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Abstract 
The federated self-supervised framework is a distributed machine learning 
method that combines federated learning and self-supervised learning, which 
can effectively solve the problem of traditional federated learning being difficult 
to process large-scale unlabeled data. The existing federated self-supervision 
framework has problems with low communication efficiency and high com-
munication delay between clients and central servers. Therefore, we added 
edge servers to the federated self-supervision framework to reduce the pres-
sure on the central server caused by frequent communication between both 
ends. A communication compression scheme using gradient quantization 
and sparsification was proposed to optimize the communication of the entire 
framework, and the algorithm of the sparse communication compression 
module was improved. Experiments have proved that the learning rate changes 
of the improved sparse communication compression module are smoother 
and more stable. Our communication compression scheme effectively re-
duced the overall communication overhead. 
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1. Introduction 

In traditional machine learning scenarios, the client needs to transfer local data 
to the server for model training. This presents a serious data privacy breach 
problem. In addition, a large amount of effective training data is often in the 
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hands of people in different fields and industries, and their role cannot be fully 
grasped, leading to the phenomenon of data islands. The concept of a federated 
learning framework was first proposed in 2015 [1], which can achieve distri-
buted model training using different data scattered on multiple devices while 
protecting data privacy, thereby improving data security and privacy. In fede-
rated learning, because there is a large amount of original unlabeled data on the 
client side, manual labeling of data requires a huge workload and is very costly. 
Supervised learning not only relies on expensive annotations, but also suffers 
from problems such as generalization errors, spurious associations, and adver-
sarial attacks [2]. Self-supervised learning (SSL) is an unsupervised learning me-
thod that aims to generate labels or tasks through the structure or characteristics 
of the data itself for model training. Self-supervised learning methods can effec-
tively learn high-quality data representations from large amounts of unlabeled 
data. Combining the results of the two research fields of self-supervised learning 
and federated learning, a generalized federated self-supervised (FedSSL) frame-
work is proposed, which includes existing SSL methods based on Siamese net-
works and provides future adaptation Method flexibility [3]. 

The use of the federated self-supervision framework not only solves the prob-
lem of sensitive data protection in self-supervised learning, but also solves the 
problem that the client needs to process a large amount of original unlabeled 
data in federated learning. However, using more available data adds significant 
communication solutions and communication costs. Client-side self-supervised 
learning can improve model performance, and the processing of unlabeled data 
is also the process of labeling by self-supervised learning itself. After many itera-
tions, in the model parameter and gradient upload aggregation stage, the total 
data volume is larger than that of traditional federated learning, and the com-
munication overhead is greater. The server needs to communicate with the client 
frequently to transmit updated model parameters and gradients, because in the 
server aggregation stage, you need to wait for all clients to complete uploading 
before aggregating. Due to the current computing and communication capabili-
ties of the client, the learning performance under the training time budget is re-
duced [4]. Moreover, the communication distance between the client and the 
central server may be long, resulting in high communication speed delays and 
even the risk of communication interruption. Therefore, reducing communica-
tion overhead and improving communication efficiency are the main directions 
of federated self-supervision optimization. 

In order to solve the problem of low communication efficiency between the 
client and the central server, researchers have proposed an edge computing 
model. The edge computing model can effectively reduce the communication 
pressure of the central server. In terms of data processing, because the edge does 
not need to process the data of all clients, it only needs to process the data of 
clients within its jurisdiction, so the processing is faster, more immediate, more 
accurate, and more intelligent. It can also reduce the energy consumption of the 
central server. The cloud-edge architecture that combines cloud servers, edge 
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servers, and terminal devices has been used in the field of artificial intelligence 
[5]. Existing research shows that deploying computing closer to the client can 
reduce computing load [6]. Researchers discussed the computing optimization 
issues caused by adding edge computing to the original federated learning sys-
tem. It is necessary to optimize communication [7]. 

To address the problem of excessive communication overhead in traditional 
federated learning, researchers proposed to reduce the total amount of uploaded 
data, reduce the number of federated learning communication rounds, and use 
sparse methods or quantification methods to reduce communication overhead. 
Sparsification only transmits gradient coordinates that are large enough, and 
abandons transmitting other gradient coordinates that do not meet the filtering 
requirements. Although deleting large amounts of gradient data may intuitively 
affect model accuracy, empirically, even reducing gradients by 99% can achieve 
the desired accuracy [8]. For example, by extending the Sparse Ternary Com-
pression (STC) framework of the existing top-k gradient dilution compression 
technology to specifically meet the needs of the federated learning environment 
[9], the sparse gradient can still bring good model accuracy, but deterministic 
sparsification. The solution still lacks performance analysis guarantees. Quanti-
zation aims to compress gradients and reduce the number of bits in a single 
communication by limiting the number of bits representing floating point num-
bers during communication, and has been successfully applied to several engi-
neering tasks using wireless sensor networks [10]. In the context of distributed 
machine learning, a 1-bit binary quantization method [11] and a multi-bit quan-
tization scheme [12] have been applied. 

Existing research directions on federated self-supervised learning mostly focus 
on optimizing data processing on the client [13] and improving model aggrega-
tion effects [14], while less on communication optimization of the federated 
self-supervised framework. 

In conclusion, In order to reduce the communication overhead of the fede-
rated self-supervision framework, we combined the communication compres-
sion methods of edge computing and traditional federated learning to build a 
new federated self-supervision communication optimization framework. 

The key contributions of this research’s work are as follows: 
• Introduce the concept of edge computing into the federal self-supervision 

framework, and solve the problem of low communication efficiency and high 
communication delay between clients and central servers by adding edge 
servers. 

• Use the sparse gradient compression module to reduce the communication 
overhead when uploading client model parameters and gradients, and im-
prove the adaptive learning rate optimization algorithm (Adam algorithm) in 
the sparse communication compression module to make the learning rate 
more stable. 

• Use Quantization compression methods to reduce the communication over-
head when downloading the model on the server side and further reduce the 
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total communication overhead. 

2. Methodsand Model 
2.1. System Model 

The framework process is as follows: 
• Initialize the central server-side model parameters gW  (encoder 0

gW  and 
predictor p

gW ), and send the initialized original parameters to each edge 
server. 

• The edge server delivers the initial parameters to each subordinate client. 
• Use Algorithm 2.3 - 2.5 to process the upload parameters. Model parameters 

and gradient compression during upload. 
• The edge server aggregates and quantitatively sends it to the client, and ac-

cumulates gradients. 
• After several rounds of intermediate aggregation, it is uploaded to the central 

server. 
• Average gradient quantification obtained by adding the sparse tensors up-

loaded by the edge server to the central server. 
• Download the model to the edge server. 
• Loop iteration. 

Figure 1 shows the entire edge-system component of the federal self-supervision 
framework. 

2.2. Gradient Sparsification and Top-k Gradient Selection 

In an edge computing environment, the client relies on local data for 
self-supervised learning to train the model. The model parameters and gradients 
of the local model are sparse and then uploaded to the edge server, which can al-
leviate communication bandwidth pressure [15]. During the gradient sparsifica-
tion process, we set Top-k as the sparsification method filter and set a gradient 
threshold K. Only the gradients whose size reaches K can be aggregated. If not, 
gradient accumulation is performed locally iteratively, and iterations are re-
peated until The K value is reached in a certain round. 

Let ( )F w  be the total loss function, ( ),f x w  represents the loss of sample 
x, N clients, the minimum batch processing b of nodes, during the gradient ac-
cumulation process 

( ) ( )1 ,
x

F w f x w
χχ ∈

= ∑                        (1) 

( )1
1 ,

1 ,
N

i
t t t

k x Фк o
w w f x w

Nb τ
λ+

= ∈ +

= − ∇∑ ∑                 (2) 

λ represents the learning rate, χ is the data set, w represents the weight of the 
network, Φ K, τ+ o represents the sequence of total size Nb from the data set χ 
during training. 

iw  is the weight at the T-th position, then the weight after the T round is 
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Figure 1. Federated self supervised communication compression model using edge com-
puting. 
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From formula (3), we can see that the batch processing of the gradient accu-
mulation process increases from Nb  to NbT , where T  is the gradient The 
length of the sparse update interval for 𝑤𝑤𝑖𝑖 iterations. 

Sparse updates will slowly affect the convergence of the model [16]. In a gra-
dient sparse scenario, the momentum method is used for momentum correction, 
and the gradient is updated as follows: 

( ), , 1
,

1 ,k t k t t
x k t

a a f x w
Nb−

∈Φ

= + ∇∑  

( )1 ,
1

M

t t k t
k

r mr spa a−
=

= +∑                      (4) 

1t t tw w rα+ = −  

m represents momentum, ,k ta  represents the gradient accumulation of train-
ing edge node k. When the gradient value accumulation value reaches K, sparse 
uploading, the weight iw  after the sparse update interval T  is 

( ), , , , 1 ,
i i i

i t T i t k t T k t k tw w λ+ + += − ∇ +∇ +∇              (5) 

Momentum-corrected gradients stabilize the size of the gradient sparse update 
interval T . The local accumulated gradient ,k ta  replaces the real gradient ,k t∇ , 
and the accumulated gradient value ,k ta  after vector correction is subsequently 
used for gradient sparseness. The formula of (4) be: 

, , 1 ,k t k t k ta a r−= +  

( ), , 1
,

1 ,k t k t t
x k t

r r f x w
Nb−

∈Φ

= + ∇∑                    (6) 
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( )1 ,
1
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t t k t
k

w w spa aλ+
=

= + ∑  

2.3. Bias Correction for Adam-AvgS 

The Adam (Adaptive Moment Estimation) [17] algorithm is a method with 
adaptive learning rate characteristics. This algorithm combines the AdaGrad al-
gorithm and the RMSProp algorithm to solve the problem of sparse gradient op-
timization while providing a method to reduce noise. But there is still the prob-
lem of poor convergence effect. Small batch correction may not be a problem, 
but when optimizing a large number of gradients, large learning rate interfe-
rence may occur. Sparsifying gradients results in a large number of gradient ite-
rations. 

In order to smoothly perform sparse bias correction, during the process of op-
timizing sparse model parameter compression, we improved the Adam algo-
rithm to better adapt to the characteristics of sparse gradients. We subtract the 
gradient and momentum values to more accurately reflect the change in gra-
dient. In the Adam algorithm, the first-order momentum mt helps to smooth the 
fluctuations of the gradient, while the second-order momentum vt is used to 
adaptively adjust the learning rate. In order to strengthen the connection be-
tween the two gradient parameters, we relocate the second-order momentum of 
this round so that the update of the second-order momentum is related to the 
parameters of the previous gradient. Such a design facilitates smoother conver-
gence and reduces fluctuations during training. 

In addition, in order to further improve the stability of the training process, 
we further limit the learning rate of adaptive learning. We calculated the sum of 
previous dynamic learning rates and found their average. By limiting the fluctu-
ation range of the learning rate, we can better control the training process of the 
model and obtain more stable and reliable training results. 

Adam-AvgS algorithm flow is as follows: 
• Input: initial parameter 0θ , exponential decay rate 1β , 2β  ∈  [0, 1], n is 

the number of learning rates participating in the mean, sum is the synthesis 
of previous learning rates, initial learning rate α  = 0.001. ε  = 10−8. 

• Output: Update parameter tθ . 
• Initialization: Random objective function ( )f θ . 
• 0 0 0, 0, 0, 0, 1m t nθ ν← ← ← ← . 

• while tθ  Not converged. 
• 1t t← + . 
• ( )1t t tg fθ θ −←∇  (Update gradient value). 
• ( )1 1 11t t tm m gβ β−← ⋅ + − ⋅  (Update first moment estimate term). 
• ( )( )( )2 1 2 11t t t t t tv v g m g vβ β ε− −← + − − − +  (Update the second-order mo-

ment estimation term, replacing the second-order momentum with the dif-
ference between the gradient and the first-order momentum and the differ-
ence between the gradient and the previous round of second-order momen-
tum). 
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• ( ) ( )
1 2

ˆ ˆ, ˆ ˆ, ,
1 1

t t
t t t t t t t tt t

m vm v η α ν ε η α ν ε
β β

← ← ← + ← +
− −

 (Correct the 

deviation of the first moment, correct the deviation of the second moment 
Calculate the current learning rate). 

• 1 ,t t t t tsum sum S sum nη− +← ←  (Learning rate summation and averaging). 
• Update parameters. 

Figure 2 shows that: After using Adam-AvgS for learning rate smoothing, the 
learning rate change trend is more stable than before using the algorithm. 

2.4. Quantitative Compression of Downloaded Model Parameters 

Previous research has shown that there is too much repeated information in the 
gradient, and the model training can still be completed even if the gradient is 
sparsely reduced to one percent of the original, so a 99% sparsification rate will 
be used below. Although sparsification reduces a lot of communication over-
head, the average gradient information uploaded is important information after 
compression. Compared with the one percent communication cost when up-
loading, there will be a communication cost several times higher when down-
loading than when uploading. 

The gradient average aggregation with a sparsification rate of 99 will continue 
to reduce the sparsity rate as the number of nodes increases, which means more 
communication overhead is added (Table 1). 

The weight quantification formula from 32-bit floating point type (FP32) to 
8-bit integer type (INT8) is as follows: 

t
q

sf
i

WW Z
X

 
= + 
  

                           (7) 

After receiving the quantized weight, the server can restore the 8-bit integer 
(INT8) to the 32-bit floating point (FP32) through the following formula: 

( )f sf i qW X W Z′ = −                          (8) 

3. Experimental Design and Results 

Implementing FedSSL in Python using the deep learning framework PyTorch 
We use ResNet-18 as the default network for the encoder. The predictor is a 
two-layer multilayer perceptron (MLP). By default, this article trains R = 100 
epochs, K = 5 clients, E = 5 local epochs, batch size B = 128, and initial learning 
rate η = 0.032. 

In order to determine the value of the optimal coefficient in gradient com-
pression, this article uses 80% of the CIFAR-10 and CIFAR-100 data sets for 
training and 20% for random testing. 

3.1. Model Accuracy 

The overall accuracy can be slightly improved under the edge computing 
framework, but the convergence and improvement are faster on CIFAR-100.  
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Figure 2. Adam-AvgS fluctuation of learning rate after smoothing. 

 
Table 1. Additional communication overhead caused by gradient aggregation. 

Sparsification 
Rate 

Communication Overhead 

Average Sparsification Rate Node Download Cost 

99 98.01 2 2x 

99 96.05 4 4x 

99 92.27 8 7.7x 

99 85.14 16 15x 

 

This may be because the CIFAR-100 data set is more complex than CIFAR-10 
and requires higher computing costs. And edge servers speed up convergence. 

Figure 3 and Figure 4 shows that Compared with the existing federated self- 
supervision framework (FedBYOL), the new federated self-supervision frame-
work (New FedBYOL), which adds edge servers and uses various communica-
tion compression modules, has higher model accuracy and smoother perfor-
mance in different data sets (Figure 3 CIFAR10, Figure 4 CIFAR100). 

3.2. Total Number of Bits 

New federated self-supervision-edge computing framework can effectively re-
duce total communication bits. 

Figure 5 shows compared with the existing federated self-supervision frame-
work (FedBYOL), the new federated self-supervision framework (New FedBYOL) 
that adds edge servers and uses various communication compression modules 
can reduce the total number of communication bits and has been verified in dif-
ferent data sets. 

4. Conclusion and Outlook 

In the federated self-supervision framework, adding edge servers can improve 
the convergence speed of models on complex data sets and reduce the pressure 
on central servers. The sparse parameter upload compression method and  
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Figure 3. Accuracy of federal self supervised edge computing framework 
model CIFAR10. 

 

 
Figure 4. Accuracy of federal self supervised edge computing framework 
model CIFAR100. 

 

 
Figure 5. Comparison of communication overhead of federally self supervised 
edge computing framework under different data sets. 
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download dynamic quantization compression method reduce the number of bits 
in a single communication and effectively reduce the total communication 
overhead. It can be seen that the edge communication optimization of the 
Edge-federated self-supervised framework is feasible. As more edge computing 
frameworks are used, improvements to compression algorithms will be a better 
way to optimize the system. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] McMahan, B., Moore, E., Ramage, D., et al. (2017) Communication-Efficient Learning 

of Deep Networks from Decentralized Data. Proceedings of the 20th International 
Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20-22 
April 2017, 1273-1282. 

[2] Liu, X., Zhang, F., Hou, Z., et al. (2021) Self-Supervised Learning: Generative or 
Contrastive. IEEE Transactions on Knowledge and Data Engineering, 35, 857-876.  
https://doi.org/10.1109/TKDE.2021.3090866 

[3] Chen, X. and He, K. (2021) Exploring Simple Siamese Representation Learning. 
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 
Nashville, 20-25 June 2021, 15750-15758.  
https://doi.org/10.1109/CVPR46437.2021.01549 

[4] Fang, P.F., Li, X., Yan, Y., et al. (2022) Connecting the Dots in Self-Supervised 
Learning: A Brief Survey for Beginners. Journal of Computer Science and Technol-
ogy, 37, 507-526. https://doi.org/10.1007/s11390-022-2158-x 

[5] Sun, C., Li, X., Wen, J., Wang, X., Han, Z. and Leung, V.C.M. (2023) Federated 
Deep Reinforcement Learning for Recommendation-Enabled Edge Caching in Mo-
bile Edge-Cloud Computing Networks. IEEE Journal on Selected Areas in Commu-
nications, 41, 690-705. https://doi.org/10.1109/JSAC.2023.3235443 

[6] Shi, W.S., Cao, J., Zhang, Q., et al. (2016) Edge Computing: Vision and Challenges. 
IEEE Internet of Things Journal, 3, 637-646.  
https://doi.org/10.1109/JIOT.2016.2579198 

[7] Dong, Y.M., Zhang, J., Xie, C.Z. and Li, Z.Y. (2024) A Survey of Key Issues in Edge 
Intelligent Computing under Cloud-Edge-Terminal Architecture: Computing Op-
timization and Computing Offloading. Journal of Electronics & Information Tech-
nology, 46, 765-776. 

[8] Alistarh, D., Grubic, D., Li, J., et al. (2017) QSGD: Communication-Efficient SGD 
via Gradient Quantization and Encoding. Advances in Neural Information Processing 
Systems, 30, 1707-1718.  

[9] Sattler, F., Wiedemann, S., Müller, K.R., et al. (2019) Robust and Communica-
tion-Efficient Federated Learning from Non-Iid Data. IEEE Transactions on Neural 
Networks and Learning Systems, 31, 3400-3413.  
https://doi.org/10.1109/TNNLS.2019.2944481 

[10] Msechu, E.J. and Giannakis, G.B. (2011) Sensor-Centric Data Reduction for Estima-
tion with WSNs via Censoring and Quantization. IEEE Transactions on Signal 
Processing, 60, 400-414. https://doi.org/10.1109/TSP.2011.2171686 

https://doi.org/10.4236/jcc.2024.125010
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.1109/CVPR46437.2021.01549
https://doi.org/10.1007/s11390-022-2158-x
https://doi.org/10.1109/JSAC.2023.3235443
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TSP.2011.2171686


Y. F. Ding 
 

 

DOI: 10.4236/jcc.2024.125010 150 Journal of Computer and Communications 
 

[11] Bernstein, J., Wang, Y.X., Azizzadenesheli, K., et al. (2018) signSGD: Compressed 
Optimisation for Non-Convex Problems. International Conference on Machine 
Learning, 560-569. 

[12] Qu, Z., Zhou, Z., Cheng, Y., et al. (2020) Adaptive Loss-Aware Quantization for 
Multi-Bit Networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), Seattle, 13-19 June 2020, 7988-7997.  
https://doi.org/10.1109/CVPR42600.2020.00801 

[13] Li, J., Lyu, L., Iso, D., et al. (2022) Mocosfl: Enabling Cross-Client Collaborative 
Self-Supervised Learning. The Eleventh International Conference on Learning Re-
presentations, New Orleans, 19-24 June 2022.  

[14] Wang, R., Hu, Y., Chen, Z., et al. (2024) TabFedSL: A Self-Supervised Approach to 
Labeling Tabular Data in Federated Learning Environments. Mathematics, 12, Ar-
ticle No. 1158. https://doi.org/10.3390/math12081158 

[15] Shi, S., Wang, Q., Zhao, K., et al. (2019) A Distributed Synchronous SGD Algorithm 
with Global Top-k Sparsification for Low Bandwidth Networks. 2019 IEEE 39th In-
ternational Conference on Distributed Computing Systems (ICDCS), Dallas, 07-10 
July 2019, 2238-2247. https://doi.org/10.1109/ICDCS.2019.00220 

[16] Chen, C.Y., Choi, J., Brand, D., et al. (2018) Adacomp: Adaptive Residual Gradient 
Compression for Data-Parallel Distributed Training. Proceedings of the AAAI Con-
ference on Artificial Intelligence. https://doi.org/10.1609/aaai.v32i1.11728 

[17] Diederik, P.K. (2014) Adam: A Method for Stochastic Optimization. International 
Conference on Learning Representations (ICLR), San Diego, 7-9 May 2015. 

 
 

https://doi.org/10.4236/jcc.2024.125010
https://doi.org/10.1109/CVPR42600.2020.00801
https://doi.org/10.3390/math12081158
https://doi.org/10.1109/ICDCS.2019.00220
https://doi.org/10.1609/aaai.v32i1.11728

	Edge-Federated Self-Supervised Communication Optimization Framework Based on Sparsification and Quantization Compression
	Abstract
	Keywords
	1. Introduction
	2. Methodsand Model
	2.1. System Model
	2.2. Gradient Sparsification and Top-k Gradient Selection
	2.3. Bias Correction for Adam-AvgS
	2.4. Quantitative Compression of Downloaded Model Parameters

	3. Experimental Design and Results
	3.1. Model Accuracy
	3.2. Total Number of Bits

	4. Conclusion and Outlook
	Conflicts of Interest
	References

