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Abstract 

 
This study employed the method of calibration on product type estimator to propose calibration product type 

estimators using three distance measures namely; chi-square distance measure, the minimum entropy distance 

measure and the modified chi-square distance measure for single constraint. The estimators of variances of 

the proposed estimators were also obtained. An empirical study to ascertain the performance of these 

estimators was carried out using real life and stimulated data set. The result with the real life data showed that 

the proposed calibration product type estimator �̅�𝑝𝑐𝑝1  produced better estimates of the population mean �̅� 

compared to   �̅�𝑝𝑐𝑝2 and �̅�𝑝𝑐𝑝3 . Results from the simulation study showed that the proposed calibration 

product type estimators had a high gain in efficiency as compared to the product type estimator. The 

simulation result also showed that the proposed estimators were more consistent and reliable under the 

Gamma and Exponential distributions with the exponential distribution taking the lead. The conventional 

product type estimator however was found to be better if the underlying distributional assumption is normal 

in nature.    
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1 Introduction  

 
Over the years information on auxiliary variable has been used to improve on the precision of an estimate of the 

population mean or total, as in ratio, product, regression and difference method of estimation. In each case the 

advance knowledge of the population mean, �̅� of the auxiliary variate 𝑥 is required. The ratio estimator is used 

when the variables are positively correlated, while the product type estimator is preferred when the variates are 

negatively correlated. Robson [1], Murthy [2] and Perri [3] had established that both the ratio and product type 

estimator are good estimators of the population parameters if the regression line is a straight line and passes 

through the origin. However in many practical situations the regression line does not pass through the origin and 

in such situations the ratio and product estimators do not perform as well as the regression estimator [4].  

 

It is an established fact that in stratified sampling design, the use of auxiliary variable increases the precision of 

estimates of a population characteristic. In stratified sampling design, the population under investigation is 

divided into different strata so as to obtain the homogeneity within each stratum, and sample observations are 

drawn within each stratum generally by the procedure of simple random sampling.  Members of the sample are 

assigned a sampling weight, which represents the fraction of the population that is accounted for by the sample 

members.  

 

Calibration technique which was introduced by Deville and Sarndal [5] seeks to adjust sampling weights in 

stratified sampling design with the aim of improving the precision of the estimates of the population parameters. 

To adjust the sample weights, information on auxiliary variable is used based on existing data, or other large 

surveys, it is often possible to know the population total, mean or proportion for other variables measured in the 

survey, as well as the values recorded for the members of the sample.  

 

Mathematically, the problem of calibration can be defined informally as follows. Suppose there are some initial 

weights assigned to n objects of a survey. Suppose further that there are m auxiliary variables and that for these 

auxiliary variables the sample values are known, either exactly or approximately. The calibration problem seeks 

to improve on the initial weights by finding new weights that incorporate the auxiliary information. Several 

authors including Singh [6], Singh [7], Singh [8], Farrell and Singh [9], Farrell and Singh [10], Wu and Sitter 

[11], Estevao and Särndal [12], Kott [13], Montanari and Ronalli [14], Clement and Enang [15] amongst others 

considered the Deville and Särndal [5] method and derived important calibration estimators. 

 

In sampling literature, many calibration estimators have been proposed using auxiliary information, but this work 

seeks to extend the calibration technique to adjust the weight of the conventional product type estimator in 

stratified sampling using one auxiliary variable under one constraint. 

 

1.1 Definition of terms 

 
�̅�ℎ is the population mean of the auxiliary variable 

�̅�ℎ is the sample mean of the auxiliary variable 

�̅�ℎ is the population mean of the variable of interest 

�̅�ℎ is the sample mean of the variable of interest 

𝑆ℎ𝑦
2  is the population variance of the variable of interest 

𝑠ℎ𝑦
2  is the sample variance of the variable of interest 

𝑆ℎ𝑥
2  is the population variance of the auxiliary variable 

𝑠ℎ𝑥
2  is the sample variance of the auxiliary variable 

𝑆ℎ𝑥𝑦  is the covariance between the auxiliary variable and variable of interest 

𝜌𝑥𝑦 is the correlation between the variable of interest and the auxiliary variable 

𝑁 is the population size 

𝑛 is the sample size 

𝑁ℎ is the stratum population size 

𝑛ℎ is the stratum sample size 

𝑄ℎ is a positive constant 
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𝑀𝑆𝐸 (�̂̅�𝑝) is the estimated mean square error of the conventional product type estimator 

𝑀𝑆𝐸 (�̂̅�𝑝𝑐𝑝) is the mean square error of the proposed estimators  
 

1.2 Percentage average relative efficiency (%𝑹𝑬̅̅ ̅̅ )  
 
The relative efficiency of two procedures is given by the ratio of their efficiencies and is often defined using 

variance or mean square error. This shall be used to measure the average efficiency of each proposed estimator. 

It can be computed as: 
 

%𝑅𝐸̅̅ ̅̅ (�̂̅�𝑝𝑐𝑝) = { √
𝑀𝑆𝐸(�̂̅�𝑝)

𝑀𝑆𝐸(�̂̅�𝑝𝑐𝑝)
} × 100                                                    

 

 

(1) 

Where  
 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅ (�̂̅�𝑝𝑐𝑝) =
1

ℎ
∑ 𝑀𝑆𝐸(�̂̅�𝑝𝑐𝑝)

𝐻

ℎ=1

 

 

(2) 

It should be noted that a %𝑅𝐸̅̅ ̅̅ (�̂̅�𝑝𝑐𝑝) of value greater than 100 predicts a relative increase in efficiency of the 

proposed estimator, while a %𝑅𝐸̅̅ ̅̅ (�̂̅�𝑝𝑐𝑝) of value less than 100 indicates a loss in efficiency of the proposed 

estimator. 
 

1.3 Percentage average absolute relative bias %(𝑨𝑹𝑩̅̅ ̅̅ ̅̅ ) 

  
If �̂̅�𝑝𝑐𝑝, then, for each stratum ℎ = 1,2, … , 𝐿, the relative bias is given by: 
 

𝑅𝐵(�̂̅�𝑝𝑐𝑝) =
1

𝑅
∑ (

�̂̅�𝑝𝑐𝑝

�̅�𝑝

− 1) 

𝑅

𝑟=1

 

 

(3) 

and the percentage average absolute relative bias  %(𝐴𝑅𝐵̅̅ ̅̅ ̅̅ ) is computed as 
 

%𝐴𝑅𝐵̅̅ ̅̅ ̅̅ (�̂̅�𝑝𝑐𝑝) = {
1

𝐿
∑ 𝐴𝑅𝐵

𝐿

ℎ=1

(�̂̅�𝑝𝑐𝑝)} × 100  
 

(4) 

where  
 

𝐴𝑅𝐵(�̂̅�𝑝𝑐𝑝) = |
1

𝑅
∑ (

�̂̅�𝑝𝑐𝑝

�̅�𝑝

− 1)

𝑅

𝑟=1

|    
 

(5) 

and R is the number of runs 
 

1.4 Average coefficient of variation (𝑪𝑽̅̅ ̅̅ ) 

  
This measure shall be used to measure the reliability of the proposed estimators compared to the conventional 

product type estimator in stratified sampling. The percentage average coefficient of variation of �̂̅�𝑝𝑐𝑝 is given as: 

 

%𝐶𝑉̅̅ ̅̅ (�̂̅�𝑝𝑐𝑝) = {
1

𝐿
∑ 𝐶𝑉(�̂̅�𝑝𝑐𝑝)

𝐿

ℎ=1

} × 100 

 

(6) 
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Where 

 

𝐶𝑉(�̂̅�𝑝𝑐𝑝) =
√𝑀𝑆𝐸(�̂̅�𝑝𝑐𝑝)

�̅�𝑝

 

 

The interpretation is that, high values of %𝐶𝑉̅̅ ̅̅ (�̂̅�𝑝𝑐𝑝) indicates unreliable estimates while low value predicts 

reliable estimates.  

 

2 Proposed Estimators 

 
Theorem 2.1: Given the product type estimator 

 

�̅�𝑝𝑠 = ∑ 𝑊ℎ

�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿

ℎ=1
 

 

a calibration product type estimator �̅�𝑝𝑐𝑝1  for population mean �̅� given as 

 

�̅�𝑝𝑐𝑝1 = ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿

ℎ=1
+

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

(�̅� − ∑ 𝑊ℎ�̅�ℎ

𝐿

ℎ=1
) 

 

can be obtained by  

 

𝑀𝑖𝑛𝐷 = ∑
(𝛾ℎ1−𝑊ℎ)2

𝑊ℎ𝑄ℎ

𝐿
ℎ=1   

s.t.  

 

∑ 𝛾ℎ1�̅�ℎ
𝐿
ℎ=1 = �̅�  

 

Proof: 

 

Given 

 

�̅�𝑝𝑠 = ∑ 𝑊ℎ

�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿

ℎ=1
 

 

A calibration product type estimator 

 

�̅�𝑝𝑐𝑝1 = ∑ 𝛾ℎ1

�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿

ℎ=1
 

 

(7) 

where the weight 𝛾ℎ1 are chosen such that the distance measure  

 

∑
(𝛾ℎ1 − 𝑊ℎ)2

𝑊ℎ𝑄ℎ

𝐿

ℎ=1
 

 

(8) 

is minimized subject to the constraint 
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∑ 𝛾ℎ1�̅�ℎ

𝐿

ℎ=1
= �̅�   

 

(9) 

Combing (8) and (9) gives the optimization function 

 

𝜑(𝛾ℎ1, 𝜆1) = ∑
(𝛾ℎ1−𝑊ℎ)2

𝑊ℎ𝑄ℎ

𝐿
ℎ=1 − 2𝜆1(∑ 𝛾ℎ1�̅�ℎ − �̅�𝐿

ℎ=1 )   

(10) 

where 𝜆1 is a Lagrange multiplier. 

 

Differentiating equation (10) partially with respect to 𝛾ℎ1and 𝜆1, and equating to zero gives 

 

𝛾ℎ1 = 𝑊ℎ + 𝜆1𝑄ℎ�̅�ℎ   (11) 

and 

 

𝜆1 =
�̅� − ∑ 𝑊ℎ�̅�ℎ

𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2𝐿

ℎ=1

   
 

(12) 

substituting (12) into (11) yields 

 

𝛾ℎ1 = 𝑊ℎ +
𝑊ℎ𝑄ℎ�̅�ℎ

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2𝐿

ℎ=1

(�̅� − ∑ 𝑊ℎ�̅�ℎ
𝐿
ℎ=1 )   

(13) 

substituting equation (13) into equation (7) we obtain  

 

�̅�𝑝𝑐𝑝1 = ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 +

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

(�̅� − ∑ 𝑊ℎ�̅�ℎ
𝐿
ℎ=1 )      

 

(14) 

which is the proposed calibration product type estimator for population mean �̅�  in stratified random sampling as 

required to prove. This estimator is in form of a regression estimator with ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1  as the intercept and 

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

∑ 𝑊ℎ𝑄ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

 as slope. 

 

By letting  𝑄ℎ = 1 then equation (14) becomes  

 

�̅�𝑝𝑐𝑝11 = ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 +

∑ 𝑊ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

∑ 𝑊ℎ�̅�ℎ
2�̅�ℎ

𝐿
ℎ=1

(�̅� − ∑ 𝑊ℎ�̅�ℎ
𝐿
ℎ=1 )   

 

(15) 

Which is the proposed regression calibration product type estimator for population mean  �̅�  in stratified 

sampling. 

 

Also by letting 𝑄ℎ =
1

�̅�ℎ
 , then equation (14) becomes     
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�̅�𝑝𝑐𝑝12 = ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 +

∑ 𝑊ℎ�̅�ℎ�̅�ℎ
𝐿
ℎ=1

∑ 𝑊ℎ�̅�ℎ�̅�ℎ
𝐿
ℎ=1

 (�̅� − ∑ 𝑊ℎ�̅�ℎ
𝐿
ℎ=1 )  

 

(16) 

Which is the proposed ratio calibration product type estimator for population mean  �̅� in stratified sampling. 

 

Theorem 2.2: Given the product type estimator, a calibration product type estimator �̅�𝑝𝑐𝑝2  for population mean 

�̅�  given as 

 

�̅�𝑝𝑐𝑝2 = ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 𝑒𝑥𝑝 (∑ 𝑙𝑛 [

�̅�

𝑊ℎ�̅�ℎ
]𝐿

ℎ=1 ) =   ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 ∏ (

�̅�

𝑊ℎ�̅�ℎ
)𝐿

ℎ=1    

can be obtained by  
 

𝑀𝑖𝑛𝐷 = ∑
1

𝑄ℎ
{𝛾ℎ2 𝑙𝑜𝑔 (

𝛾ℎ2

𝑊ℎ
)  − 𝛾ℎ2 − 𝑊ℎ} 𝐿

ℎ=1    

  

s.t.   

 

∑ 𝛾ℎ2�̅�ℎ

𝐿

ℎ=1
= �̅� 

  
Proof: 

 

Given 
 

 �̅�𝑝𝑠 = ∑ 𝑊ℎ
�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1  

 

 

We define a calibration estimator 
 

�̅�𝑝𝑐𝑝2 = ∑ 𝛾ℎ2

�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿

ℎ=1
 

 

(17) 

where the weights 𝛾ℎ2 are choosen such that the distance measure  

 

∑
1

𝑄ℎ

{𝛾ℎ2 𝑙𝑜𝑔 (
𝛾ℎ2

𝑊ℎ

) − 𝛾ℎ2 − 𝑊ℎ} 
𝐿

ℎ=1
 

 

(18) 

is minimized subject to the constraint  
 

∑ 𝛾ℎ2�̅�ℎ

𝐿

ℎ=1
= �̅� 

 

by combing (18) and this constraint gives 

 

𝜑(𝛾ℎ2, 𝜆2) = ∑
1

𝑄ℎ
{𝛾ℎ2 𝑙𝑜𝑔 (

𝛾ℎ2

𝑊ℎ
) − 𝛾ℎ2 − 𝑊ℎ} −𝐿

ℎ=1 𝜆2(∑ 𝛾ℎ2�̅�ℎ − �̅�𝐿
ℎ=1 )    

(19) 
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Differentiating equation (19) partially with respect to 𝛾ℎ2and 𝜆2, and equating to zero gives 

 

𝛾ℎ2 = 𝑊ℎ𝑒𝑥𝑝[𝜆2𝑄ℎ�̅�ℎ] (20) 

and  

 

𝜆2 =
1

∑ 𝑄ℎ�̅�ℎ
𝐿
ℎ=1

∑ 𝑙𝑛 (
�̅�

𝑊ℎ�̅�ℎ
)  𝐿

ℎ=1    

(21) 

substituting (21) into (20) gives 

 

𝛾ℎ2 = 𝑊ℎ𝑒𝑥𝑝 [
1

∑ 𝑄ℎ�̅�ℎ
𝐿
ℎ=1

∑ 𝑙𝑛 (
�̅�

𝑊ℎ�̅�ℎ
)𝐿

ℎ=1 𝑄ℎ�̅�ℎ] = 𝑊ℎ ∏ (
�̅�

𝑊ℎ�̅�ℎ
)

𝑄ℎ�̅�ℎ
∑ 𝑄ℎ�̅�ℎ

𝐿
ℎ=1

⁄
𝐿
ℎ=1   

 

(22) 

substituting equation (22) into equation (17) we obtain  

 

�̅�𝑝𝑐𝑝2 = ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 𝑒𝑥𝑝 (∑ 𝑙𝑛 [

�̅�

𝑊ℎ�̅�ℎ
]𝐿

ℎ=1 ) =   ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 ∏ (

�̅�

𝑊ℎ�̅�ℎ
)𝐿

ℎ=1       

Which is the proposed calibration product type estimator for population mean �̅�  in stratified random sampling. 

 

In this case, after substitution we observed that there is no need for a tuning parameter. 

 

Theorem 2.3: Calibration product type estimator �̅�𝑝𝑐𝑝3 for population mean 𝑌 ̅can be obtained from the product 

type estimator by 

 

𝑀𝑖𝑛𝐷 = ∑
(𝛾ℎ3−𝑊ℎ)2

𝛾ℎ3𝑄ℎ
 𝐿

ℎ=1   

 

s.t.  

 

∑ 𝛾ℎ3�̅�ℎ

𝐿

ℎ=1
= �̅� 

 

given as 

�̅�𝑝𝑐𝑝3 =  ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 (𝐿 +

(∑ 𝑊ℎ
2�̅�ℎ

2−�̅�2𝐿
ℎ=1 )

�̅�2 )
−

1

2
     

 

Proof:  

 

Given the product estimator 

 

�̅�𝑝𝑠 = ∑ 𝑊ℎ

�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿

ℎ=1
 

 

an estimator 
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�̅�𝑝𝑐𝑝3 = ∑ 𝛾ℎ3

�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿

ℎ=1
 

 

(23) 

where the weights 𝛾ℎ3 are choosen such that the distance measure 

 

∑
(𝛾ℎ3−𝑊ℎ)2

𝛾ℎ3𝑄ℎ
 𝐿

ℎ=1    

(24) 

is minimized subject to the constraint 

  

∑ 𝛾ℎ3�̅�ℎ

𝐿

ℎ=1
= �̅� 

 

combing (24) and the constraint gives 

 

𝜑(𝛾ℎ3, 𝜆3) = ∑
(𝛾ℎ3−𝑊ℎ)2

𝛾ℎ3𝑄ℎ

𝐿
ℎ=1 − 2𝜆3(∑ 𝛾ℎ3�̅�ℎ − �̅�𝐿

ℎ=1 )   

(25) 

Differentiating equation (25) partially with respect to 𝛾ℎ3and 𝜆3, and equating to zero gives 

 

𝛾ℎ3 =
𝑊ℎ

[1−2𝜆3𝑄ℎ�̅�ℎ]
1
2

    

(26) 

and 
 

𝜆3 =
�̅�2−∑ 𝑊ℎ

2�̅�ℎ
2𝐿

ℎ=1

2�̅�2 ∑ 𝑄ℎ�̅�ℎ
𝐿
ℎ=1

    
 

(27) 

substituting (27) into (26) gives 
 

𝛾ℎ3 = 𝑊ℎ [1 +  
(𝑄ℎ�̅�ℎ)(∑ 𝑊ℎ

2�̅�ℎ
2𝐿

ℎ=1 −�̅�2)

�̅�2 ∑ 𝑄ℎ�̅�ℎ
𝐿
ℎ=1

]
−

1

2
  

 

(28) 

substituting equation (28) into equation (23) yields 
 

�̅�𝑝𝑐𝑝3 =  ∑
𝑊ℎ�̅�ℎ�̅�ℎ

�̅�ℎ

𝐿
ℎ=1 (𝐿 +

(∑ 𝑊ℎ
2�̅�ℎ

2−�̅�2𝐿
ℎ=1 )

�̅�2 )
−

1

2
  

 

(29) 

Which is the proposed calibration product type estimator for population mean �̅� in stratified random sampling. 

Also in this case, after substitution of the adjusted weight into the calibration equation there is no need of a 

tuning parameter. 
 

3 Variance Estimators of the Proposed Estimators  

 
Theorem 3.1: Given the variance estimator of the product type estimator of population mean in stratified 

sampling as 
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�̂�(�̅�𝑝) = ∑ 𝑊ℎ
2𝛾

𝐿

ℎ=1
(𝑠ℎ𝑦

2 + 𝑅2𝑠ℎ𝑥
2 + 2𝑅𝑠ℎ𝑥𝑦)  

 

(30) 

where 

  

𝛾 =
1 − 𝑓ℎ

𝑛ℎ

 

 

𝑠ℎ𝑥𝑦 = 𝜌𝑥𝑦𝑠ℎ𝑥𝑠ℎ𝑦 

and 

 

𝑅 =
�̅�

�̅�
 

 

a variance estimator of the calibrated product type estimator  �̂�(�̅�𝑝𝑐𝑝1) for population mean �̅� given as 

 

�̂�(�̅�𝑝𝑐𝑝1) = ∑
𝐷ℎ𝛾ℎ1

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 +

(∑
𝐷ℎ𝑄ℎ𝛾ℎ1

2 𝑠𝑝𝑆ℎ𝑥
2

𝑊ℎ
2

𝐿
ℎ=1 )

∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥
4𝐿

ℎ=1
(𝑉(�̅�𝑠𝑡) − �̂�(�̅�𝑠𝑡))  

 

can be obtained by  

 

𝑀𝑖𝑛𝐷 = ∑
(𝜔ℎ1

𝑜 −𝐷ℎ)
2

𝐷ℎ𝑄ℎ

𝐿
ℎ=1     

 

s.t. 

 

∑ 𝜔ℎ1
𝑜

𝐿

ℎ=1
𝑆ℎ𝑥

2 = 𝑉(�̅�𝑠𝑡) 

 

Proof: Let (30) be rewritten in the form of  

 

�̂�(�̅�𝑝) = ∑
𝐷ℎ𝛾ℎ1

2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝 

 

(31) 

where 

 

𝐷ℎ =
𝑊ℎ

2(1−𝑓ℎ)

𝑛ℎ
  

 

and 

 

𝑠𝑝 = (𝑠ℎ𝑦
2 + 𝑅2𝑠ℎ𝑥

2 + 2𝑅𝑠ℎ𝑥𝑦)  

 

with  

 

𝑠ℎ𝑥𝑦 = 𝜌ℎ𝑥𝑦𝑠ℎ𝑥𝑠ℎ𝑦  

 

and  𝛾ℎ1 is the calibrated weights 

 

Now consider a calibration variance as estimator of the form 



 

 
 

 

Enang et al.; AJPAS, 15(2): 41-58, 2021; Article no.AJPAS.67505 
 

 

 
50 

 

�̂�(�̅�𝑝𝑐𝑝1) = ∑
𝜔ℎ1

𝑜 𝛾ℎ1
2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝     

 

(32) 

where the weights 𝜔ℎ1
𝑜 , are chosen such that the distance measure 

 

∑
(𝜔ℎ1

𝑜 − 𝐷ℎ)2

𝐷ℎ𝑄ℎ

𝐿

ℎ=1
   

 

(33) 

is minimized subject to the constraint 

 

∑ 𝜔ℎ1
𝑜

𝐿

ℎ=1
𝑆ℎ𝑥

2 = 𝑉(�̅�𝑠𝑡)  
 

(34) 

Combing (33) and (34) gives the optimization function 

 

𝜑(𝜔ℎ1
𝑜 , 𝜆11) = ∑

(𝜔ℎ1
𝑜 − 𝐷ℎ)2

𝐷ℎ𝑄ℎ

𝐿

ℎ=1
− 2𝜆11 (∑ 𝜔ℎ1

𝑜 𝑆ℎ𝑥
2 − 𝑉(�̅�𝑠𝑡)

𝐿

ℎ=1
)  

 

(35) 

Differentiating equation (35) partially with respect to 𝜔ℎ1
𝑜  and 𝜆11, and equating to zero gives 

 

𝜔ℎ1
𝑜 = 𝐷ℎ[1 + 𝜆11𝑄ℎ𝑆ℎ𝑥

2 ]     (36) 

and 

 

𝜆11 =
(𝑉(�̅�𝑠𝑡) − �̂�(�̅�𝑠𝑡))

∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥
4𝐿

ℎ=1

  
 

(37) 

where 

 

�̂�(�̅�𝑠𝑡) = ∑ 𝐷ℎ𝑠ℎ𝑥
2

𝐿

ℎ=1
 

 

substituting (37) into (36) gives 

 

𝜔ℎ1
𝑜 = 𝐷ℎ +

𝐷ℎ𝑄ℎ𝑆ℎ𝑥
2

∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥
4𝐿

ℎ=1

(𝑉(�̅�𝑠𝑡) − �̂�(�̅�𝑠𝑡))    
 

(38) 

substituting (38) into (31) yields  

 

�̂�(�̅�𝑝𝑐𝑝1) = ∑
𝐷ℎ𝛾ℎ1

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 +

(∑
𝐷ℎ𝑄ℎ𝛾ℎ1

2 𝑠𝑝𝑆ℎ𝑥
2

𝑊ℎ
2

𝐿
ℎ=1 )

∑ 𝐷ℎ𝑄ℎ𝑆ℎ𝑥
4𝐿

ℎ=1
(𝑉(�̅�𝑠𝑡) − �̂�(�̅�𝑠𝑡))   

 

(39) 

which is the proposed calibration product type variance estimator for population mean �̅�  in stratified random 

sampling. 
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Substituting 𝑄ℎ = 1𝑎𝑛𝑑 𝑄ℎ =
1

�̅�ℎ
 in (39) gives 

 

�̂�(�̅�𝑝𝑐𝑝11) = ∑
𝐷ℎ𝛾ℎ11

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝 +

(∑
𝐷ℎ𝛾ℎ11

2 𝑆𝑝𝑆ℎ𝑥
2

𝑊ℎ
2

𝐿
ℎ=1 )

∑ 𝐷ℎ𝑆ℎ𝑥
4𝐿

ℎ=1
(𝑉(�̅�𝑠𝑡) − �̂�(�̅�𝑠𝑡))   

 

(40) 

and 

 

�̂�(�̅�𝑝𝑐𝑝12) = ∑
𝐷ℎ𝛾ℎ12

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝 +

(∑
𝐷ℎ

1
�̅�ℎ

𝑠𝑝𝛾ℎ12
2 𝑆ℎ𝑥

2

𝑊ℎ
2

𝐿
ℎ=1 )

∑ 𝐷ℎ
1

�̅�ℎ
𝑆ℎ𝑥

4𝐿
ℎ=1

(𝑉(�̅�𝑠𝑡) − �̂�(�̅�𝑠𝑡))  

 

 

(41) 

 

This is the regression and ratio type calibration product variance estimator for population mean for stratified 

sampling respectively. 

 

Theorem 3.2: Given the product type variance estimator in (30), its weight can be adjusted by  

 

𝑀𝑖𝑛𝐷 = ∑
1

𝑄ℎ
{𝜔ℎ2

𝑜 𝑙𝑜𝑔 (
𝜔ℎ2

𝑜

𝐷ℎ
) − 𝜔ℎ2

𝑜 − 𝐷ℎ} 𝐿
ℎ=1      

 

s.t. 

 

∑ 𝜔ℎ2
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 = 𝑉(�̅�𝑠𝑡)  

 

to obtain the calibration product type variance estimator  �̂�(�̅�𝑝𝑐𝑝2) for population mean �̅� given as  

 

�̂�(�̅�𝑝𝑐𝑝2) = ∑
𝐷ℎ𝛾ℎ2

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 𝑒𝑥𝑝 (∑ 𝑙𝑛 (

𝑉(�̅�𝑠𝑡)

𝐷ℎ𝑆ℎ𝑥
2 )𝐿

ℎ=1 ) =     ∑
𝐷ℎ𝛾ℎ2

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 ∏ (

𝑉(�̅�𝑠𝑡)

𝐷ℎ𝑆ℎ𝑥
2 )𝐿

ℎ=1        

 

Proof: Rewriting the estimator (30) as 

 

�̂�(�̅�𝑝𝑐𝑝2) = ∑
𝜔ℎ2

𝑜 𝛾ℎ2
2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝 

 

(42) 

where the weights  𝜔ℎ2
𝑜 , are chosen such that the distance measure  

 

∑
1

𝑄ℎ
{𝜔ℎ2

𝑜 𝑙𝑜𝑔 (
𝜔ℎ2

𝑜

𝐷ℎ
) − 𝜔ℎ2

𝑜 − 𝐷ℎ} 𝐿
ℎ=1   

 

(43) 

is minimized subject to the constraint 

 

∑ 𝜔ℎ2
𝑜

𝐿

ℎ=1
𝑆ℎ𝑥

2 = 𝑉(�̅�𝑠𝑡) 
 

Then by combining (43) and the constraint gives the optimization function 

 

𝜑(𝛾ℎ2, 𝜆22) = ∑
1

𝑄ℎ
{𝜔ℎ2

𝑜 𝑙𝑜𝑔 (
𝜔ℎ2

𝑜

𝐷ℎ
) − 𝜔ℎ2

𝑜 − 𝐷ℎ} −𝐿
ℎ=1 𝜆22(∑ 𝜔ℎ2

𝑜 𝑆ℎ𝑥
2 − 𝑉(�̅�𝑠𝑡)𝐿

ℎ=1 )  
 

(44) 
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Differentiating equation (44) partially with respect to 𝜔ℎ2
𝑜  and 𝜆22, and equating to zero gives 

 

𝜔ℎ2
𝑜 = 𝐷ℎ𝑒𝑥𝑝[𝜆22𝑄ℎ𝑆ℎ𝑥

2 ]    (45) 

and 

 

𝜆22 =
1

∑ 𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1

∑ 𝑙𝑛 (
𝑉(�̅�𝑠𝑡)

𝐷ℎ𝑆ℎ𝑥
2 ) 

𝐿

ℎ=1
 

 

(46) 

Substituting (46) into (45) we obtain 

 

𝜔ℎ2
𝑜 = 𝐷ℎ𝑒𝑥𝑝 [

𝑄ℎ𝑆ℎ𝑥
2

∑ 𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1

∑ 𝑙𝑛 (
𝑉(�̅�𝑠𝑡)

𝐷ℎ𝑆ℎ𝑥
2 ) 𝐿

ℎ=1 ] = 𝐷ℎ ∏ (
𝑉(�̅�𝑠𝑡)

𝐷ℎ𝑆ℎ𝑥
2 )

𝑄ℎ𝑆ℎ𝑥
2

∑ 𝑄ℎ𝑆ℎ𝑥
2𝐿

ℎ=1
⁄

𝐿
ℎ=1     

 

(47) 

Substituting (47) into (42) gives 

 

�̂�(�̅�𝑝𝑐𝑝2) = ∑
𝐷ℎ𝛾ℎ2

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 𝑒𝑥𝑝 (∑ 𝑙𝑛 (

𝑉(�̅�𝑠𝑡)

𝐷ℎ𝑆ℎ𝑥
2 )𝐿

ℎ=1 ) =     ∑
𝐷ℎ𝛾ℎ2

2

𝑊ℎ
2 𝑠𝑝

𝐿
ℎ=1 ∏ (

𝑉(�̅�𝑠𝑡)

𝐷ℎ𝑆ℎ𝑥
2 )𝐿

ℎ=1    
 

(48) 

which is the proposed calibration product type variance estimator for population mean �̅�  in stratified random 

sampling. 

 

Theorem 3.3: Given the product type variance estimator, a calibration product type variance estimator 

�̂�(�̅�𝑝𝑐𝑝3) for population mean �̅� can be obtained by  

 

𝑀𝑖𝑛𝐷 = ∑
(𝜔ℎ3

𝑜 −𝐷ℎ)
2

𝜔ℎ3
𝑜 𝑄ℎ

𝐿
ℎ=1     

s.t. 

 

∑ 𝜔ℎ3
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 = 𝑉(�̅�𝑠𝑡)  

 

given as  

 

�̂�(�̅�𝑝𝑐𝑝3) = ∑
𝐷ℎ𝛾ℎ3

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝 (𝐿 +

1

(𝑉(�̅�𝑠𝑡))
2 (𝑉(�̅�𝑠𝑡))

2
− ∑ (DhShx

2 )2L
h=1 )

−1
2⁄

  

 

Proof: Given the product type variance estimator, we define a calibration variance estimator as 

 

�̂�(�̅�𝑝𝑐𝑝3) = ∑
𝜔ℎ3

𝑜 𝛾ℎ3
2

𝑊ℎ
2

𝐿

ℎ=1
𝑠𝑝 

 

(49) 

where the weights  𝜔ℎ3
𝑜 , are chosen such that the distance measure 

 

∑
(𝜔ℎ3

𝑜 − 𝐷ℎ)2

𝜔ℎ3
𝑜 𝑄ℎ

𝐿

ℎ=1
  

 

(50) 

is minimized subject to the constraint   
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∑ 𝜔ℎ3
𝑜𝐿

ℎ=1 𝑆ℎ𝑥
2 = 𝑉(�̅�𝑠𝑡)  

 

By combining (50) and the constraint gives an optimization function 

 

𝜑(𝜔ℎ
𝑜, 𝜆22) = ∑

(𝜔ℎ3
𝑜 −𝐷ℎ)

2

𝜔ℎ3
𝑜 𝑄ℎ

𝐿
ℎ=1 − 2𝜆22(∑ 𝜔ℎ3

𝑜 𝑆ℎ𝑥
2 − 𝑉(�̅�𝑠𝑡)𝐿

ℎ=1 )   
 

(51) 

Differentiating equation (51) partially with respect to 𝜔ℎ3
𝑜  and 𝜆22, and equating to zero gives 

 

𝜔ℎ3
𝑜 =

𝐷ℎ

[1 − 2𝜆22𝑄ℎ𝑆ℎ𝑥
2 ]

1
2

   
 

(52) 

and 

 

𝜆22 =
(𝑉(�̅�𝑠𝑡))

2
− ∑ (DhShx

2 )2L
h=1

2(𝑉(�̅�𝑠𝑡))
2

∑ 𝑄hShx
2L

h=1

  
 

(53) 

Substituting (52) into (53) we obtain 

 

𝜔ℎ3
𝑜 = 𝐷ℎ (1 + (

(𝑉(�̅�𝑠𝑡))
2

−∑ (DhShx
2 )

2L
h=1

(𝑉(�̅�𝑠𝑡))
2

∑ 𝑄hShx
2L

h=1

) 𝑄ℎ𝑆ℎ𝑥
2 )

−
1

2

    

 

(54) 

Substituting (54) into (49) we obtain  

 

�̂�(�̅�𝑝𝑐𝑝3) = ∑
𝐷ℎ𝛾ℎ3

2

𝑊ℎ
2

𝐿
ℎ=1 𝑠𝑝    (𝐿 +

1

(𝑉(�̅�𝑠𝑡))
2 (𝑉(�̅�𝑠𝑡))

2
− ∑ (DhShx

2 )2L
h=1 )

−
1

2
     

 

(55) 

Which is the proposed calibration product type variance estimator for population mean �̅�  in stratified random 

sampling. 

 

4 Empirical Studies 

 
In this section empirical evaluation of the proposed calibration estimators are done using stimulated data set with 

underlying distributional assumption of Normal, Gamma and Exponential and real – life data set from a 

secondary source by Ojua et al. [16] was used to authenticate the result of our study.  

 

4.1 Empirical evaluation of estimators using real-life data  

 
In this section estimate of the mean fat content in pepper is obtained using the proposed calibration product type 

estimator and the conventional product type estimator. This will help to compare the precision of the proposed 

estimators. The data summary is presented: 

 

𝑁 = 84, 𝑛 = 43, �̅� = 5.002, �̅� = 1.8042, 𝐿 = 2  𝜌 = −0.892  𝑅 = 0.3607 𝑠𝑥
2 = 15.1722,  [16] 

 

The results of the analysis using excel work sheet is presented in Tables. 
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Table 1. Mean fat estimates for the proposed calibration product type estimators 

 

Estimators Estimates 

�̅�𝑝 1.7271 

�̅�𝑝𝑐𝑝11 1.7729 

�̅�𝒑𝒄𝒑𝟏𝟐 1.7735 

�̅�𝒑𝒄𝒑𝟐 30.0007 

�̅�𝑝𝑐𝑝3 1.4807 

 

Table 1 above shows the estimate for the mean fat, of the proposed calibration product type estimators and the 

conventional product type estimator with real-life data from Ojua et al. [16]. It was observed that the ratio type 

calibration estimator �̅�𝑝𝑐𝑝12 obtained from the chi-square distance measure under one constraint gave a more 

precised estimate of the population mean than the other estimators in under consideration. It was also observed 

that the estimator �̅�𝑝𝑐𝑝2 over estimated the population mean than the other estimators. 

 

Table 2. Estimate of variance estimators for the proposed calibration product type estimator 

 

Variance Estimators Estimates 

�̂�(�̅�𝑝) 0.002579 

�̂�(�̅�𝑝𝑐𝑝11) 0.002563 

�̂�(�̅�𝑝𝑐𝑝12) 0.002563 

�̂�(�̅�𝑝𝑐𝑝21) 0.04112 

�̂�(�̅�𝑝𝑐𝑝22) 0.04112 

�̂�(�̅�𝑝𝑐𝑝31) 0.00264 

�̂�(�̅�𝑝𝑐𝑝32) 0.00269 

 

Table 2 shows the variance estimates for the proposed calibration product type estimators and the conventional 

product type variance estimator. It was observed that the regression type calibration variance estimator 

�̂�(�̅�𝑝𝑐𝑝11) and �̂�(�̅�𝑝𝑐𝑝12) obtained from the chi-square distance gave minimum variance. 

 

4.2 Simulation study 

 
To further examined the performance of the proposed calibration product type estimators for population mean, 

simulation was done for R = 10,000 runs using different sample sizes using R software with seed of (1113329). 

The result of the simulation is presented below: 

 

Table 3. Percent average relative efficiency for gamma, normal and exponential distribution 

  

Sample size 

 

Distributions      

10% Gamma 100 155.11 399.25 267.49 291.75 

 Normal 100 21.01 55.01 47.70 72.60 

 Exponential 100 13108.27 124843.64 1030.56 634.53 

15% Gamma 100 155.23 399.55 267.65 1715.49 

 Normal 100 66.48 54.91 47.61 72.47 

 Exponential 100 12283.90 203270.74 1029.61 633.60 

20% Gamma 100 154.7809 400.0738 267.9135 1725.133 

 Normal 100 21.08 55.11 47.77 72.77 

 Exponential 100 3838.82 57498.90 324.70 200.21 

25% Gamma 100 155.20 400.40 268.11 1733.87 

 Normal 100 66.50 55.02 47.69 72.64 

 Exponential 100 12104.99 139458.70 1025.78 633.55 
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Table 3 shows the percent average relative efficiency (%𝑅𝐵̅̅ ̅̅ ) of the proposed estimators and the conventional 

product type estimator. It was observed that under the exponential distributional assumption the proposed 

estimators had a high gain in efficiency with the estimator �̅�𝑝𝑐𝑝11  taking the lead. When the distributional 

assumption was Gamma, the estimator �̅�𝑝𝑐𝑝3 took the lead and when the distribution was Normal in nature, the 

proposed estimators had decrease efficiency.  

 

Table 4. Percentage average absolute relative bias for gamma, normal and exponential distribution 

 

 Distributions 

 

     

10% Gamma 266.893 172.068 66.849 99.777 15.629 

 Normal 47.623 226.642 86.568 99.841 65.597 

 Exponential 1018.364 7.769 0.816 98.817 160.491 

15% Gamma 267.119 172.077 66.854 99.799 15.571 

 Normal 47.538 226.116 86.568 99.859 65.594 

 Exponential 1018.813 8.294 0.501 98.951 160.798 

20% Gamma 267.400 172.760 66.838 99.808 15.500 

 Normal 47.709 226.286 86.567 99.865 65.565 

 Exponential 1016.788 8.376 0.559 99.027 160.601 

25% Gamma 269.618 172.431 66.837 99.816 15.435 

 Normal 47.628 226.498 86.563 99.869 65.566 

 Exponential 1016.097 8.394 0.728 99.056 160.382 

 

Table 4 above shows the percent average absolute bias (%𝐴𝑅𝐵̅̅ ̅̅ ̅̅ )   for Normal distribution, Gamma distribution 

and Exponential distribution respectively using different sample sizes of  10%, 15%, 20% and 25%. It was 

observed that the proposed calibration product type estimators were more consistent under the gamma and 

exponential distribution, with exponential distribution taking the lead.  

  

Table 5. Average coefficient of variation for gamma, normal and exponential distribution 

 

Sample size Distributions 

 

     

10% Gamma 266.893 172.068 66.849 99.777 15.629 

 Normal 47.623 226.642 86.568 99.841 65.597 

 Exponential 1018.364 7.769 0.816 98.817 160.491 

15% Gamma 267.119 172.077 66.854 99.799 15.571 

 Normal 47.538 226.116 86.568 99.859 65.594 

 Exponential 1018.813 8.294 0.501 98.951 160.798 

20% Gamma 267.400 172.760 66.838 99.808 15.500 

 Normal 47.709 226.286 86.567 99.865 65.565 

 Exponential 1016.788 8.376 0.559 99.027 160.601 

25% Gamma 269.618 172.431 66.837 99.816 15.435 

 Normal 47.628 226.498 86.563 99.869 65.566 

 Exponential 1016.097 8.394 0.728 99.056 160.382 

 

Table 5 shows the average coefficient of variation (𝐶𝑉̅̅ ̅̅ )  for the proposed estimators and the conventional 

product type estimator. The result shows that the calibration product type estimator �̅�𝑝𝑐𝑝11 and �̅�𝑝𝑐𝑝12 are more 

reliable estimators of the population mean �̅�. Also under the normal distribution the conventional product type 

estimator is more reliable than the proposed calibration product type estimators. It was also observed that as the 

sample size increases there was no significant difference in the reliability for the proposed estimators. 

 

5 Discussion of Findings 

 
Using the real life data, the population mean fat of pepper fruits �̅� was calculated to be 1.8042. The result in 

Table 1 shows that this value was best estimated by the estimators �̅�𝑝𝑐𝑝12 and �̅�𝑝𝑐𝑝11 obtained using the chi-
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square distance measure, with estimated value of mean fats of 1.7735 and 1.7729 respectively. This result 

agrees with Koyuncu and Kadilar [17] which say that in the presence of other distance measures, the chi-square 

distance measure gives the best estimator. This result could be because the chi-square distance measure satisfies 

the set constraint which says that the sum of the product of the calibrated weight and the mean of the auxiliary 

variable equals the population mean of the auxiliary variable. 

 

Within the two estimators obtained using the chi-square distance measure, the ratio calibration product type 

estimator �̅�𝑝𝑐𝑝12, provided a better estimate of the population mean than the regression calibration product type 

estimator �̅�𝑝𝑐𝑝11. This result agrees with Clement and Enang [15] results which said that the ratio estimator 

estimate the population mean better then the regression estimator when the regression line passes through the 

origin. It was also observed that the conventional product type estimator was more precised in estimating the 

mean fat than estimators obtained using the minimum entropy and modify chi-square distance measures �̅�𝑝𝑐𝑝2 

and �̅�𝑝𝑐𝑝3. It is worthy of note that the estimator �̅�𝑝𝑐𝑝2 obtained with the minimum entropy distance measure 

grossly overestimated the mean fat indicating that this estimator is highly bias than the other estimators. This 

could be as a result of the large weight associated with using this distance measure. 

 

For the real life data, the result in Table 2 shows that the estimates of the variance estimators obtained using the 

chi-square distance gave smaller variance estimates and hence are more efficient than those obtained using 

other distance measures.  

 

From the simulation study carried out under the distributional assumption of Normal, Gamma and Exponential, 

it was observed that the proposed calibration product type estimators had a higher gain in efficiency than the 

conventional product type estimator with a higher gain in efficiency recorded when the distributional 

assumption is exponential in nature and a loss in efficiency when the distributional assumption is normal in 

nature which agrees to the fact that the variate are negatively correlated. The proposed estimators are consistent 

estimators since as the sample size increases the performance of the estimators did not vary and the estimators 

obtained from the chi-square distance measure had a smaller relative bias as compared to the conventional 

product type estimator when the distribution is exponential. Therefore, proposed calibration product type 

estimators are more reliable estimators as compared to the conventional product type estimator and reaffirms 

that the estimators perform better when the distribution is exponential.  

 

6 Conclusion 
 
In this paper, we proposed calibration product type estimators of population mean in stratified sampling to be 

used in survey when the variables of interest are negatively correlated. The performance of these proposed 

estimators was compared using real – life data obtained from Ojua et al (2018) and simulated data set under the 

distributional assumption of Normal, Gamma and Exponential. It was shown that the calibration product type 

estimators obtained by minimizing the chi-square distance measure gave a better estimator with minimum 

variance than the other estimators obtained from the minimum entropy and modified chi-square distance 

measures. Also when the underlying distribution is exponential in nature, the proposed estimators outperform 

the conventional product type estimator. 

 

7 Recommendation 

 
This study recommends the proposed ratio-product type calibration estimator  �̅�𝑝𝑐𝑝12  for use in estimating 

population mean when the variable of interest is negatively correlated with the auxiliary variable and the data 

set is exponential in nature. 

 

The use the constraint ∑ 𝛾ℎ�̅�ℎ = 2�̅�𝐿
ℎ=1  to minimize the minimum entropy distance measure is recommended 

for further researchers.  Secondly other distance measures can also be use to adjust the weight on the product 

type estimator in stratified sampling and compare with the once proposed in this study.  
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