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Abstract: The increasing demand for artificially intelligent smartphone cradles has prompted the need
for real-time moving object detection. Real-time moving object tracking requires the development
of algorithms for instant tracking analysis without delays. In particular, developing a system for
smartphones should consider different operating systems and software development environments.
Issues in current real-time moving object tracking systems arise when small and large objects coexist,
causing the algorithm to prioritize larger objects or struggle with consistent tracking across varying
scales. Fast object motion further complicates accurate tracking and leads to potential errors and
misidentification. To address these issues, we propose a deep learning-based real-time moving object
tracking system which provides an accuracy priority mode and a speed priority mode. The accuracy
priority mode achieves a balance between the high accuracy and speed required in the smartphone
environment. The speed priority mode optimizes the speed of inference to track fast-moving objects.
The accuracy priority mode incorporates CSPNet with ResNet to maintain high accuracy, whereas the
speed priority mode simplifies the complexity of the convolutional layer while maintaining accuracy.
In our experiments, we evaluated both modes in terms of accuracy and speed.
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1. Introduction

With the continuous improvement in smartphone performance and widespread use
of deep learning technology, object detection techniques based on smartphones using a
cradle servomotor have gained research attention [1–3]. Real-time moving object detec-
tion technology has been widely used in various fields, such as robotics, transportation,
manufacturing, and security. With the continuous growth of the creator economy, the total
addressable market is projected to reach USD 480 billion by 2027 [4]. With the increasing
number of YouTube creators and the size of the YouTube market, the demand for advanced
technology to support content creation is also increasing. YouTube creators rely mainly on
artificially intelligent smartphone cradles for content creation. Real-time moving object
detection technology has undergone rapid development owing to its inherent portability
and user friendliness.

Hwang and Liao [1] developed a system that used a moving camera with a servo
cradle to enable a robot to track and imitate human motions. The system achieved real-time
pose imitation of 3D human motions by separating and tracking the upper and lower body
movements and then recombining them during the tracking process. A servo cradle head
RGB-D vision system (SCH-RGB-D-VS) was used to capture the 3D motions of the target
human (TH) for imitation [1]. Servomotors controlled the movement and orientation of the
camera or sensors, ensuring that the TH motions were captured correctly within the field
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of view (FOV) of the vision system. This allowed the humanoid robot to imitate the poses
and movements of the TH in real time.

Asali et el. [2] presented a real-time video-tracking system for visual servo applications
using support vector machines. The system aimed to maintain the position of a target
object in the FOV of the camera by tracking it in complex environments and lighting
conditions. It combined a Sony FCB-EV7520 camera and the STRUCK algorithm for
tracking, whereas a proportional–integral–derivative controller was used for visual servo
control. The experimental results demonstrated the effectiveness of the system in the
real-time tracking of moving objects in indoor and outdoor settings.

Shu et al. presented an automatic camera servo system using an improved frame
differential algorithm to detect and track moving objects in real time [3]. The system
analyzed video streams, set appropriate thresholds to distinguish noise from movement,
and sent control orders to the cradle head via a serial port for tracking. It performed well
under various circumstances and incorporated video capture, temporal matching, video
preservation, compression, and auto-alarm functions for monitoring.

However, the current technology for real-time moving object detection systems in
smartphones faces several limitations. If small and large objects are present simultaneously,
the algorithm may prioritize larger objects or struggle to maintain consistent tracking across
objects of varying scales. It is difficult to accurately detect and track objects when they
are occluded or overlapping. In scenarios where multiple objects are close together or
obstructed, the algorithm stops tracking or tends to track only new objects appearing later
in the smartphone camera. The cradle performance is also affected when objects are in fast
motion on a smartphone. Quick movements can make it challenging for an algorithm to
accurately track objects, leading to potential tracking errors or misidentification.

In addition, the development of moving object tracking technology using cradle servos
has mainly focused on computer-based research. Studying and implementing this tech-
nology in a smartphone environment presents certain differences and challenges in terms
of hardware limitations and computational resource availability. Moreover, smartphone
operating systems and software development have several restrictions and requirements
that can add complexity to the integration of cradle servo technology.

In this study, we designed algorithms to address object recognition, real-time object
detection, and tracking using deep learning principles. This involved the application of
shape, color, and motion-based classification techniques to categorize objects based on their
distinctive attributes. Overcoming the challenge of tracking multiple objects, particularly
in the cases of overlaps, was achieved by incorporating the trajectory and velocity data
from classified entities. This approach guaranteed seamless and continuous tracking with a
steady focus on the intended target. In addition, our algorithms exhibited the capability to
discern noteworthy actions within uninterrupted motion sequences, consequently resulting
in improved tracking precision.

In general, YOLO [5] is fundamentally designed for rapid object detection and classifi-
cation and specializes in inferring object coordinates and classes simultaneously at high
speed [6]. This paper presents the incorporation of YOLO’s advantages into smartphones
to address a smartphone resource limitation and to overcome resource limitations in smart-
phone environments. Particularly, our approach enables the filtering of objects by class,
allowing for the tracking of objects belonging to a desired class, such as humans, dogs,
and cats.

In this research, two approaches are proposed for object detection. First, one of our
approaches is called the accuracy priority mode, which focuses on high-accuracy detection
and tracking. This mode combines CSPNet [7], which employs residual blocks, with
ResNet [8], a structure that divides the input into two branches. One branch passes through
the network, whereas the other is concatenated with the resultant features. The other
approach is called the speed priority mode, which prioritizes a fast inference rate. This
mode is specifically designed for rapid processing and achieves notable speed improvement.
The speed priority mode reduces the number of layers while maintaining a reasonable level
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of accuracy. Within a single application, users can choose between the two approaches
based on their priorities. The first approach enables users to prioritize accuracy, making
it suitable for tasks such as accurate differentiation between dogs and cats. However,
in scenarios involving rapidly moving objects, the first approach may prove inadequate,
rendering the second approach a more suitable choice.

The object-tracking process involves a cradle servo that continuously tracks objects
and accurately positions them at the center of a camera. This is achieved by calculating the
object velocity through an assessment of positional changes between consecutive frames,
as well as by measuring the spatial distance between the object and the focal center of
the camera.

Furthermore, when tracking objects, instead of maintaining a constant speed, the
algorithm is designed to track objects at variable speeds based on the coordinates of
objects. Unlike fixed-speed tracking, which may miss objects or result in unnecessary
cradle movements, our research compensates for these drawbacks by enabling tracking
at speeds matching the object’s movement. Inspired by the fact that objects moving faster
may quickly exit the screen, we adjusted the cradle’s rotation speed to be faster towards
the edges of the screen and slower towards the center. This approach ensures continuous
tracking without missing objects.

The implementation of the two modes and cradle servo systems involved the following
research processes: Initially, a dataset consisting of 100 YouTube videos was collected, from
which specific data related to humans, dogs, and cats were extracted, resulting in a dataset of
65,000 frames. Following data extraction, pre-trained weights were applied for preliminary
labeling and review. Subsequently, an accuracy priority mode was developed with a
primary focus on achieving high accuracy while minimizing computation costs. The mean
average precision at 50 Intersection over Union (mAP50 IoU) was adopted as the accuracy
evaluation metric for the performance assessment. Moreover, the computational cost of
the mode was quantified using giga-floating-point operations. The mode architecture was
established by integrating elements from the ResNet structure introduced in YOLOv3 [9]
and CSPResNet utilized in YOLOv4 [10]. A comprehensive evaluation of computational
cost and accuracy was conducted to determine the optimal model. Finally, the derived
model served as the basis for developing a speed priority variant by simplifying the number
of layers by testing multiple times to determine the optimal number of layers to fit into
our model.

To summarize, our contributions are as follows:

• We propose a modified CSPNet structure to overcome computational resource lim-
itations and improve overall system performance in smartphone environments for
object detection. We improve recognition and classification accuracy and significant
inference speed compared to other configurations of moving detection methods.

• We improve the performance of seamless object tracking by incorporating the dynam-
ically changing speed of objects. This integration minimizes unnecessary tremors
and disruptions in tracking, achieved through the perspective projection of a camera
model. Consequently, it enables the effective regulation of the cradle motor, facilitating
optimal tracking mechanisms.

• Our experimental results show our approach outperforms other related methods.
The results were compared with both accuracy-centric and speed-centric modes for
real-time object detection and tracking applications.

2. Materials and Methods
2.1. Proposed Methodology

Figure 1 shows a diagram of the proposed system. This system is designed to track
moving objects in real time based on videos captured using a smartphone cradle servo. The
first object-tracking process involves the detection and recognition of objects. To mitigate
the existing issue of objects, particularly small ones, not being recognized from a distance
by the camera, an accuracy priority mode was developed to ensure the recognition of
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small objects. We aimed to enhance the accuracy of classification to effectively distinguish
between objects such as humans, dogs, and cats, while simultaneously improving the
accuracy of recognition, regardless of the size of the object and its distance from the camera.
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Figure 1. Flow diagram of the proposed method.

Furthermore, to enhance the tracking accuracy of rapidly moving objects, we devel-
oped a speed priority mode with a focus on optimizing processing speed. The conventional
YOLO model is designed to excel on the COCO dataset [11], which comprises 80 classes and
presents limitations in terms of a lightweight model. The COCO dataset requires the precise
classification and recognition of a wide array of everyday objects across 80 classes. Even the
latest version, YOLOv8, could only achieve an accuracy of 55% in terms of mAP50-95 eval-
uation. However, this study primarily aimed to refine the servo usage of content creators.
Given that prominent objects mainly include humans, dogs, and cats, this study targeted
the recognition of these entities. Consequently, because only three classes must be classified
and recognized, there is potential for a more lightweight and streamlined approach.

The aforementioned accuracy and speed priority modes were developed to be se-
lectable by users, allowing mode changes as required. Both the accuracy and speed priority
modes were grounded in enhancing the recognition speed in the smartphone environment.
Due to limited resources of smartphones, it is necessary to develop lightweight detection
models to ensure real-time tracking. In addition, the extracted feature maps of the detected
objects were compared for similarity in order to assign IDs. During the extraction of the
object feature maps, data from the region of interest of the recognized object were obtained.
These data were passed through a convolutional neural network (CNN)-based feature
extractor and transformed into feature maps. The CNN-based feature extractor comprised
CNN layers trained on humans, dogs, and cats. In the ID assignment process based on
feature maps, the features of the object in the current frame were compared with those of
the previous frame. If the similarity between existing and current feature maps exceeded
50%, the same ID was reassigned. Otherwise, a new ID was assigned.

Subsequently, the design of the smartphone cradle servo was tailored to follow the
identification tag of the foremost-recognized object within a pool of multiple detected IDs.
This engineering approach aims to mitigate the tracking inaccuracies stemming from the
simultaneous presence of objects with various sizes. The primary users of the cradle servo
are predominantly content creators and, in most instances, the earliest-appearing object
assumes the role of the main subject. Consequently, the servo design prioritizes a tracking
paradigm rooted in the order of recognition, independent of the object dimensions, with
this particular use-case taking precedence. Although the possibility of selectively tracking
a designated object in isolation is viable for experimental purposes, a simplified iteration
was incorporated.
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Moreover, the position of the tracked object was aligned with the central axis of the
camera. This alignment was established through a process involving the computation of the
measurement of spatial separation from the focal center of the camera. The methodology
employed the strategic adjustment of the coordinates of the object, facilitating its relocation
to the exact center of the display of the camera. This procedural approach ensured the
consistent maintenance of the central alignment of the object with respect to the viewpoint
of the camera. Figure 1 shows the flow diagram of the proposed method.

2.2. Experimental Environment

The experimental setup consists of two distinct environments. The training environ-
ment is presented in Table 1, and the implementation environment for the smartphone
is presented in Table 2. The environmental setup for training the YOLO model involved
Docker, wherein the nvidia/cuda:11.6.2-cudnn8-devel-ubuntu20.04 image was selected
from a range of Docker images. This specific image encompassed NVIDIA’s CUDA Toolkit
and cuDNN. This environment was used as the backdrop to augment the capabilities of the
existing YOLOv8 platform. This augmentation was achieved through adjustments tailored
to the construction of desired models. The original platform lacked specific essential layers,
such as “Shortcut”, pivotal for configuring novel model architectures. Hence, resources
were applied to a modified platform that featured the requisite additional layers, thus
facilitating model training.

Table 1. Training configuration on a server.

Configuration

CPU Intel Xeon Silver 4216 x2
RAM 192 GB
GPU RTX A5000 x2
OS Ubuntu 20.04

YOLO Platform Modified YOLOv8

Table 2. Environments implemented on a smartphone and a cradle.

Smartphone and Cradle

Smartphone Model GalaxyS21+
OS Android 13

Inference Framework TensorFlow Lite 2.8.0
Cradle Model Pivo Pod Silver

Android 13 was used as the operating system during the experimental stage. YOLOv8
was used for object recognition and tracking algorithms. YOLOv8 uses an innovative reposi-
tory to support object detection and instance segmentation [12]. This provides an integrated
weight converter, enhancing portability across various libraries. Its architectural structure
is characterized by a relatively shallow design, differentiating it from alternative versions
and enabling uncomplicated customization. YOLOv8 employs an anchor-free model that
directly anticipates the center of the object, diverging from the use of anchor box offsets [13].
Consequently, this approach accelerates the non-maximum suppression process.

TensorFlow Lite was used as the inference framework to implement the application.
YOLOv8 is typically implemented using Torch. Torch-based smartphone frameworks have
a performance bottleneck owing to the lack of GPU support. TensorFlow Lite, however,
allows easy GPU acceleration and provides example code, making it a more efficient choice
for mobile applications. YOLOv8 was converted using TensorFlow Lite instead of Torch.

YouTube video data were utilized as the primary dataset owing to their availability
and diverse conditions, including composition, angle, and brightness. A total of 100 videos
were collected to ensure an extensive and representative dataset encompassing various
resolutions ranging from HD (1280 × 720) to UHD (3840 × 2160). Because the YOLOv8
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platform primarily uses images for training rather than videos, frame data were extracted
from the collected videos at a rate of two frames per second (fps) to create image datasets
for training. The extracted frames were subjected to a labeling process before being used
for training.

The labeling process involved automated labeling using pretrained weights, followed
by a validation stage. Automated labeling employed the pretrained weights of YOLOv8x,
which were divided into inference and post-processing stages. During the inference stage,
the pretrained weights of YOLOv8x were employed to infer the results for the images in
the dataset. Given that YOLOv8x was trained on 80 classes, the results were obtained for
all 80 classes. From these results, the process of interest involved selecting and computing
the coordinate values for the desired classes, which then formed the basis for labeling,
constituting the post-processing stage. In this post-processing phase, all data except for
data involving humans, dogs, and cats were discarded, and the subsequent steps involved
the computation of the central coordinates along the x- and y-axes, as well as the box
dimensions. This culminated in the generation of the label data.

Following the automated labeling process, a manual validation step was performed
on each label dataset. During this phase, corrective actions were taken when erroneous
object labeling or incorrect class assignments occurred, such as cases in which ordinary
garments were erroneously labeled as humans, or dogs were mistakenly labeled as cats.
In such scenarios, the respective label data were edited by either removal or class name
adjustment. This comprehensive procedure was applied to a dataset of 100 videos. Upon
completion of the labeling process, 90 of these video datasets were employed as the training
dataset and the remaining 10 were utilized as the validation dataset.

2.3. Mode Configuration for Object Detection

The object detection framework utilizes two distinct modes: accuracy priority and
speed priority. The accuracy priority mode was designed to achieve better performance
than the YOLOv8s model while minimizing the potential reduction in accuracy. As shown
in Figure 2, the foundation is derived from a path aggregation network [14] which serves
as an extension of the feature pyramid network (FPN) structure [15] deployed within the
YOLOv8 context. This extension entails an additional upscaling step from the downscaled
outcomes of the FPN, resulting in improved inference accuracy compared with standard
FPN utilization.
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enhance overall system performance. Traditional implementations of CSPNet involve a
doubling of feature maps extracted from images during down-sampling. However, this
approach introduces computational bottlenecks, impacting processing speed significantly.
Figure 2 illustrates our strategy to overcome this limitation. By preserving the number
of feature maps during down-sampling, our approach achieves improved computational
efficiency compared to the conventional method. It is expected to reflect this advancement,
showcasing reduced FLOPs for both the accuracy priority mode and speed priority mode,
thus affirming the effectiveness of our proposed approach in mitigating computational
resource constraints.

In the accuracy priority mode, a block rooted in the application of CSPNet is integrated
with ResNet. This block is constructed using an adapted version of the CSPNet structure.
Although CSPNet divides the input data into two segments, linking one part to the existing
network and concatenating the output with the other, the specified block also segments
the inputs into two divisions. One division connects the down-sampling convolutional
layers and the existing network, and the other interfaces with the max-pooling layers.
The outcomes of both divisions are subsequently combined. This structure combines the
ResidualBlocks inspired by ResNet to form CSPResidualBlocks. Here, the residual block is
configured based on the structure used in YOLOv5 [16] and YOLOv8.

In the neck segment, which serves as the intermediary between the backbone and the
head, the mode commences with SPPCSP (spatial pyramid pool; SPP [16] with CSPNet)
and employs ResidualBlocks instead of CSPResidualBlocks during upscaling expansion.
This modification is driven by the limitation of CSPResidualBlocks within this mode to
effectively accommodate the disparity between the input and output sizes. As the mode
advances toward the upscaling phase, the number of filters is reduced. The CSPResNet
architecture detailed in this study entails a twofold increase in the filter count relative to
the input, which presents a challenge when attempting to match or halve the output size
while maintaining a consistent input. Such an adjustment results in an overall decrease in
the number of filters across the structure, possibly leading to a loss of important features.
Consequently, upon the completion of the upscaling phase, the subsequent downscaling
expansion incorporates CSPResidualBlocks. During this stage, the augmented filter count
facilitates the effective application of this architectural structure.

The model designed for the speed priority mode is characterized by a considerably
high inference speed without significantly compromising accuracy. This particular mode
streamlines its architecture by reducing the number of extraction layers and filters compared
with its accuracy mode counterpart. A schematic of this mode is depicted in Figure 3.

In contrast to the accuracy priority mode illustrated in Figure 3, the current mode is
characterized by only two outputs. Consequently, the output shape is simplified while
maintaining a consistent output size criterion. The accuracy priority mode generates an
output shape of (1, 7, 8400) based on a 640 × 640-pixel input size. Conversely, the speed
priority mode, under the same input size criterion, significantly reduces the coordinate
count of the output array by more than four times, resulting in the shape of (1, 7, 2000).
This reduction not only streamlines processing and enhances recognition speed, but also
leads to reduced computational overhead.

Regarding the backbone structure, the current model exhibits a certain level of sim-
plification compared with the accuracy priority model depicted in Figure 4. Within this
revised framework, a solitary CSPResidualBlock is substituted with a down-sampling
convolutional layer. The head section is designed with increased simplicity to achieve
the two desired outputs. Although residual blocks remain unused during upscaling, they
are employed once during the downscaling process. This configuration facilitates the
achievement of dual output.
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2.4. ID Assigning System for Object Detection

TensorFlow Lite provides object-recognition results exclusively in the form of coor-
dinates and their corresponding classes. However, they lack a built-in mechanism for
assigning identification (ID) tags to individual object features. Consequently, implementing
a custom system that efficiently allocates IDs to TensorFlow is imperative. Thus, we can
effectively track and differentiate specific objects of interest. These unique IDs serve the
purpose of distinguishing between various objects, such as differentiating between “Person
0” and “Person 1”.

The ID allocation system comprises two steps. Initially, feature extraction is performed
using CNNs. Specifically, a CNN model called PlainNet trained on datasets encompassing
people, dogs, and cats is employed to extract the features. Figure 5 illustrates the structure of
the CNN model. In the next step, the system extracts features and subsequently evaluates
the similarity of feature maps to either reassign existing IDs or allocate new IDs. The
following equation 1 based on the cosine similarity formula is used for this purpose:

Similarity
(

Fprev, Fcurr
)
= ReLU


n
∑

i=1
Fprevi

∗ Fcurri√
n
∑

i=1
Fprevi

2 ∗
√

n
∑

i=1
Fcurri

2

 (1)

Sensors 2023, 23, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 5. Diagram of CNN of ID assigning system 

2.5. Object Tracking  
Experimental trials were conducted to track physical objects by connecting the appli-

cation to a cradle device using the API of the cradle. The API code controlling the cradle 
within the application was based on the code provided by Pivo. The cradle control func-
tions included ʹturnLeft,ʹ ʹturnRight,ʹ ʹturnLeftContinuous,ʹ and ʹturnRightContinuous.ʹ 
To achieve smooth and continuous movement, the ʹturnLeftContinuousʹ and ʹturn-
RightContinuousʹ functions were employed, both of which continue rotating at the speed 
set before the function call if no speed value is provided as an argument. The rotational 
speed represents the time required for the rotation to complete a 360° cycle, rather than 
denoting the angular velocity. Setting a rotational speed of 10 implies that the object will 
complete one 360° rotation in a span of 10 s. This relationship is expressed as follows: 𝑟𝑡 = 360°/𝑣  (2)

   
In equation 2, the variable ʹrtʹ (rotational time) denotes the time required for a com-

plete 360° rotation, serving as an input for the cradle control function and functions as a 
time indicator for the cradle to complete its full rotation. Likewise, the variable 𝑣  
represents the real-time rotational speed of the cradle, measured in angular velocity (de-
grees per second). Hence, considering the characteristic that ʹrtʹ increases as the actual 
rotational speed of the cradle decreases, and decreases as it accelerates, the calculation of 
rotational time is facilitated. 

The cradle rotation speed is defined as the duration required to complete a 360° ro-
tation. In addition, the system is designed to offer an adjustable cradle rotation speed, 
enabling both rapid and gradual cradle rotation based on the proximity of the object to 
the central focal point of the camera. The extent of object displacement is determined by 
the x-axis coordinates of the object relative to the central point of the camera. Moreover, 
the cradle rotation duration is intentionally configured to decrease as the object ap-
proaches the center of the camera image. This feature is vital in preventing situations in 
which, even if the object remains stationary, the failure of the cradle to stop promptly 
could result in the object failing to align with the central point of the image of the camera, 
resulting in lateral movement. Consequently, by capitalizing on this unique attribute of 

Figure 5. Diagram of CNN of ID assigning system.

In accordance with this formula, if a feature map exhibits a similarity of 50% or higher
to an already existing feature map, it is reassigned an identical ID associated with the
feature map. Conversely, if the similarity is below the designated threshold, a new ID is
assigned, and the corresponding feature map is associated with the newly assigned ID and
subsequently stored.

2.5. Object Tracking

Experimental trials were conducted to track physical objects by connecting the appli-
cation to a cradle device using the API of the cradle. The API code controlling the cradle
within the application was based on the code provided by Pivo. The cradle control func-
tions included ‘turnLeft’, ‘turnRight’, ‘turnLeftContinuous’, and ‘turnRightContinuous.’
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To achieve smooth and continuous movement, the ‘turnLeftContinuous’ and ‘turnRight-
Continuous’ functions were employed, both of which continue rotating at the speed set
before the function call if no speed value is provided as an argument. The rotational speed
represents the time required for the rotation to complete a 360◦ cycle, rather than denoting
the angular velocity. Setting a rotational speed of 10 implies that the object will complete
one 360◦ rotation in a span of 10 s. This relationship is expressed as follows:

rt = 360◦/vactual (2)

In Equation (2), the variable ‘rt’ (rotational time) denotes the time required for a
complete 360◦ rotation, serving as an input for the cradle control function and functions
as a time indicator for the cradle to complete its full rotation. Likewise, the variable
vactual represents the real-time rotational speed of the cradle, measured in angular velocity
(degrees per second). Hence, considering the characteristic that ’rt’ increases as the actual
rotational speed of the cradle decreases, and decreases as it accelerates, the calculation of
rotational time is facilitated.

The cradle rotation speed is defined as the duration required to complete a 360◦

rotation. In addition, the system is designed to offer an adjustable cradle rotation speed,
enabling both rapid and gradual cradle rotation based on the proximity of the object to the
central focal point of the camera. The extent of object displacement is determined by the
x-axis coordinates of the object relative to the central point of the camera. Moreover, the
cradle rotation duration is intentionally configured to decrease as the object approaches the
center of the camera image. This feature is vital in preventing situations in which, even
if the object remains stationary, the failure of the cradle to stop promptly could result in
the object failing to align with the central point of the image of the camera, resulting in
lateral movement. Consequently, by capitalizing on this unique attribute of the cradle, the
following formula is employed to calculate the rotation time based on the distance between
the object and the central point of the screen.

MD =

{
0 (i f 0.4 < OP < 0.6)
(OP − 0.5)× 2 (else)

(3)

RT =

{ 6
MD (i f MD ̸= 0)
0 (i f MD = 0)

(4)

Equation (3) describes the preprocessing steps involved in determining the x-axis
central coordinates of an object. In this equation, OP (object position) signifies the x-axis
coordinate of the object. It is crucial to emphasize that, for the sake of computational
efficiency in this experiment, the object positions were standardized within a range of 0
to 1, measured in pixels. The distance from the screen center to the object is represented
as MD (moving distance). Specifically, when the object is aligned with the center of the
camera, it is designated as P = 0.5. If the object is positioned at the far-right edge of the
camera, it is expressed as P = 1, and P = 0 indicates that the object is at the far-left edge of
the camera. The cradle used in this study does not involve tilting, and therefore, vertical
(y-axis) movement of the object is not considered.

In this equation, when the OP is in the range of 0.4 to 0.6, near the center of the screen
(OP = 0.5), we designed it to return MD = 0. MD represents the distance from the center
of the screen to the object, as previously explained, using normalized values. Because the
distance from the central point of the screen, which is 0.5, is minimal, there is no need for
the cradle to move, even if the object is outside this area. For positions outside this range,
we subtract 0.5 from OP and then multiply the result by 2, ensuring it falls within the range
of −1 and 1. When MD approaches 1, it signifies the position of the object at the far-right
edge. In such cases, the cradle must rotate more rapidly to the right to reposition the object
at the center of the camera. Conversely, when MD approaches −1, it indicates the object



Sensors 2024, 24, 1265 11 of 18

position at the far-left edge. In such instances, the cradle moves in the opposite direction to
reposition the object located at the left edge back to the center of the camera.

In Equation (4), RT (rotational time) is recalculated as the time required for the cradle
to complete a 360◦ rotation based on the MD value. The API provided by PIVO is used
in the cradle control section. The RT value spans a range from 6 to infinity. When the RT
value is 6, the cradle rotates at its maximum speed, and as RT increases towards infinity,
the rotation rate of the cradle decreases towards zero. The design ensures that as MD
approaches 1 or -1, the RT value tends towards 6. Conversely, when the object moves
closer to the center of the screen, causing MD to converge to 0, RT approaches infinity,
resulting in a lower rotation speed. Furthermore, to prevent a zero-division error when the
preprocessed MD value equals zero, RT is set to zero in such instances. Subsequently, the
obtained RT values are used to rotate the cradle. When RT is positive, the cradle rotates
to the right, and when it is negative, it rotates to the left. If RT is 0, the cradle remains
stationary and no rotation occurs.

2.6. Visual Display Implementation

Figures 6 and 7 provide an overview of the object-recognition components of our
visual display application. Object recognition screens have several key features. First,
the two models use different input sizes. The accuracy priority mode operates with an
input size of 640 × 640, and the speed priority mode uses an input size of 320 × 320.
Second, users—particularly content creators—have the option of selecting between the
accuracy priority mode and the speed priority mode. Third, the screen incorporates an
object-selection function that enables users to specify the objects they wish to recognize.
The users can choose to detect humans, dogs, cats, or other objects.
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Figure 6. Protocol of the experiment.

Furthermore, the screen displays an assigned ID above the recently recognized object.
The ID is determined by analyzing the characteristics of the identified object, including its
size, shape, and color. The assignment process ensures that the same object consistently
receives the same ID, thereby facilitating object tracking over time. In this application,
object selection and ID assignment features are important for the accurate and reliable
recognition of objects. The application can be tailored to the specific needs of the user by
allowing them to select the objects to be recognized.
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2.7. Object Tracking Error Rate Assessment

The mean absolute error (MAE) was calculated to assess the object tracking proficiency
after object recognition. MAE is a metric used to measure the average absolute difference
between the predicted and actual values in a set of data [17]. This provides a simple
method for assessing the accuracy of predictive models. To calculate the MAE, the absolute
difference between each predicted value and its corresponding actual value is obtained,
and the average of these absolute differences is computed, where n is the number of data
points, Actual_valuei is the actual value of the i-th data point, and Predicted_valuei is the
predicted value of the i-th data point. A lower MAE indicates a more accurate model
because it represents smaller errors between the predictions and the actual data. This is
expressed as follows:

MAE =
∑n

i=1 |Predicted_Valuei − Actual_Valuei|
n

(5)

Applying the formula outlined above, the calculation of the MAE for this experiment
involved determining the difference between the actual movement of the physical object
and the movement of the servo cradle, divided by the value n and the number of data
points. It is important to note that the actual movement of an object is represented as OPi,
indicating its movement within the camera screen rather than in the physical space. OP
represents the object position on the screen in Equation (3). The movement of the servo
cradle is denoted as OPi−1 and, for each frame transition, it is compared with the position
of the object in the previous frame. The servo cradle is designed to place the object away
from the previous frame. Consequently, the coordinates from the previous frame (OPi−1)
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can be considered predicted values, whereas the coordinates from the current frame (OPi)
can be considered actual values. This formula is expressed as follows:

MAE =

∑n
i=2

{
|OPi − OPi−1| (i f |OPi − OPi−1| ≥ 0.1)

0 (else)
n − 1

(6)

An experiment was conducted to compare the results of object tracking using YOLOv8s
with those obtained using the two methods proposed in this study. YOLOv8s was chosen
because of its popularity as a widely used version of YOLOv8, known for its superior
processing speed and accuracy compared with other detailed versions of YOLOv8. In
this model, the object-recognition component was utilized within the context of object-
tracking algorithms.

3. Experimental Setup and Protocol

An experiment was conducted to track objects based on their movements. The experi-
mental procedure was as follows. A single individual was positioned in the center of the
camera frame (a). Initially, the person moved approximately 7–10 steps to the right relative
to the camera frame, and then stopped (b). Subsequently, they moved approximately 15–17
steps to the left and stopped (c). Finally, they moved approximately 15–17 steps to the right
(d). This process was repeated approximately ten times for both (c) and (d). Ten ordinary
individuals participated in these procedures, resulting in 100 experimental trials.

The tracking experiment was conducted as follows. First, a group of 10 individuals
participated in the experiment. Figure 6 shows the protocol of the experiment.

1. Stand in the center of the camera frame and wait for 10 seconds.
2. Walk in the right direction from the camera frame for 7–10 steps.
3. Wait in place for 2 seconds.
4. Walk in the left direction from the camera frame for 15–17 steps.
5. Wait in place for 2 seconds.
6. Walk in the right direction from the camera frame for 15–17 steps.
7. Wait in place for 2 seconds.
8. Repeat steps 4–7 additional 9 times.

The experiment consisted of 10 rounds, where for 4 rounds, participants walked at
their usual pace, for 3 rounds, participants walked at a slower pace than their usual gait,
and for the remaining 3 rounds, participants walked at a faster pace than their usual gait.
The time taken during walking was approximately 10 seconds for 15–17 steps in the case of
the usual pace. For the slower pace, it took about 17 seconds, and for the faster pace, it took
approximately 6 seconds. The time taken for the entire experiment for one participant is
shown in Table 3.

Table 3. Experimental setup.

Movement Speed Elapsed Time of Movement(s) Waiting Time (fps)

Regular walking 80 16
Slow walking 102 12
Fast walking 36 12

Total elapsed time 218 40

4. Results
4.1. Moving Object Detection

Table 4 presents the image classification performance of CSPResNet-34 using ResNet-
34, conventional CSPNet architecture, and our proposed modified CSPNet structure. The
evaluation was conducted using the CIFAR-100 [16,18] dataset for training and performance
comparison. For resource usage, while the amount of computations can be derived in
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terms of FLOPs, GPU memory usage cannot be monitored on smartphones. Therefore,
monitoring was conducted in the training environment outlined in Table 1. From these
results, the modified CSPResNet-34 achieves 3.35 times and 1.38 times fewer FLOPs than
ResNet-34 and traditional CSPResNet-34, respectively. The inference speeds of the modified
CSPResNet-34 are 2.9% and 17.6% faster for batch 1 (single image) than those of ResNet-34
and traditional CSPResNet-34, respectively. Also, the modified CSPResNet-34 uses 12.4%
and 1.3% less GPU memory than ResNet-34 and traditional CSPResNet-34, respectively.
Thus, our model can help overcome resource limitations in smartphone environments.

Table 4. Performance comparison of CSPResNet-34 and modified CSPResNet-34.

Model FLOPs (G) Accuracy Speed
(at Batch 1)

GPU Memory Usage
(at Batch 1)

ResNet-34 31.8 91.3% 3.5 ms 588 MB

Traditional
CSPResNet-34 13.1 90.9% 4.0 ms 530 MB

Modified
CSPResNet-34 9.5 91.4% 3.4 ms 523 MB

Figures 7 and 8 depict samples of research outcomes within a real-world experimental
environment. This environment replicates a scenario in which physical objects are captured
by a camera, and subsequent experiments are conducted accordingly. Notably, no specific
measures were taken to counteract the potential performance degradation resulting from
the heat build-up of the smartphone in this experiment. Additionally, the inclusion of an
ID allocation system introduces additional computational resource consumption, which
leads to a slightly reduced processing rate compared with the inherent capability of the
model. The colors of the squares represent the detected images in the order recognized by
TensorFlow Lite. The ID indicates the number of the detected object, and the Title indicates
whether it recognized a person, cat, or dog. The last number indicates the confidence
of the detected object. The different colors of each square are used to distinguish the
detection order.

The efficacy of the proposed accuracy priority mode is substantiated by the successful
recognition of two or three objects when they appear simultaneously. In addition, the
model demonstrates the ability to differentiate and accurately identify multiple objects
of the same type when they co-occur. Moreover, the performance analysis reveals that
the speed priority mode is proficient in recognizing and tracking diverse objects, whether
they are dissimilar or belong to the same category, and if they move collectively at the
desired speed. However, the model exhibits certain limitations. Specifically, in instances in
which more than three objects appear, the recognition results can be inconsistent, leading
to successful recognition in some cases and failure in others. A summary of the results
obtained from this experiment is presented in Table 5.

Table 5. Object detection results.

Mode Class Inference Rate (fps)

Accuracy
Priority Mode

3 Classes 8.62
Humans 8.26

Dog and Cat 9.17
Cats 8.47

Speed Priority
Mode

3 Classes 24.39
Humans 23.4

Dog and Cat 34.48
Cats 23.3
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4.2. Performance Results

Tables 6 and 7 present the comprehensive evaluation results for each mode. For a
comparative analysis of the two developed modes, YOLOv3 and YOLOv8 were trained
using an identical dataset. Training was conducted using the YOLOv8 platform.

In this evaluation, an accuracy assessment was performed on a validation dataset
derived from our comprehensive dataset. This dataset comprised data extracted from 10
YouTube videos and encompassed approximately 4500 images. Each image within the
dataset was meticulously labeled, with an average of 450 instances for the person class,
1500 instances for the dog class, and 2700 instances for the cat class.

Table 6. Experimental results of models with 640 × 640 images.

Model Input Size FLOPs
(G)

Accuracy (%)
Inference
Rate (fps)

mAP50

All Person Dog Cat

YOLOv3-tiny

640 × 640

18.9 91.5 86.3 93.3 94.9 11.7
YOLOv4-tiny 22.1 91.6 86.5 93.2 95.1 10.9
YOLOv5s [19] 24.0 93.7 89.2 95.3 96.5 10.0

YOLOv5n 7.2 93.1 88.8 94.6 96.0 14.7
YOLOv7 [20] 127.3 94.2 90.2 96.1 96.4 2.78
YOLOv7-tiny 21.3 93.3 88.4 95.2 96.4 10.3

YOLOv8s 28.7 93.8 89.9 95.6 96.8 8.13
YOLOv8n 8.2 93.0 88.0 94.6 96.5 14.9

Accuracy Priority Mode
640 × 640

17.8 93.8 89.1 95.2 97.1 9.80
Speed Priority Mode 3.4 92.9 88.8 94.2 95.8 20.8
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Table 7. Experimental results of models with 320 × 320 images.

Model Input Size

Accuracy (%)
Inference
Rate (fps)

mAP50

All Person Dog Cat

YOLOv3-tiny

320 × 320

90.5 84.8 92.6 94.0 22.2
YOLOv4-tiny 92.4 87.9 94.2 95.2 22.2

YOLOv5s 92.4 87.3 94.2 95.8 29.4
YOLOv5n 91.2 85.1 93.6 94.7 40.0
YOLOv7 93.4 88.4 95.3 96.4 8.33

YOLOv7-tiny 91.7 85.9 93.9 95.2 27.0
YOLOv8s 92.8 87.3 94.9 96.1 22.7
YOLOv8n 90.9 84.7 93.2 94.7 40.0

Accuracy Priority Mode
320 × 320

92.5 87.5 93.9 96.1 22.7
Speed Priority Mode 90.7 85.3 92.9 94.0 50.0

The inference rate denotes the processing speed of the model. To accurately measure
the inference rate, a controlled experiment was conducted by covering the smartphone
camera and displaying a black image. This ensured that only the inference process of the
mode was evaluated. The investigation highlights that the presence of recognized objects
triggers a notable slowdown in the detection speed during the post-processing phase for
ID allocation, resulting in a reduction of 50% or lower in the original processing speed.
Furthermore, to maintain experimental fairness, the smartphone underwent sufficient
cooling before conducting the measurements. This precautionary step aims to mitigate the
performance degradation caused by heat, thereby ensuring the accuracy and reliability of
the obtained results.

4.3. Object Tracking Error Rate

Table 8 presents the results of the object tracking using YOLOv8s and the two methods
proposed in this study. When YOLOv8s is employed, the MAE of the servo cradle exceeds
0.2. However, in both the accuracy and speed priority modes, the average MAE values
of the servo cradle are 0.107 and 0.103, respectively, representing a tracking distance of
approximately twice that in YOLOv8s. As shown in Table 6 when utilizing an input size of
640 × 640, YOLOv8s exhibits a lower inference speed than the proposed models, resulting
in a decrease in accuracy. This low inference speed hinders swift object localization and
necessitates multiple lateral movements of the servo cradle. The increased frequency of the
lateral movements also leads to a lower accuracy of the servo cradle. In relative terms, the
speed priority mode outperforms YOLOv8s with a faster object detection, covering less
than half of the MAE of YOLOv8s. The accuracy priority mode, while still falling below
half the value, achieves a slightly lower accuracy than the speed priority mode.

Table 8. Comparison of results of MAE value.

Mode MAEpixel

YOLOv8s 0.223

Accuracy Priority Mode 0.107

Speed Priority Mode 0.103

5. Conclusions

The increasing demand for real-time moving object detection systems in artificially
intelligent smartphone cradles has prompted the development of two approaches. The
accuracy priority mode and speed priority mode were proposed to strike a balance between
speed, accuracy, and inference rate. Object tracking was implemented by leveraging a
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cradle servo motion algorithm designed to position mobile entities at the center of the
camera screen.

The accuracy priority mode leveraged the CSPNet structure integrated with ResNet
based on the YOLOv8 architecture, achieving an impressive accuracy level of 93% based on
the mean average precision at 50 IoU (mAP50) metric. It employed a lower network depth
and omitted bottleneck layers to enhance accuracy while maintaining a high inference
rate. This mode exhibited accuracy comparable to that of YOLOv8 while demanding fewer
computing resources in a smartphone environment.

By contrast, the speed priority mode prioritized high inference rates of 50 fps and
achieved a commendable accuracy rate of 90% by reducing the number of layers. Among
the various YOLO models, YOLOv5n exhibited the shallowest architecture. The speed
priority mode surpassed YOLOv5n in terms of computational resource requirements, while
maintaining a competitive level of accuracy. Notably, the accuracy of this model was not
significantly compromised compared with the other models. The combination of accuracy
reduces the computational resource requirements, and high-speed performance makes
these models well suited for detecting multiple moving objects in one frame in real time in
a smartphone environment.

This study achieved a successful and accurate real-time recognition of objects, such as
humans, dogs, and cats. However, the complexity of the CNN-based feature extractor in the
ID assignment system introduced a notable drawback that led to a significant reduction in
the actual inference speed. Particularly evident in the speed priority mode, the mode itself
demonstrated an impressive inference speed of up to 50 fps. However, object recognition
led to a drop in the frame rate to below 30 fps. Consequently, there is an urgent need to
simplify the feature extractor to minimize the loss of inference speed. Furthermore, certain
cases revealed scenarios in which objects were assigned different IDs owing to variations
in perspectives, even when they were the same object or shared the same ID. Consequently,
essential improvements, such as broadening the training classes of the feature extractor, are
required to address this concern.

Finally, a practical implementation of tracking and controlling physical objects using
a servomotor was achieved. This servomotor, as part of a smartphone-compatible cradle,
offered free rotation capabilities spanning 360◦. The cradle device, in conjunction with a
dedicated API, facilitated the derivation of the necessary formulas for object tracking and
enabled us to conduct experiments with real objects. The results indicated MAE values
of 0.107 in the accuracy priority mode and 0.103 in the speed priority mode, significantly
outperforming the YOLOv8s model with an MAE value of 0.223. This represented an
approximately two-fold reduction in error compared with the YOLOv8s model without our
proposed method. Hence, employing our approach can lead to enhanced tracking accuracy
compared with conventional methods. However, in both the accuracy and speed priority
modes, the MAE values of the servo cradle were 0.107 and 0.103, respectively, representing
a tracking distance of approximately twice that of YOLOv8s.
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