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Stereodivergent 1,3-difunctionalization of 
alkenes by charge relocation

Bogdan R. Brutiu1,3, Giulia Iannelli1,3, Margaux Riomet1, Daniel Kaiser1 & Nuno Maulide1,2 ✉

Alkenes are indispensable feedstocks in chemistry. Functionalization at both carbons 
of the alkene—1,2-difunctionalization—is part of chemistry curricula worldwide1. 
Although difunctionalization at distal positions has been reported2–4, it typically relies 
on designer substrates featuring directing groups and/or stabilizing features, all of 
which determine the ultimate site of bond formation5–7. Here we introduce a method 
for the direct 1,3-difunctionalization of alkenes, based on a concept termed ‘charge 
relocation’, which enables stereodivergent access to 1,3-difunctionalized products  
of either syn- or anti-configuration from unactivated alkenes, without the need for 
directing groups or stabilizing features. The usefulness of the approach is demonstrated 
in the synthesis of the pulmonary toxin 4-ipomeanol and its derivatives.

Alkene functionalization reactions are a staple of every undergraduate 
programme in chemistry and can be broadly divided into two fami-
lies: (1) transformations that result in either temporary (for example, 
olefin metathesis) or permanent (for example, ozonolysis) C=C bond 
cleavage and (2) reactions resulting in products that maintain the  
original C–C σ-bond connectivity1,8. Among the latter, the broad family  
of 1,2-difunctionalization reactions9,10 ranges from classical halo-
genation to sophisticated transition-metal-catalysed processes11–13, 
and the nascent field of remote functionalization has emerged as a 
way of redirecting reactivity towards a distal position, away from the 
initial reactive site2–4,14–20. Indeed, a number of methods for alkene 
1,3-difunctionalization using transition-metal catalysis have emerged 
in the literature. Such methods (Fig. 1a) invariably rely on a mechanis-
tic handle to achieve regioselectivity: a directing group or ‘stopper’ 
(such as an arene ring that provides a benzylic resting point for the 
catalyst) must be embedded in the substrate, primarily because of 
the pronounced tendency of C(sp3)–M species to engage in β-hydride 
(β-H) elimination, resulting in the generation of Heck products5–7,21,22. 
Similarly, an extensive body of research on Friedel–Crafts-type reac-
tions of alkenes is known (Fig. 1b)23. Primarily, reactions of acylium ions 
have been shown to afford the products of 1,2-difunctionalization, with 
product distribution often highly dependent on the nature of substrate, 
reagent and solvent (Fig. 1b, top). Intriguingly, Friedel–Crafts-type 
reactions of alkenes have also been found to enable remote function-
alization of alkenes (Fig. 1b, bottom); such transformations, however, 
invariably suffer from undefined selectivity—often giving mixtures of 
1,2- and 1,3-functionalization products24–27—or are possible only under 
substrate control or on specialized substrates28–30. Thus, although the 
corresponding reactivity, at its core that of the Friedel–Crafts reac-
tion, has been explored, little is known about the factors governing the 
selectivity or predictability of such transformations, and the direct and 
general 1,3-difunctionalization of unactivated and unfunctionalized 
alkenes remains an unmet challenge.

We present such a difunctionalization of unactivated alkenes under 
simple conditions, through which olefins are converted into products 
in which functionalization has occurred with generality at positions 

1 and 3 (Fig. 1c). We achieved this by adapting electrophilic addition 
to alkenes as the basis for a general, predictable and highly selective 
strategy termed ‘charge relocation’—a synthetic logic in which incipi-
ent or localized charge at a given atom relocates to a defined position 
through a series of hydride shifts.

Well aware that classical electrophilic additions to double bonds 
hinge on immediate interception of an (incipient) positive charge by 
a nucleophile23, we became intrigued by the mode of electrophilic 
addition to a double bond in the absence of a suitable nucleophilic 
species. Over the course of these investigations we eventually found 
that the treatment of cyclohexene with an acylium cation carrying 
non-nucleophilic hexafluoroantimonate as the counter anion, gener-
ated in situ from acyl chloride and silver hexafluoroantimonate, swiftly 
and selectively formed a product of 1,3-hydroxyacylation following 
hydrolytic work-up (Fig. 2a; see Supplementary Information for addi-
tional conditions surveyed during optimization of reaction conditions). 
Notably, the success of the reaction was found to rely heavily on the 
nature of the halophilic reagent, with only silver hexafluoroantimonate 
providing a high yield of 19 whereas other silver salts or Lewis acids gave 
low levels of conversion to the desired product. Most interestingly, 
this reaction not only resulted in 1,3-difunctionalization but it did so 
with exclusive selectivity for the syn-products over a range of different 
unactivated alkenes, as depicted in Fig. 2.

Following this finding we turned to investigate the scope of this trans-
formation (Fig. 2b), initially using a phenyl-substituted acylium ion. Our 
survey of linear alkenes, inherently lacking the ability to form diastere-
omeric products, showed high yields for a range of chain lengths (1 and 2).  
Appended functional groups were also found to be tolerated, with 
substrates bearing a trifluoroacetate (3) or phthalimide (4) providing 
the desired products at good yield. Importantly, 4-phenyl-1-butene—a  
substrate bearing potential bias due to the presence of a benzylic  
position—afforded exclusively the product 1,3-difunctionalization (5) 
with the benzylic site remaining untouched.

As highlighted above, the reaction with cyclohexene was found to 
deliver exclusively the product of syn-hydroxyacylation (6), a fact 
proven to be true for a large variety of arene-substituted acylium ions 
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regardless of electronic or steric properties (7–17). The same stereo-
chemical outcome was observed for a cyclopentene-derived ketoalco-
hol (18), as well as for products resulting from the addition of aliphatic 
acylium ions (19–24). Notably, an acryloyl-derived acylium ion also 
provided the desired product of syn-hydroxyacylation (25), as did those 
bearing heteroaromatic groups (26 and 27). Finally, when norbornene 
was employed, the intermediately formed, positively charged species 
underwent rearrangement (presumably via a non-classical carboca-
tion), affording crystalline 28.

Figure 2c shows a comparison of this method with previously 
reported approaches to alkene 1,3-difunctionalization, relying on sub-
strate rather than reagent control. Indeed, when a fully unbiased alkene 
(1-nonene) was subjected to established, transition-metal-catalysed 
protocols using either nickel or palladium catalysis, no products 
of 1,3-difunctionalization were obtained—rather, products of Heck 
coupling or non-specific decomposition were observed (see Supple-
mentary Information for details on these reactions). By contrast, the 
protocol presented herein—as shown above—provided the product of 
1,3-difunctionalization (2) at 64% isolated yield.

In subsequent investigations we found that, if the final work-up was 
preceded by treatment with dimethyl sulfoxide (DMSO)31, the cor-
responding products of anti-hydroxyacylation were obtained with 
excellent stereoselectivity (29–37, typically over 20:1 diastereomeric 
ratio (d.r.); Fig. 3), thus enabling flexible access to either isomer in a ste-
reodivergent manner32–37. Replacement of the hydrolytic work-up by the 
addition of other nucleophilic sources such as chloride (38), bromide 
(39) or iodide (40) resulted in anti-halogenated products. Interestingly 
(Fig. 3), interception with amides such as N,N-dimethylacetamide or 
-formamide resulted in the isolation of anti-acyloxy-acylated products 
(41 and 42) whereas—even more intriguingly—the addition of the stable 
aminoxyl radical TEMPO provided anti-OTMP product 43 at high yield. 
Importantly, when the addition of DMSO was followed by treatment 

with triethylamine, the products of a 1,3-ketoacylation reaction were 
obtained (44–49). This is a process that, to the best of our knowledge, 
has no precedent in the literature and converts simple alkenes directly 
to 1,4-dicarbonyls37–40.

Aiming to showcase the synthetic prowess of this facile, yet power-
ful, 1,3-alkene difunctionalization, we explored potential synthetic 
applications. We selected 4-ipomeanol (50), a model pulmonary pre-
toxin with activity for protein binding (N-acetyl cysteine and N-acetyl 
lysine)41,42, the reported synthesis of which is a multistep endeavour 
(Fig. 4a; five steps from diethyl furan-3,4-dicarboxylate)43. Alkene 
1,3-difunctionalization, as presented here, instead enables the one-step 
synthesis of this compound (as well as the known phenyl-analogue 51 
and other derivatives (52 and 53 (ref. 44)) from inexpensive 1-butene 
in a straightforward manner.

From a mechanistic point of view (Fig. 4b) we believe that the 
1,3-difunctionalizations presented above rely on a rapid isomeriza-
tion event. This converts, under thermodynamic control, what would 
be the first intermediate of electrophilic addition23,24,27, the β-keto 
cation, into the rearranged, cyclic oxocarbenium ion rac-I45–50—with 
the formation of rac-I constituting a locking event to prevent further 
isomerization and non-selective product formation. This common 
intermediate is then intercepted either in hydrolytic fashion at the 
carbonyl (affording the syn-configured products) or through inver-
tive displacement at the secondary sp3-centre C3 with other nucleo-
philes, resulting in the formation of the anti-configured products  
described above.

The concept of charge relocation is best illustrated by the mechanis-
tic experiments depicted in Fig. 4c. We established that, regardless of 
where the carbocation is initially formed (by bromide abstraction), the 
overwhelming majority of the material is converted into the expected 
1,3-difunctionalized target: the carbocation was drawn to the γ position 
independently of its nascent state.
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The reactions of more complex substrates also proved interesting.  
When 1-methylcyclohexene, a trisubstituted alkene, was used, the 
all-syn-hydroxyketone 54 was obtained as a single diastereomer  
(see X-ray structure to the right; Fig. 4d). This stereochemical outcome 
is probably governed by the preferred equatorial orientation of the 
only substituent not bound within a ring, the methyl group (Fig. 4d).
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support the hypothesis that nascency of the charge does not affect the 
constitution of the obtained product (Supplementary Information).  
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Extended Data Fig. 1 | Additional products of syn-selective 1,3-hydroxyacylation. *Percentages of observed enone by-products in the crude mixtures (see 
the Supplementary Information for additional details).
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