. However, ANNs have an important limitation
related to their black box nature; their internal structure is not human
readable. Thus, the system would be able to turn on the light, but it would
not be able to explain, in a comprehensible way, how it inferred such an
output. If understanding users frequent behaviors is considered as essential,
ANNs face an insuperable difficulty.

Classification techniques

The group that works on the environment named ‘SmartOffice’ (Le Gal et al.,
2001) was the first to identify the use of rules in order to recognize working
conditions contexts and act proactively. SmartOffice was composed of 50
context-related sensors (cameras and microphones) and 3 context-related
actuators (a video projector and 2 speakers). Given these sensors and actua-
tors, the researchers used a set of predefined rules to integrate different
components into a coherent application. One of the main reasons rules
were used in this application was because they allowed the addition, deletion
or modification of rules without influencing other rules. Thus, they guaran-
teed scalability of the system. The SmartOffice group continued to use
classification techniques in IEs. In order to justify the use of classification
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techniques, they pointed out that “a user is only willing to accept an
intelligent environment offering services implicitly if he understands and
foresees its decisions” (Brdiczka, Reignier, and Crowley, 2005) and the con-
text plays a key role in this sense. Taking as a starting point a pre-defined
context model, they identified situations where examples indicated different
reactions for such situations. Thus, it was necessary to define under what
conditions a reaction would or would not take place. With the knowledge
that decision trees were able to perform classifications, they experimented
with FIND-S, Candidate Elimination and ID3 methods, finding the last to be
the best.

Stankovski and Trnkoczy (2006) also analyzed the possibility of using
decision trees in smart homes. The application they proposed was the detec-
tion of abnormal situations by means of decision trees. Based on the assump-
tion that events that usually happened in a smart home may be considered
normal events, they induced a decision tree. Then, each new situation was
analyzed and the decision tree determined whether it was abnormal or not.

One of the main advantages of these classification techniques for IEs is the
way they represent knowledge. Due to their human-readable representation,
extracted knowledge can be used by a third party to understand a user’s
behavior, as well as to explain to the user the decisions made by the system,
where the decisions made in different nodes are related to context. As
mentioned in one of the applications, classification techniques can be very
useful for discovering conditions where certain actions follow other specific
actions. For example, in Michael’s case, the environment would realize that
sometimes he has a shower and sometimes he does not. Using classification
techniques, the environment would be able to discover what days he does
and when he does not. The advantages of representing a user’s behavior by
means of rules are clear. Even so, a single rule does not give any sense of
sequence to the actions, so something else is required to discover and
represent a user’s behaviors by means of sequences.

Fuzzy logic

Researchers at Essex’s iDorm lab focused on the problem of learning and
were one of the most active groups in this area (Hagras et al., 2004; Doctor,
Hagras, and Callaghan, 2005). Their objective was to develop learning and
adaptation techniques for embedded agents. To that end, they developed a
test bed, iDorm (later on iDorm2, iSpace and iSpace2), where 7 input sensors
were monitoring the activities of daily living context (e.g., internal/external
light level or bed pressure) and 10 output actuators were controlled (e.g.,
desk and bed side lamps or window blinds).

Their initial efforts were focused on developing an unsupervised approach
for extracting fuzzy rules and membership functions from data to develop a
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fuzzy controller that would model the user’s behaviors based on previous
actions and contextual information. The data were collected by monitoring
the user in the environment over a period of time. The learned controller
provided an inference mechanism that produced output control responses
based on the current state of the inputs. They defined a five phases approach
to create a fuzzy controller:

● Monitoring the user and the context, capturing input/output data.
● Extraction of the fuzzy membership functions from the data. To achieve
this extraction, they used a double-clustering approach (Castellano,
Fanelli, and Mencar, 2002), combining fuzzy-C-means and hierarchical
clustering.

● Extraction of fuzzy rules from the recorded data. The extraction
approach used was based on an enhanced version of the Mendel–
Wang method (Wang and Mendel, 1992) developed by Wang
(2003).

● Control of the environment by the agent controller environment on
behalf of the human according to his/her desires.

● Adaptation mechanism. Whenever the user was dissatisfied with the
agent’s actions, he/she could always override the agent’s control
responses by simply altering the manual control of the system. When
this occurred, the agent adapted its rules online or added new rules
based on the new user preferences.

Vainio, Valtonen and Vanhala (2008) also used fuzzy rules to represent
habits of a user. In contrast to the approach followed in the iDorm project,
these authors manually constructed the membership functions and used
reinforcement learning to replace old rules in order to prevent single over-
riding events from having too large an impact.

The nature of rules generated in this way will be similar to those rules
obtained using the classification techniques described in the previous section.
They are considered more robust when dealing with context data of a
continuous nature (e.g., temperature, humidity and time). In Michael’s
case, for those actions performed when the global situation was similar
(e.g., by taking a shower on Tuesdays, Thursdays and Fridays), the controller
would provide a correct output. Due to the multiplicity of sensors and the
number of different situations that can be generated when combining sen-
sors, it seems clear that relating actions only to global conditions (without
relating actions to other actions) will result in an excessive number of
generated rules with very little meaning. In Michael’s case, it is clear that
the action of turning on the lights in the bathroom is typically associated
with the action of going into the bathroom. Thus, it is essential to discover
frequent relations between actions.
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Association techniques

The group working on the MavHome and Casas projects is one of the most
active groups in this field of research (Sprint, Cook, and Schmitter-
Edgecombe, 2016). The first applications developed by this group were
focused on building universal models, represented by Markov models, to
predict future locations or activities (Cook and Das, 2007). The researchers
made notable improvements by developing applications to discover daily and
weekly patterns (Heierman and Cook, 2003). Additionally, they constructed
an application with the ability to infer abstract tasks automatically and
identify corresponding activities that were likely to be part of the same task
(Rao and Cook, 2004).

However, the major contributions of this research group have been their
research on discovering frequent relations between events which inform the
recognition of human behavior (Jakkula, Crandall, and Cook, 2007). After
collecting context data, they first identified temporal relations that occurred
among events, and they then applied association rule mining techniques to
focus on the event sequences and temporal relations that frequently occurred.
They used the temporal relations between events as a basis for reasoning to
perform anomaly detection and prediction of events. In order to define
temporal relations, they used Allen’s temporal logic (Allen, 1984), which
produced fairly intuitive sequences of actions.

Once their new approach was developed, they tested it using a dataset
collected from the MavLab smart workplace (Youngblood, Cook, and
Holder, 2005), which contained 2 months of data. Additionally, they gener-
ated a synthetic dataset containing about 4000 events representing 2 months
of activities.

The knowledge discovered by associating actions and activities can easily
be represented in a comprehensible way. Moreover, relating such events
temporally provides a sequential representation that also facilitates including
context data. In Michael’s case, the system would be able to detect that he
first gets up, then goes into the bathroom and then turns on the light. As
stated previously, this representation produces intuitive sequences of actions,
allowing the system to detect anomalies as well as to predict future events.
Although this is one of the most promising approaches, a few aspects that
need improvement can be noted. First, this system does not determine that a
group of activities is part of the same sequence but rather detects relations
separately. Second, this system only considers Allen’s temporal logic relations
(which define relations qualitatively), thereby ruling out quantitative rela-
tions. Thus, the term “after” means that Michael goes into the bathroom and
then he turns on the lights; however, the likely delay between one action and
the next cannot be measured. Defining relations by means of quantitative
values allows the system to automate actions, which is impossible with purely
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qualitative values (e.g., the system knows that turning the lights on comes
after a given event, but it does not know if the time delay is 2 s, 5 min or 2 h
after the first event).

Instance-based learning

The MyCampus group at Carnegie Mellon University (Sadeh, Gandon, and
Kwon, 2006) developed some interesting applications for IEs using case-based
reasoning (CBR). Their main objective was to provide a set of services to
enhance everyday campus life. Thus, applications for recommending services
(e.g., where to eat or public transportation) or for reminding users about tasks
were developed. One of the most interesting services was a message filtering
service, which allowed a user to specify preferences as to when he/she wanted to
see different types of messages based on the nature of the message (i.e., subject
and sender) and context. In addition, users could provide feedback to help the
system refine the preferences they originally entered.

In the first iteration, users had to specify their message filtering prefer-
ences (a priori preference) for different categories of messages. Seeing the
poor results obtained by using a priori preferences, the group implemented a
CBR module, which attempted to learn preferences for individual users based
on their feedback.

Apart from the MyCampus project, some other researchers have also used
CBR to acquire knowledge about users. Kushwaha et al. (2004) proposed an
intelligent agent for Ubicomp environments (UT-AGENT), which had the
objective of determining users’ information requirements and helping them by
providing a task of interest. They stored the user’s behavior as cases, and new
queries were classified according to its similarity with previous recorded queries.
In this case, context information was used for measuring the similarity.

Considering the use of instance-based learning (IBL) techniques in
Michael’s scenario, their strengths and weaknesses will be clarified. Given a
situation similar to one stored previously, the system would act properly
because IBL techniques provide similar solutions to similar problems/situa-
tions without any initial model. Thus, when the system detects it is raining,
and considering previous similar situations, it suggests Michael to wear
appropriate clothing.

However, the use of IBL techniques has some limitations. As this process
infers a solution for each specific situation, it does not create a model that
represents patterns. Therefore, it would not be possible to extract a general
pattern indicating the behavior of Michael to turn on the lights after going
into the bathroom. Further, as each situation can be represented by means of
a large number of parameters, the matching process could be very difficult
because there are no clues regarding the importance of each parameter in
each situation. Considering Michael’s habit of having a shower, if we
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consider the parameter day of the week, it seems clear when he takes a
shower and when he does not. However, other parameters (e.g., light level or
temperature) that would shape the pattern differently could also be consid-
ered, making the process of matching difficult.

Reinforcement learning

As seen previously, Mozer et al. developed a system that predicted whether a
zone in the house would be occupied. In addition to this system, these
researchers developed other methodologies, using the Q learning algorithm
(Watkins and Dayan, 1992) for lighting regulation. The system controlled the
status of the lights (on/off) and their intensity. Starting with the assumption
that the inhabitant had no preferences for the device setting, the system tried
to minimize energy consumption as long as the inhabitant did not express
discomfort. Once the system received feedback from the user, it tried to
balance user’s preferences with energy consumption.

The SmartOffice group has also used reinforcement learning in their
research work (Zaidenberg, Reignier, and Crowley, 2009). Their main objec-
tive was to construct automatically a context model by applying reinforce-
ment techniques, where the user gave rewards by expressing his/her
satisfaction with the system actions.

In Michael’s example, if we consider that the system already has a
model (either defined manually or learned by means of previously men-
tioned techniques), reinforcement learning techniques can be used in order
to adapt such patterns. Let us hypothesize that learned patterns define that
the shower must be ready every weekday. Every time Michael does not
have a shower would be a penalty for the system; that is, it would be
considered as negative feedback. After collecting feedback, reinforcement
learning would change the pattern and adapt it to Michael’s new prefer-
ences, that is, to have the shower ready only on Tuesdays, Thursdays and
Fridays.

Still, the use of this technique demands a set of initial patterns that ideally
should be learned automatically instead of from pre-defined models (which
could annoy users and even make difficult the process of learning habits
without any bias). Although other techniques have the same limitation, the
inherent difficulty in reinforcement learning is interpreting user’s feedbacks;
this is particularly important for reinforcement learning because this system
is based mainly on the interpretation of this feedback.

Technique combination and holistic approaches

As seen in above, context-related information is used in all cases, sometimes
in order to predict the status of the context itself and some other times in
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order to help predicting user’s actions. Each technique has its own strengths
and weaknesses, but it is difficult to design a holistic learning system using
only one technique. Thus, many researchers combined several techniques,
machine learning techniques among them as well as with other techniques, in
order to develop holistic approach for context awareness.

Brdiczka, Reignier and Crowley (2005) combined 3D video tracking sys-
tem together with head set microphones. The 3D tracking system created and
tracked people in the scene, and the role of each person is derived from the
extracted properties of the 3D tracker. The speech activity detector analyzes
audio streams and determines for each person whether the person speaks or
not. Then, using Hidden Markov Models, different situations are learned and
detected in order to analyze human behaviors and further detection of these
patterns.

Aztiria et al. (2013) also combined different learning techniques in order
to learn frequent behavioral patterns of the users. Association, classification
and clustering techniques were used in the learning process.

Classification and clustering techniques were combined by Li et al. (2013)
in order to improve user experience by mining user preferences from the
user’s past context. To cope with the high dimensionality and heterogeneity
of context data, they used a subspace clustering approach that is able to find
user preferences identified by different feature sets.

Gjoreski (2015) developed a domain-independent approach consisting of
three steps: context extraction, context modeling and context aggregation.
Processing comes after partition of data: it uses the understanding of the
nature of the training datasets to select more meaningful perspectives of the
data each model is related to. This is complemented with an aggregation
process of the context models to obtain a more robust generalization. The
main difference in this approach is that multiple reasoning models are
created using different contexts (Gjoreski, Gams, and Lustrek, 2014). Each
classifier is trained on a subset of the training set that is more homogeneous
than the whole set and used in the context of this subset. For example, the
model constructed for the activity sitting uses only the data instances that
contain that activity.

Conclusions

We have explained how the concept of context and context-reasoning has
been evolving in two different communities, namely AI and IEs. Each of
these communities approached the concept differently because their agendas
have different priorities so they explored and emphasized different aspects of
contextual reasoning.

On the use of context for KR and reasoning, we found that AI tried to
create a theory of context within the robust KR available at the time.
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However, the IE community was more strongly led by experiments on how
to get systems running on resource scarce computing devices to appropri-
ately react to specific real-world-related conditions. On the machine learning
approach, context learning was more uniform in the sense that it consisted of
applying more or less the same tools to different problems. Some approaches
in IE try to learn the contexts where context-reasoning is worth applying and
also to learn how in different contexts, different learning approaches can be
more advantageously applied. Figure 3 provides a graphical view of some of
the main developments and landmarks in these areas.

Although we found initially that AI and IE considered this topic quite
independently and separated from each other, latest developments have
started to show signs of interaction amongst these areas. Some AI work
addressing more formal theories using sensor data started to emerge; how-
ever, they are not yet massively adopted. This will require time, dissemina-
tion for the IE community to understand and put to the test to see how it
works at a practical level. On the other hand, IE has a wealth of experience
on deployed systems in a variety of domains but has not yet converged on a
systematic approach and probably can benefit from adapting more often
existing extensively researched AI techniques rather than inventing new ones.

Figure 3. Timeline including some landmarks in context awareness both from AI and IE
perspectives.
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The aim of our survey was to provide an understanding of the way context
and context-reasoning were complementary approached in each of those
areas and to highlight the scope for positive interactions arising amongst
them. We hope this article informs and encourages further and longer term
synergies between those interested in further understanding and using con-
text-based reasoning.

Notes

1. http://aitami2015.mondragon.edu/aitami15.
2. www.eis.mdx.ac.uk/staffpages/juanaugusto/tutorial_program.pdf.
3. www.ijcai-07.org/tutorialdesc.php#t18.
4. https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation.
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