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ABSTRACT 
 

Accurate representation of precipitation patterns is crucial for understanding and adapting to these 
impacts. General Circulation Models (GCMs) are essential for projecting future climate scenarios 
but often exhibit biases in simulating precipitation, undermining the reliability of their outputs. This 
study focused on bias correction of monthly precipitation data from different GCMs using 
Cumulative Density Functions (CDFs). Bias correction techniques were employed to align model-
simulated precipitation with observed data, revealing significant improvements in the accuracy of 
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future precipitation projections. The study area, Raipur, characterized by diverse topography, 
served as the location for analysis. Three GCMs were selected based on their availability and 
participation in the CMIP6 experiment. The bias correction process involved the calculation of CDFs 
and equiprobability transformations, resulting in a closer match between model predictions and 
observations. Results showed substantial variability in monthly precipitation values across different 
climate models and scenarios, with distinct seasonal patterns observed. Inter-model discrepancies 
underscored the complexities of precipitation simulations, highlighting the need for careful 
interpretation of model outputs. Continued research efforts were crucial for improving the accuracy 
and reliability of climate model simulations for informed decision-making and planning in climate-
sensitive sectors. 
 

 
Keywords: Bias correction; cumulative density function; general circulation model. 
 

1. INTRODUCTION 
 
The ongoing emission of greenhouse gases 
(GHGs) has led to a global increase in 
temperatures, resulting in climate change. This 
shift has profound implications for various 
sectors crucial to human life, such as water 
resources, agriculture, health, and energy [1]. 
The accurate representation of precipitation 
patterns is crucial for understanding and 
adapting to the impacts of climate change across 
various sectors. General Circulation Models 
(GCMs) are indispensable tools for projecting 
future climate scenarios, yet they often exhibit 
biases in simulating precipitation due to complex 
atmospheric processes, spatial resolution 
limitations, and parameterizations, undermining 
the reliability of their outputs for decision-making 
purposes [2]. Precipitation plays a fundamental 
role in shaping ecosystems, water resources, 
agriculture, and socio-economic activities. 
Reliable projections of future precipitation 
patterns are essential for assessing and 
mitigating the impacts of climate change, such as 
droughts, floods, and shifts in agricultural 
productivity. These biases can significantly affect 
the accuracy of climate projections and hinder 
effective decision-making in climate-sensitive 
sectors. It's widely acknowledged that 
precipitation data from general circulation models 
(GCMs) requires prior bias correction to be 
useful for driving hydrological or impact models 
effectively. Accurate representation of 
precipitation fields in future climate projections is 
critical for impact studies and hydrological 
modelling by utilizing transfer functions derived 
from observed and simulated cumulative 
distribution functions (cdfs) (Ines and Hansen, 
2006; [2]. In recent years, bias correction 
techniques have emerged as essential methods 
for improving the fidelity of GCM-simulated 
precipitation by aligning them with historical 
observations. Bias corrected CMIP6 projection 

were utilized by various studies. Bias-corrected 
CMIP6 projections were used to estimate the 
frequency of rainfall and temperature extremes 
for Godavari river basin during near-, mid- and 
end-21st century and reported higher 
frequencies for the far period than the near-term 
climate [3]. Similarly the bias corrected CMIP6 
projection were utilized by Saha et al. [4] for 
analyzing precipitation extremes. Verma et al. [5] 
adjusted raw CMIP5 and CMIP6 outputs before 
giving inputs in SWAT model. When applying a 
correction derived from historical data to 
projected climate simulations, one must assume 
that the correction remains valid for the future 
climate. This assumption is more acceptable if 
the transfer function between raw and corrected 
GCM output is robust, particularly if it             
depends on fewer parameters derived from the 
data. 
 
Cumulative Density Functions offer a robust 
statistical framework for quantifying and 
comparing the distribution of precipitation 
intensities between observed data and GCM 
simulations. By analyzing discrepancies in the 
CDFs, researchers can identify systematic 
biases in GCM-simulated precipitation and 
develop correction techniques to align the 
simulated distributions with observed patterns. 
The use of CDFs facilitates a comprehensive 
assessment of biases across different 
precipitation intensity ranges and enables 
targeted corrections to improve the accuracy of 
GCM outputs. CDF had been used in recent 
studies in exploring future trends of precipitation 
based on CMIP6 projections [6,7]. 
 
This research focuses on bias correction of 
monthly precipitation data from different General 
Circulation Models (GCMs) using Cumulative 
Density Functions (CDFs). The Cumulative 
Density Function, which represents the 
probability distribution of precipitation intensities, 
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offers a valuable framework for comparing and 
correcting biases in GCM-simulated precipitation 
against observed data. 
 

2. MATERIALS AND METHODOLOGY 
 

2.1 Study Area 
 
Raipur, the capital of Chhattisgarh, is situated in 
the agro-climatic zone, Chhattisgarh plateau. The 
region's elevation varies from 244 to 409 meters 
above mean sea level (AMSL), covering an area 
of 2892 square kilometers. Being a sub-humid 
region, Raipur receives an average annual 
rainfall of 1149 mm, with the southwest monsoon 
season contributing significantly to total annual 
precipitation [8]. The district is characterized by 
diverse topography, soil types, and land use 
patterns.  
 

2.2 General Circulation Models 
 
The study incorporated three General Circulation 
Models (GCMs): CanESM5, MPI-ESM1.2-HR, 
and NorESM2-MM. These models were selected 
due to the availability of predictor datasets 
required for downscaling in the necessary format. 
They provided predictor datasets for both 
historical and future timeframes and 
encompassed all four considered Shared 
Socioeconomic Pathways (SSP) scenarios. 
Additionally, all three GCMs were part of the 
CMIP 6 (Coupled Model Intercomparison Project) 
experiment. The projected precipitation data from 
these models done by Mishra et al. [9] was 
downloaded from the website, 
https://zenodo.org/records/3873998. 
 

2.3 Bias Correction Using CDF 
 
Cumulative Distribution Function (CDF) and 
equiprobability transformation are statistical 
methods used to adjust or correct for                           
any systematic biases or errors in climate   
models when simulating future rainfall         
patterns.  
 

In this study bias correction was done by 
calculating cumulative density function and 
equiprobability transformation as following steps 
(Ghosh and Mujumdar 2008; Das and 
Umamahesh, 2016).  
 

1. Initially, the observed (Yobs), simulated 
(Ysim), and projected (Ypro) data were 
sorted in ascending order.  

2. Probabilities were assigned to each value 
in the sorted data, in the second column of 
the corresponding variable. This probability 
was calculated as  

1) points data ofnumber (
Pr

+
=

i
Y obability

 ,  
 

where 'i' represented the index of the data 
point. This step created an empirical 
cumulative distribution function (CDF) for 
the data.  

3. Repeated values were removed by 
checking the differences between two 
consecutive values of each variable.  

4. If the difference was zero, it indicated the 
presence of repeating values, and those 
were subsequently removed.  

5. Then, plots of the observed, simulated, 
and projected CDFs were generated. The 
CDF represented the probability that a 
rainfall value would be less than or equal 
to a specific value.  

6. Differences in the CDFs between observed 
and simulated data indicated where the 
model had a systematic bias.  

7. To correct for this bias, the simulated data 
was adjusted to match the observed CDF. 
For this, equiprobability distribution was 
applied to the projected data (Ypro).  

8. For each value in Ypro, its cumulative 
distribution value (CDFpro) was calculated 
by linearly interpolating between the CDF 
values of the simulated data (Ysim).  

9. Subsequently, the CDFpro value was used 
to find the corresponding value from the 
observed data (Yobs) by linear 
interpolation in the inverse direction.

Table 1. General Circulation Models (GCMs) 
 

GCM Developed by Reference 

MPI‐ESM1‐2‐HR Max Planck Institute for Meteorology, 
Germany 

Müller et al. [10] 

CanESM5 Canadian Centre for climate modelling and 
analysis 

Swart et al. [11] 

Nor ESM2-MM Norwegian Earth System Model Version 2 Seland et al. [12] 

https://zenodo.org/records/3873998
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3. RESULTS AND DISCUSSION 
 
The cumulative density functions (CDF) before 
and after bias correction and projected future for 
MPI‐ESM1‐2‐HR, CanESM5 and Nor ESM2-MM 
were represented in Fig.1, Fig. 2 and Fig. 3 
respectively. The CDF before bias correction 
represented the distribution of precipitation 
values as simulated by the climate models 
without any adjustments. It reflected the inherent 
biases or inaccuracies in the model output 
compared to observational data. The CDF 
showed differences between model outputs and 
observed precipitation, indicating potential 
overestimation or underestimation of precipitation 
values by the models across different percentiles 
of the distribution. 
 
The comparison of the cumulative density 
function (CDF) before and after bias correction 
revealed significant improvements in the 
alignment of model-simulated precipitation with 
observational data. Before bias correction, the 
CDF exhibited notable discrepancies from the 
observed distribution, indicating systematic 
biases in the model output. These biases were 
particularly evident across certain percentiles of 
the distribution, with the model often 

overestimating in case of CanESM5 and 
underestimating precipitation values in other 
GCMs compared to observations. 
 
Following bias correction, there was a clear 
convergence between the model simulated CDF 
and the observed distribution of precipitation. 
The bias correction techniques effectively 
mitigated the systematic biases present in the 
raw model output, resulting in a CDF that closely 
matched the observed data across a range of 
percentiles. The corrected CDF demonstrated 
improved accuracy in capturing the variability 
and extremes of precipitation events, which were 
crucial for understanding and predicting regional 
climate patterns. 
 
Overall, the comparison highlighted the 
importance of bias correction in enhancing the 
reliability and utility of climate model simulations 
for various applications, such as climate change 
impact assessments and resource management. 
The alignment of the CDFs before and after bias 
correction signified a more robust representation 
of precipitation in the model output, providing 
researchers and policymakers with more 
accurate information for decision-making and 
planning purposes [2], Smith et al. 2012). 

 

 
 

Fig. 1. The probability distribution calculated for MPI‐ESM1‐2‐HR 
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Fig. 2. The probability distribution calculated for CanESM5 
 

 
 

Fig. 3. The probability distribution calculated for Nor ESM2-MM 
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Projected rainfall under SSP1 2.6 scenario for 
end century (2080-2100) after bias correction 
was given in Fig. 4. There was considerable 
variability in monthly precipitation values across 
the three climate models. For example, in 
January, NorESM5 recorded substantially higher 
precipitation (17.13 mm) compared to MPI-
ESM1-2 HR (6.87 mm) and CanESM5 (5.96 
mm). Each model exhibited distinct seasonal 
patterns in precipitation. For instance, CanESM5 
showed a notable peak in precipitation during 
May and June, with values reaching 18.04 mm 
and 176.64 mm, respectively. In contrast, 
NorESM5 exhibited a peak in September (234.56 
mm), followed by a decrease towards the end of 
the year. Despite differences in absolute 
precipitation values, there were instances of 
consistency across models. For example, all 
three models showed relatively low precipitation 
in March and April, followed by an increase in 
May and June. 
 
Projected rainfall under SSP2 4.5 scenario for 
end century (2080-2100) after bias correction 
was given in Fig. 5. There was substantial 
variability in monthly precipitation values across 
the three climate models. For instance, in 
January, MPI-ESM1-2 HR recorded the highest 
precipitation (20.62 mm), followed by NorESM5 
(4.05 mm) and CanESM5 (1.34 mm). Each 
model exhibited distinct seasonal patterns in 
precipitation. CanESM5 showed a significant 
peak in precipitation during June, with a value of 
180.83 mm, while MPI-ESM1-2 HR and 
NorESM5 showed relatively lower precipitation 
during the same month (69.33 mm and 106.18 
mm, respectively). CanESM5 recorded no 
precipitation in April, while MPI-ESM1-2 HR and 
NorESM5 had relatively low precipitation values 
during this month (6.06 mm and 1.85 mm, 
respectively). Despite differences in absolute 

precipitation values, there were instances of 
consistency across models. For example, all 
three models showed relatively high precipitation 
during July and August. However, there were 
also discrepancies, such as the higher 
precipitation values recorded by MPI-ESM1-2 HR 
in several months compared to CanESM5 and 
NorESM5. 
 
Projected rainfall under the SSP3 7.0 scenario 
for the end of the century (2080-2100) after bias 
correction was presented in Fig. 6. There was 
significant variability in rainfall values across both 
models and months. For example, in June, the 
MPI-ESM1-2 HR model indicated a very high 
rainfall amount of 222.476 mm, whereas the 
CanESM5 model showed 330.386 mm for the 
same month. This suggested that different 
climate models might have produced different 
estimates of rainfall for the same period. Across 
the models, there were apparent seasonal 
patterns in rainfall. For instance, in many regions, 
rainfall tended to be higher during certain months 
(e.g., June and July) and lower during others 
(e.g., January and February). These patterns 
were consistent with typical seasonal variations 
in rainfall observed in many climates. There  
were notable differences in rainfall values 
between the models for certain months. For 
example, in April, the MPI-ESM1-2 HR model 
reported a much higher rainfall value (10.900 
mm) compared to the CanESM5 model (10.892 
mm). 
 
Projected rainfall under the SSP5 8.5 scenario 
for the end of the century (2080-2100) after bias 
correction was presented in Fig. 7. The MPI-
ESM1-2 HR model generally predicted higher 
rainfall values compared to the CanESM5 and 
NorESM5 models across most months. For 
instance, in June and July, the MPI-ESM1-2 HR

 

 
 

Fig. 4. Projected rainfall under SSP1 2.6 scenario for end century (2080-2100) after BC 
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Fig. 5. Projected rainfall under SSP2 4.5 scenario for end century (2080-2100) after BC 
 

 
 

Fig. 6. Projected rainfall under SSP3 7.0 scenario for end century (2080-2100) after BC 
 

 
 

Fig. 7. Projected rainfall under SSP5 8.5 scenario for end century (2080-2100) after BC 
 
model estimated much higher rainfall values than 
the other two models. There was noticeable 
variability in rainfall values from month to month 
within each model. For example, in the 
CanESM5 model, there was a significant 
increase in rainfall from March to April, followed 
by a decrease in May. This pattern was also 

observed, albeit to a lesser extent, in the other 
two models. Despite some differences, there 
were also instances where all three models 
showed similar rainfall values. For example, in 
December, all models predicted relatively low 
rainfall amounts. 
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Monthly precipitation values varied widely across 
models, highlighting the complexity of 
precipitation simulations in climate models and 
the need for careful interpretation when using 
model outputs for various applications. These 
differences in GCM output might have arisen 
from differences in model parameters, resolution, 
or other factors influencing rainfall simulation 
(Samadi et al. 2010); [13], The results table 
provided a general overview of rainfall values, it 
was important to note that regional variations in 
rainfall might not have been adequately captured 
by these global climate models. Local factors 
such as topography, land use, and proximity to 
water bodies could significantly influence rainfall 
patterns, which might not have been fully 
represented in these global models. 
 

4. CONCLUSION 
 

The comparison of CDFs before and after bias 
correction indicated significant improvements in 
aligning model-simulated precipitation with 
observational data. Systematic biases in the raw 
model output were corrected through bias 
correction techniques, resulting in a closer match 
between model predictions and observed 
precipitation patterns. The bias-corrected future 
precipitation revealed substantial variability in 
monthly precipitation values across different 
climate models and scenarios. Each model 
exhibited distinct seasonal patterns in 
precipitation, with notable differences in peak 
values and timing across months. Inter-model 
discrepancies highlighted the complexities of 
precipitation simulations and the need for careful 
interpretation of model outputs. The findings 
underscored the importance of continued 
research and development efforts to improve the 
accuracy and reliability of climate model 
simulations. Further investigations into the 
sources of variability and uncertainty in GCM 
outputs, as well as advancements in bias 
correction techniques, could enhance the utility 
of these models for climate change impact 
assessments, resource management, and 
decision-making processes. 
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