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Abstract 

 
Assumptions in the classical linear regression model include that of lack of autocorrelation of the error terms 

and the zero covariance between the explanatory variable and the error terms. This study is channeled 

towards the estimation of the parameters of the linear models for both time series and cross-sectional data 

when the above two assumptions are violated. The study used the Monte-Carlo simulation method to 

investigate the performance of six estimators: ordinary least square (OLS), Prais-Winsten (PW), Cochrane-

Orcutt (CC), Maximum Likelihood (MLE), Restricted Maximum- Likelihood (RMLE) and the Weighted 

Least Square (WLS) in estimating the parameters of a single linear model in which the explanatory variable 

is also correlated with the autoregressive error terms. Using the models’ finite properties(mean square error) 

to measure the estimators’ performance, the results shows that OLS should be preferred when autocorrelation 

level is relatively mild (ρ = 0.3) and the PW, CC, RMLE, and MLE estimator will perform better with the 

presence of any level of AR (1) disturbance between 0.4 to 0.8 level, while WLS shows better performance at 

0.9 level of autocorrelation and above. The study thus recommended the application of the various estimators 

considered to real-life data to affirm the results of this simulation study.  
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1 Introduction  

 
An AR(p) model is an autoregressive model where specific lagged values of et are used as predictor variables. 

Lags are where results from one time period affect following periods. The value for “p” is called the order. For 

example, an AR (1) would be a “first order autoregressive process”. The outcome variable in a first order AR 

process at some point in time t is related only to time periods that are one period apart (i.e. the value of the 

variable at t – 1). A second or third order AR process would be related to data two or three periods apart [1,2,3].  

 

1.2 The AR(p) model is defined by the equation 
 
First we define the standard OLS estimation to be of the form:  

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2+ . . . + 𝛽𝑘𝑋𝑖𝑘 + e𝑡 

 

where 𝑖 = 1, 2,…t.       

    

    Thus,       
        𝑦

1
= 𝛽0 + 𝛽1𝑋11 + 𝛽2𝑋12+ . . . + 𝛽𝑘𝑋1𝑘 + e1 

        𝑦2 = 𝛽0 + 𝛽1𝑋21 + 𝛽2𝑋22+ . . . + 𝛽𝑘𝑋2𝑘 + e2 

         

.

.

.
 

        𝑦𝑛 = 𝛽0 + 𝛽1𝑋𝑡1 + 𝛽2𝑋𝑡2+ . . . + 𝛽𝑘𝑋𝑡𝑘 + 𝑒𝑡 
 

In vector form  

 

[
 
 
 
 
 
 
𝑦1

𝑦2

𝑦3

.

.

.
𝑦𝑡]

 
 
 
 
 
 

  =  

 
 
 
 
 
 
 
1   𝑋11  𝑋12   . . .  𝑋1𝑘

1   𝑋21  𝑋22   . . .  𝑋2𝑘

1   𝑋31  𝑋32   . . .  𝑋3𝑘

.
 .
 .

1   𝑋𝑡1  𝑋𝑡2   . . .  𝑋𝑡𝑘  
 
 
 
 
 
 

     

[
 
 
 
 
 
 
𝛽0

𝛽1

𝛽2

.

.

.
𝛽𝑘]

 
 
 
 
 
 

   +          

[
 
 
 
 
 
 
𝑒0

𝑒1

𝑒2

.

.

.
𝑒𝑡]

 
 
 
 
 
 

 

𝑡 ×  1             𝑡  ×  ( 𝑘 + 1)        (𝑘 + 1)  ×  1            𝑡 ×  1           
 

The general form is: 

 

             y = X β + et                          

 

where y is an (t × 1) vector of observations of the dependent variable, X matrix is an n × (k+1)  full rank matrix 

of explanatory variables, 𝛽  is a ((k+1) ×1 vector of unknown parameters to be estimated, et is (t × 1) vector of 

random error. The parameter 𝛽 in a linear regression model are commonly estimated using the Ordinary Least 

Squares Estimator (OLSE). The OLSE of  𝛽  is given as:  

 

  yXXXOLS


1
̂          

 

The estimator is generally preferred if there is no violation in any of the assumptions of the linear regression 

model [4]. However, if the model violates the autocorrelation assumption, then the error term e t will take the 

form:  

 

et = 𝜑0 + φ1et-1 + φ2et-2 + … + φpet-p + δt 

 

Where: 

 

 et-1, et-2… et-p are the past series values (lags) of the error term et, 
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 𝜑0−𝑝 is the coeeficient of the past series (lags) of the error term et, 

 δt is white noise (i.e. randomness), 

 and δt is defined by the following equation:  

 

 𝛿𝑡 = (1 − ∑ ∅𝑖
𝑝
𝑡=1 ) 

 

where ∅𝑖 is the process mean 

 

To estimate the parameters of linear models and also to enable inferences to be made about these estimators, 

certain underlying assumptions are made. The absence of autocorrelation of the error terms and that X is a 

matrix with non-stochastic elements and has rank k < t, hence ∅𝑖 and et are independent for all i and t [5,6] is 

expected.  

 

This study is channeled towards the estimation of the parameters of the linear models when the above 

assumption is violated using simulated data set. This would help researchers and practitioners in the choice of 

estimator in empirical work when the regressor and the error terms are not well behaved. It would also allow 

correct inferences in linear models plagued by autocorrelated disturbances, which are also significantly 

correlated with the exponential trended explanatory variable [7]. Some researchers have worked on the 

methods for detecting the presence of autocorrelation and alternative estimators to estimate the parameters in the 

linear regression model with autocorrelation error [8,9,4]. These include [10-21]. 

 

However, thus paper evaluates the estimation ability of six methods of estimation of AR (1) order one process. 

We compared the ordinary least square (OLS), Prais-Winsten (PW), Cochrane-Orcutt (CC), Maximum 

Likelihood (MLE), Restricted Maximun- Likelihood (RMLE) and the Weighted Least Square (W+LS).  

 

1.3 Aim and Objectives  

 
The aim of the study is to compare the various method for estimating model with AR (1) disturbance. 

Particularly the specific objectives are:  

 

i. Determine all the criteria for comparing the estimators for model with autoregressive of order one 

disturbance.  

ii. Compare the performance of selected AR of order one process estimator with various level of AR(i) 

disturbance.    

iii. Determine the best AR (1) estimator in terms of efficiency (minimum standard error) which could be 

Bias, Mean Absolute Error and Mean Square Error.  

 

2 Material and Methods 

 
2.1 Structures of disturbance term  

 
The following structures are popular in autocorrelation:  

 

• Autoregressive (AR) process.  

• Moving average (MA) process.  

• Joint Autoregression moving average (ARMA) process.  

 

This study is based on Autoregressive process only so we will limit our discussion to autoregressive process 

only [22,23].  

 

2.2 The selected AR (1) estimators for comparison  

 
In the next section the description for the different estimation methods used in this paper as presented.  
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2.2.1 Cochrane-orcutt procedure  

 

This procedure utilizes P matrix defined while estimating β0 and β1 is known. It has following steps:  

 

i. Apply OLS to 𝑦𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝑢𝑡 and obtain residual vector e.  

ii. Estimate   Note that r is a consistent estimator of ρ.  

iii. Replace ρ by r is  

 
𝑦𝑡 − 𝜌𝑦𝑡−1 = 𝛽0(1 − 𝜌) + 𝛽(𝑥𝑡 − 𝜌𝑥𝑡−1) + 𝜀𝑡  

 

𝑎𝑛𝑑 𝑎𝑝𝑝𝑙𝑦 𝑂𝐿𝑆 𝑡𝑜 𝑡ℎ 𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑚𝑜𝑑𝑒𝑙.  
 

𝑦𝑡 − 𝑟𝑦𝑡−1 = 𝛽0
∗ + (𝑥𝑡 − 𝑟𝑥𝑡−1) + 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝑡𝑒𝑟𝑚  

 

And obtained estimators of  respectively  

 

This is Cochrane-Orcutt procedure. Since two successive applications of OLS are involved, so it is also called as 

two-step procedure.  
 

This application can be repeated in the procedure as follows:   

 

i.  Put  in original model ii.  Calculate the residual sum of squares.  

iii. Calculate   and substitute it in the model.  

 
𝑦𝑡 − 𝜌𝑦𝑡−1 = 𝛽0(1 − 𝜌) + 𝛽(𝑥𝑡 − 𝜌𝑥𝑡−1) + 𝜀𝑡  

 
𝑎𝑛𝑑 𝑎𝑔𝑎𝑖𝑛 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ 𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑚𝑜𝑑𝑒𝑙.  

iv. Apply OLS to this model and calculate the regression coefficients.  

 

This procedure is repeated until convergence is achieved, i.e., iterate the process till the two successive 

estimates are nearly same so that stability of estimator is achieved. This is an iterative procedure and is 

numerically convergent procedure. Such estimates are asymptotically efficient and there is a loss of one 

observation [24].  

 

2.2.2 Prais-Winsten procedure  

 

This is also an iterative procedure based on two step transformations.  

 

i. Calculate   where  are residuals based on OLSE.  

ii. Replace 𝜌 𝑏𝑦 𝜌 ̂ in the model as in Cochrane-Orcutt procedure  

 

  
 

iii. Use OLS for estimating the parameters.  

 

The estimators obtained with this procedure are asymptotically as efficient as best linear unbiased estimators. 

There is no loss of any observation.  
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2.2.3 Maximum likelihood procedure  

 

Assume that 𝑦 ~ 𝑁 (𝑋𝛽, 𝜎𝜀
2𝜑). the likelihood function for 𝛽, 𝜌 𝑎𝑛𝑑 𝜎𝜀

2 is  

 

  
 

Ignoring the constant and using  

 

  
 

The log-likelihood is  

 

  
 

The maximum likelihood estimators of  can be obtained by solving the normal equations  

 

  
 

Here normal equations turn out to be nonlinear in parameters and cannot be easily solved.  

One solution is to  

 

- first derive the maximum likelihood estimator of   

- Substitute it back into the likelihood function and obtain the likelihood function as the function of 𝛽 𝑎𝑛𝑑 

𝜌  

- Maximize this likelihood function with respect to 𝛽 𝑎𝑛𝑑 𝜌   

 

Thus,  

 

  
 

  

 

Is the estimator of 𝜎𝜀
2.  

 

Substituting  in place of  is the log-likelihood function yields  
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Maximization of ln L* is equivalent to minimizing the function  

 

  
 

Using optimization techniques of non-linear regression, this function can be minimized and estimates of β and ρ 

can be obtained.   

 

If n is large and |𝜌| is not too close to one, then the term (1 − 𝜌2)1⁄𝑛 is negligible and the estimates of β will be 

same as obtained by nonlinear least squares estimation.  

 

2.2.4 Restricted maximum likelihood method  

 

This method is sometimes called the reduced maximum likelihood or residual maximum likelihood method. The 

likelihood of a sample is the prior probability of obtaining the data in your sample. Assume that   

 

  
 

Follows the k dimensional AR (p) process, given by  

 

  
 

Where et is an independent (0,1) series and the roots of   

 

  
 

Are at most one in absolute value. The initial value of   are assumed to  0, −1, ⋯, −𝑝 + 1. 

Letting lk = Var(Y), the log restricted likelihood for Y is  

 

  
 

Where  

 

𝑄 = 𝑌𝑇k −1𝑌 − 𝑌𝑇k−1(𝑋𝑇k−1𝑋) −1𝑋𝑇k−1𝑌  

 

And X is the nk x k matrix (𝐼𝑘, ⋯, 𝐼𝑘)  

 

For simplicity, we illustrate the weighted least squares approximate restricted maximum likelihood estimator 

through the univariate AR (1) model, where  

 

𝑌𝑡 = 𝛼�̃�𝑡 + 𝑒𝑡  

 

The restricted maximum likelihood estimator 𝛼 ̂𝑅𝐸𝑀𝐿 is the minimizer of  

 

  
 

Where  
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(𝛼) = {1 + (𝑛 − 1)(1 − 𝛼)2}−1  

 

2.2.5 Ordinary least squares 

 

The ordinary least squares (OLS) for an AR (1) model is: 

 

∅̂𝑜𝑙𝑠 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡+1−�̅�)𝑇−1

𝑡−1

∑ (𝑦𝑡−�̅�)2𝑇−1
𝑡−1

  

 

The asymptotic standard error for ∅̂ols is: 

 

𝑆𝐸𝑜𝑙𝑠 = √
𝑇−(𝑇−1)∅2−1

𝑇−𝑇𝑦2
𝑇

  

 

The OLS estimation is capable of handling non-stationary data under certain restrictions. This means that it is 

possible to obtain a non-stationary estimate (i.e., |∅̂ols|>1|ϕ^ols|>1). To identify possible different behaviors, we 

distinguish two types of OLS analysis results: OLS-A will refer to the complete results, where OLS-S will refer 

to the results where the non-stationary results are left out [22,23]. 

 

Autoregressive (AR) Process  

 

The structure of disturbance term in autoregressive process (AR) is assumed as  

 

𝑢𝑡 = ∅1𝑢𝑡−1 +  ∅2𝑢𝑡−2+ ⋯ +  ∅𝑝𝑢𝑡−𝑝 + 𝜀𝑡  

 

That is, the current disturbance term depends on the q lagged disturbances and ∅1, ∅2, ⋯, ∅𝑝 are the parameters 

(coefficients) associated with 𝑢𝑡−1, 𝑢𝑡−2, ⋯, 𝑢𝑡−𝑝 respectively. An additional disturbance term is introduced in 𝜀t 

which is assumed to satisfy the following conditions:  

 

(𝜀𝑡) = 0  

 

(𝜀𝑡−𝑠) = {𝜎0𝜀 2 𝑖𝑓 𝑖𝑓 𝑠 𝑠 ≠= 00  

 

This process is termed as AR (p) process. In practice, the AR (1) process is more popular.  

 

2.3.1 Estimation under the first order autoregressive process  

 

Consider a simple linear regression model   

 

  
 

Assume the  follow a first order autoregressive scheme defined as  

 

  
 

Where 

 

   
 

  
 

for all t =1, 2..., n where  is the first order autocorrelation between ut and ut-1 t =1, 2..., n. Now  
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Similarly, .  

 

In general, .  

 

3 Procedure for the Monte Carlo Simulation Experiment 

 
To compare the various estimators for the autocorrelation (ϕ), we simulate according to an AR(1) model. In the 

generation of the data we vary the length of the time series T and the autocorrelation ϕ. For T we use nineS 

different sizes, namely 10,20,30,40, 50,100,250,500 and 1000 For ϕ, we use an autocorrelation of 0.0, ±0.1 ±0.3 

±0.4 ±0.5 ±0.8 ±0.9 and ±0.99. Earlier studies show that there is a difference between the bias for the negative 

and positive ϕ for several estimators, including r 1 and the C-statistic [12], (Solanas et al. 2010). This indicates 

that a thorough test is required to include both positive and negative autocorrelations. Finally, the number of 

replications must be set. However, a pilot study showed that the maximum standard deviation of the 

mean  ∅̂  over 2000–5000 replications was 0.0007, when T = 10 and ρ=0.7, for all estimators. Therefore, we 

use N = 2000 replications per condition. Considering a fully crossed experimental design, this yields 13× 9 × 

2000 = 234,000 simulated data sets. 

 

Across all conditions, μ is set to zero and σ2 to one, which can be done without loss of generality. This results in 

a standard normal distribution for yt given ϕ. 

 

3.1 Analyses procedure 

 
For the simulations and analyses we use the program ‘R’ (R Core Team 2019). The Estimator was computed 

directly with the basic functions available. For the Yule–Walker, OLS and MLE methods we use the command 

‘ar’ from the software package ‘stats’.  
 

4 Results and Discussion 

 
This section gives the result of the analysis based on the proposed methods. The ordinary least square (OLS), 

Prais-Winsten (PW), Cochrane-Orcutt (CC), Maximum Likelihood (MLE), Restricted Maximun- Likelihood 

(RMLE) and the Weighted Least Square (WLS).  The analysis is based on Monte Carlo simulation study and 
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application to real life with details described in the previous chapter. The estimators deviations from the true 

value is used to with the predictive ability of the estimators to compare their performance in the presence of 

AR(1) disturbance. The performance of these estimators towards the autocorrelated structure or AR(1) 

disturbance was justified by considering their error measurement, Bias, mean square error (MSE) and mean 

absolute error (MAE).  

 

4.1 Simulation study results 

 
4.1.1 Comparison Based on BIAS, MSE and MAE of the Parameters 

 

Table 1. Comparison among estimators when ρ = 0.0 (AR-disturbance present at 0.0) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 1.677556439 1.829163065 2.539859486 1.802230649 1.585652855 1.415168571 

20 0.494560939 0.566457888 0.588459044 0.569505163 0.555301771 3.056439212 

30 1.742255165 1.830558218 1.838034381 1.828889002 1.825156999 8.183528328 

40 11.41665309 12.02446339 12.40201021 12.03199849 11.97156466 8158.092501 

50 5.473026322 5.828757816 5.964987538 5.828384995 5.816128397 297.5615122 

100 3.376579875 3.414000651 3.460433867 3.41400669 3.410434891 30.89522509 

250 0.518051205 0.519907542 0.52308319 0.519903164 0.519994043 0.69079669 

500 0.135289529 0.135434841 0.13612885 0.135437562 0.135450361 0.142934951 

1000 0.03359212 0.033615699 0.033680409 0.033615829 0.033617169 0.041381115 

 

Table 2. Comparison among estimators when ρ = 0.10 (AR-disturbance present at 0.10) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 0.462315739 0.478483458 0.418142379 0.4790216 0.47757641 0.463951493 

20 3.159950473 3.421204811 3.593516828 3.422884958 3.290534938 50.45198821 

30 0.741496085 0.779386738 0.808085996 0.776178486 0.769438922 4.235307818 

40 11.08924831 11.43755971 11.93610356 11.45269536 11.39616205 137.4550253 

50 15.14334068 15.68743787 16.19074988 15.68821432 15.64868408 193.753046 

100 3.644542377 3.646340615 3.68792863 3.646604484 3.641554484 8.409397655 

250 0.567372485 0.561628161 0.564595037 0.561632496 0.561562572 0.623883457 

500 0.143229511 0.142042615 0.142305562 0.142046053 0.142057439 0.157277545 

1000 0.036287272 0.035904117 0.035971877 0.035903954 0.035904298 0.042978231 

 

Table 3. Comparison among estimators when ρ = -0.10 (AR-disturbance present at -0.10) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 0.258389418 0.349034633 0.349502268 0.343482842 0.34832576 0.2633241 

20 2.913600132 3.230113438 3.467847342 3.244529307 3.18393118 7.66851369 

30 0.726430661 0.745376528 0.770134343 0.741083986 0.740568764 1.845775022 

40 10.28127075 10.72849003 11.17650426 10.74036628 10.71991632 5148.136844 

50 14.06591229 14.42331129 14.86645718 14.41729431 14.4150196 230.9845854 

100 3.339214275 3.375751677 3.410906683 3.376785626 3.372670598 19.8952734 

250 0.519381878 0.514054377 0.516581114 0.514007485 0.513980642 0.626532794 

500 0.131038114 0.128490883 0.12871002 0.128489304 0.128505273 0.149336984 

1000 0.032873913 0.03231277 0.032365042 0.03231307 0.03231432 0.040702466 
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Table 4. Comparison among estimators when ρ = 0.30 (AR-disturbance present at 0.30) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 2.041778792 2.225949917 3.043870284 2.212873968 2.058200467 1.938352593 

20 7.982790454 8.044362429 9.328612318 8.061568522 7.962559912 32.35866816 

30 4.335231373 3.947134196 4.224114621 3.934717875 3.921577835 69.89287969 

40 0.106079042 0.106359855 0.097743996 0.106202037 0.105466352 0.132088781 

50 0.200140947 0.166508761 0.186175401 0.166550684 0.165437042 0.688089708 

100 4.587826784 4.122500096 4.164997454 4.122882799 4.12032928 12637.54277 

250 0.727810692 0.64746263 0.648769648 0.647479199 0.647388094 0.798788069 

500 0.172274123 0.153310026 0.153842293 0.153309423 0.153306735 0.179290748 

1000 0.045442006 0.040883036 0.040899504 0.040882731 0.040882488 0.050783469 

 

Table 5. Comparison among estimators when ρ = -0.30 (AR-disturbance present at -0.30) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 1.602507546 1.26102012 1.259510017 1.294280269 1.33084165 1.577842422 

20 6.022518184 6.632577267 7.042412438 6.506753723 6.336043496 15.25446723 

30 3.785250278 3.334929585 3.467960367 3.330842152 3.359660619 100.4551538 

40 0.102985419 0.079158488 0.075988067 0.079335558 0.080559638 0.257269497 

50 0.143589292 0.140327761 0.145705389 0.140363407 0.139113222 0.345503277 

100 3.378911404 2.988342875 3.011085204 2.987467299 2.986572381 8.04378765 

250 0.530654217 0.467848684 0.467733586 0.467837895 0.467743906 0.642459775 

500 0.126793257 0.108964936 0.108839174 0.108964831 0.108966845 0.151172183 

1000 0.032815129 0.028132671 0.028145681 0.028133403 0.028133908 0.044364189 

 

Table 6. Comparison among estimators when ρ = 0.50 (AR-disturbance present at 0.50) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 6.088655792 4.910332683 9.346574679 4.500885901 5.315081067 5.137357085 

20 0.362032346 0.239085798 0.376184652 0.251233321 0.255886256 0.9362035 

30 3.685031778 2.984971919 3.210477343 2.992793468 2.979198808 9.395262384 

40 40.9819629 33.44534932 35.26855533 33.52223614 33.70344067 267801.5212 

50 8.463105482 6.760905155 6.94539354 6.914344499 7.541400193 143.4221623 

100 6.667181788 5.414045619 5.552208509 5.416114151 5.415977911 28.48404332 

250 1.059214625 0.857567933 0.869805479 0.85769179 0.857710762 0.948768603 

500 0.264300873 0.210390137 0.21118345 0.210385262 0.210384229 0.237670706 

1000 0.064446736 0.051951842 0.052065036 0.051952697 0.051953457 0.066922614 

 

Table 7. Comparison among estimators when ρ = 0.80 (AR-disturbance present at 0.80) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 0.642137301 0.634332376 0.628571464 0.658109753 0.723236123 1.080884084 

20 1.088308534 0.61242658 2.10932706 0.333037518 0.290868885 0.335017258 

30 3.551666925 3.559135643 3.773053495 3.440295456 3.951679721 2.844658131 

40 1.661510764 1.336792916 1.255191691 1.328076238 1.363428958 1.201322753 

50 51.96614494 39.60880832 48.80707849 39.93475882 41.35312601 237.0424919 

100 26.73562329 21.16686959 22.60145347 21.33198801 21.48582487 40.16296644 

250 4.348565682 3.500147067 3.620431435 3.727741351 6.561116295 2.119983957 

500 1.084455459 0.859619053 0.878303252 0.85969345 0.85978076 0.54900904 

1000 0.280510916 0.224825352 0.227028661 0.224838722 0.224836591 0.163092895 

 



 

 
 

 

Rauf et al.; AJPAS, 15(2): 1-17, 2021; Article no.AJPAS.74094 
 

 

 
11 

 

Table 8. Comparison among estimators when ρ = 0.90 (AR-disturbance present at 0.90) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 1.684155932 0.88496137 10.72849003 11.17650426 10.74036628 10.71991632 

20 7.534035456 7.218775537 7.301436667 7.283278202 7.150336223 2.935884825 

30 1.312845166 3.034413954 5.067729304 4.914366001 4.061003117 0.105569111 

40 40.3975682 32.1648494 57.4594885 32.60808561 34.63794658 43.61441184 

50 5.97209945 4.455509263 7.265226057 4.468124848 4.407906998 8.881103702 

100 66.42616422 54.66694646 67.92106598 53.3321713 55.3841561 46.92584652 

250 14.93244 12.7879846 13.96771344 12.79672588 12.80904169 4.112949593 

500 3.794334793 3.261157225 3.445274371 3.261189426 3.261289974 0.985940996 

1000 0.925407474 0.812914399 0.824430775 0.812994713 0.813046033 0.274086904 

 

Table 9. Comparison among estimators when ρ = 0.99 (AR-disturbance present at 0.99) 

 

Mean Square Error (MSE) 

SAMPLE OLS  PW  CC MLE  RMLE  WLS 

10 39.0236102 44.57706083 37.47012345 36.33916451 35.81777338 8.125857224 

20 12.27700069 8.928107439 8.018848488 8.561764836 8.475860607 3.938409337 

30 77.21111884 75.0462983 99.78911919 72.02676346 72.97828565 19.26653639 

40 48.35996234 588.8090677 54.44198461 33.06072197 29.48920424 15.30803365 

50 114.7620092 107.4621138 103.0759894 94.19029371 93.38343874 38.91425177 

100 37.91026034 36.47390218 30.04655628 35.1406444 35.77366318 2.476228869 

250 6.451623796 4.796415844 5.067729304 4.914366001 4.061003117 0.105569111 

500 1.838888221 0.810574411 0.654540666 0.857791122 2.55448943 0.046821323 

1000 76.04714833 70.97343513 85.41929284 70.41062272 201.231671 2.137437148 

 

 
 

Fig. 1. Plots of the MSE on the various estimators with sample sizes of 10 across different AR disturbance 

(0,0.10, 0.30,0.50,0.80,0.90,0.99) 

 

After a critical observations on the data and the line graph of the MSE of the respective estimators at the 

introduction of AR(1) of different levels i.e ρ =0, 0.1,0.3,0.5,0.8,0.9, 0.99 levels in the simulation program, the 

following are deduction about the Mean Square  Errors (MSE) of the Estimators for sample sizes 10 (n=10). It 

was observed that PW has the largest value of MSE and WLS has the lowest when AR (1) is at level 0.99. We 

then conclude that estimation by the WLS is the best in the presence of AR(1) of level 0.99 when the sample 

size is 10. 
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Fig. 2. Plots of the MSE on the various estimators with sample sizes of 20 across different AR disturbance 

(0,0.10, 0.30,0.50,0.80,0.90,0.99) 

 

After a critical observations on the data and the line graph of the MSE of the respective estimators at the 

introduction of AR(1) of different levels i.e ρ =0, 0.1,0.3,0.5,0.8,0.9, 0.99 levels in the simulation program, the 

following are deduction about the Mean Square  Errors (MSE) of the Estimators for sample sizes 20 (n=20). It 

was observed that OLS has the largest value of MSE and WLS has the lowest when AR (1) is at level 0.99. We 

then conclude that estimation by the WLS is the best in the presence of AR(1) of level 0.99 when the sample 

size is 20. It is also observed that when AR(1) is at 0 to 0.5, WLS was mostly affected among other estimators. 

  

 
 

Fig. 3. Plots of the MSE on the various estimators with sample sizes of 30 across different AR disturbance 

(0,0.10, 0.30,0.50,0.80,0.90,0.99) 

 

After a critical observations on the data and the line graph of the MSE of the respective estimators at the 

introduction of AR(1) of different levels i.e ρ =0, 0.1,0.3,0.5,0.8,0.9, 0.99 levels in the simulation program, the 

following are deduction about the Mean Square  Errors (MSE) of the Estimators for sample sizes 30 (n=30). It 

was observed that CC has the largest value of MSE and WLS has the lowest when AR (1) is at level 0.99.  We 

then conclude that estimation by the WLS is the best in the presence of AR(1) of level 0.99 when the sample 

size is 30. It is also observed that when AR(1) is at 0 to 0.5, WLS was mostly affected among other estimators.  
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Fig. 4. Plots of the MSE on the various estimators with sample sizes of 50 across different AR disturbance 

(0,0.10, 0.30,0.50,0.80,0.90,0.99) 

 

After a critical observations on the data and the line graph of the MSE of the respective estimators at the 

introduction of AR(1) of different levels i.e ρ =0, 0.1,0.3,0.5,0.8,0.9, 0.99 levels in the simulation program, the 

following are deduction about the Mean Square  Errors (MSE) of the Estimators for sample sizes 50 (n=50). It 

was observed that OLS has the largest value of MSE and WLS has the lowest when AR (1) is at level 0.99. We 

then conclude that estimation by the WLS is the best in the presence of AR(1) of level 0.99 when the sample 

size is 50. It is also observed that when AR(1) is at 0 to 0.9, WLS was mostly affected (highest value) among 

other estimators. 

  

 
 

Fig. 5. Plots of the MSE on the various estimators with sample sizes of 250 across different AR 

disturbance (0,0.10, 0.30,0.50,0.80,0.90,0.99) 

 

After a critical observations on the data and the line graph of the MSE of the respective estimators at the 

introduction of AR(1) of different levels i.e ρ =0, 0.1,0.3,0.5,0.8,0.9, 0.99 levels in the simulation program, the 

following are deduction about the Mean Square  Errors (MSE) of the Estimators for sample sizes 250 (n=250). It 

was observed that OLS has the largest value of MSE and WLS has the lowest when AR (1) is at level 0.99. We 

then conclude that estimation by the WLS is the best in the presence of AR(1) of level 0.99 when the sample 

size is 250. It is also observed that when AR(1) is at 0.5, 0.8,0.9,0.99, WLS the best estimator to use when the 

sample size is 250. 
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Fig. 6. Plots of the MSE on the various estimators with sample sizes of 500 across different AR 

disturbance (0,0.10, 0.30,0.50,0.80,0.90,0.99) 

 

After a critical observations on the data and the line graph of the MSE of the respective estimators at the 

introduction of AR(1) of different levels i.e ρ =0, 0.1,0.3,0.5,0.8,0.9, 0.99 levels in the simulation program, the 

following are deduction about the Mean Square  Errors (MSE) of the Estimators for sample sizes 500 (n=500). It 

was observed that RMLE has the largest value of MSE and WLS has the lowest when AR (1) is at level 0.99. 

We then conclude that estimation by the WLS is the best in the presence of AR(1) of level 0.99 when the sample 

size is 500. It is also observed that when AR(1) is at 0.5, 0.8,0.9,0.99, WLS the best estimator to use when the 

sample size is 500. 

 

 
 

Fig. 7. Plots of the MSE on the various estimators with sample sizes of 1000 across different AR 

disturbance (0,0.10, 0.30,0.50,0.80,0.90,0.99) 

 

After a critical observations on the data and the line graph of the MSE of the respective estimators at the 

introduction of AR(1) of different levels i.e ρ =0, 0.1,0.3,0.5,0.8,0.9, 0.99 levels in the simulation program, the 

following are deduction about the Mean Square  Errors (MSE) of the Estimators for sample sizes 1000 

(n=1000). It was observed that OLS has the largest value of MSE and WLS has the lowest when AR (1) is at 

level 0.99. We then conclude that estimation by the WLS is the best in the presence of AR(1) of level 0.99 when 

the sample size is 1000. It is also observed that when AR(1) is at 0.5, 0.8,0.9,0.99, WLS the best estimator to 

use when the sample size is 1000. 
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5 Conclusion 

 
The results shows the following:  

 

 That the robust methods are as efficient as the OLS if the basic assumptions are satisfied. In addition, 

small presence of AR1 disturbance in the data did not substantially impair robust methods like, CC, PW, 

MLE and RMLE. However, the robust estimators are PW, CC, RMLE and MLE in the presence of AR1 

disturbance of almost 0.8 level. While, WLS shows better performance when the sample is large and the 

autocorrelation levels are at 0.9 and 0.99. Especially when the sample size increase and becomes 

relatively large. The robustness of the estimators was also seen clearly when the sample size is 250,500 

and 1000 and also the level of AR1 is higher than 0.5 level. The pattern of performance of the estimators 

in terms of MSE was relatively similar as the level of the AR1 disturbance increase. Thus, strongly 

suggesting that the estimators are more effective when the AR1 disturbance are highly obvious.  

 The findings of this study also strongly show that the use of the OLS when the data set is contaminated 

with AR1 disturbance will only lead to a misleading result, thus estimators like   PW, CC, RMLE and 

MLE may be recommended in such situation.  In extreme cases, the WLS can also be useful.  

 However, in every situation of test the PW, CC, RMLE and MLE Estimator did very well. This was as a 

result of the fact that, these methods were developed as modifications to the OLSE and other robust 

methods, therefore, they are able to resist the influences of AR1 disturbance that limit the performances 

of OLSE and WLS methods.  

 

6 Recommendations 

 
In respect of our findings, the following recommendations are given on the use and application of robust 

methods in linear model analysis. 

 

 We recommend the use of robust methods because of the effects of masking and swamping. Robust 

methods help to uncover observations which may be outliers but are behaving as usual observations, or 

the observations which are not outliers but because of other data points they appear as one. 

 The central limit theorem is based on large sample theory and it is not in all situations that this law 

holds, therefore it is advisable to use robust methods, since they do not impose strict distributional 

assumptions on the datasets. 

 Again, robust methods can be used concurrently with the Ordinary Least Squares method of Estimation 

as diagnostic tools. 

 Finally, many statisticians do not use robust methods because, they believe these methods are 

computationally complex with less information on how they are used. However, we recommend the use 

of these methods because, there are statistical packages which now have functions for the application of 

robust methods. 
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