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Abstract 

 
Human-assisted surveys, such as medical and social science surveys, are frequently plagued by non-response 

or missing observations. Several authors have devised different imputation algorithms to account for missing 

observations during analyses. Nonetheless, several of these imputation schemes' estimators are based on 

known auxiliary variable parameters that can be influenced by outliers. In this paper, we suggested new 

classes of exponential-ratio-type imputation method that uses parameters that are robust against outliers. 

Using the Taylor series expansion technique, the MSE of the class of estimators presented was derived up to 

first order approximation. Conditions were also specified for which the new estimators were more efficient 

than the other estimators studied in the study. The results of numerical examples through simulations 

revealed that the suggested class of estimators is more efficient. 
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1 Introduction 

 
Surveys like medical and social science surveys do face the problem of non-response due to involvement of 

human in data collection. These missing values, due to non-response, in turn create complications in data 

handling and analysis. Over time, many methods have been developed to address the problem of estimating 

unknown parameters in the presence of missing values. Imputation is a common technique used to handle 

situations where data is missing. Missing values can be completed with specific substitutes and data can be 

analyzed using standard methods. Information about unit of characteristic of interest observed and auxiliary 

variable help improve the accuracy of demographic parameter estimates. Hansen and Hurtwitz [1] were the first 

to consider the problem of non-response. Several authors also proposed imputation methods to deal with non-

response or missing values. Recent among them include Singh and Deo [2], Toutenburg et al. [3] Kadilar and 

Cingi [4], Singh [5], Singh and Horn [6], Gira [7], Audu and Singh [8] Kadilar and Cingi [9] Bhushan and 

Bandey [10], Singh et al. [11], Diana and Perri [12] Al-Omari et al. [13], Audu et al. [14-18], Singh et al. [19]. 

However, some of the estimators in aforementioned literatures depend on known parameters of the auxiliary 

variable which are influenced by outliers. In this study, new classes of ratio-type imputation method which 

utilized parameters that are free from outliers have been presented.   

 

The remaining sections of this article were organized as follows: In section 2, a class of mean imputation 

schemes to obtain estimators of population mean that are not sensitive to outliers were proposed. They are based 

on non-conventional robust measures of the auxiliary variable. Distributional properties of the suggested 

estimators are given in section 3. Conditions for the efficiency of the new estimators with respect to some 

existing estimators were established in section 4. Simulation studies were presented in section 5 to assess the 

performance of the proposed scheme estimators with respect to Audu and Singh [8] estimators. 

 

1.1 Notations 
 
The following notations have been used 

 

Y: Study variable. 

X: Auxiliary variable. 

,X Y : Population mean of the variables X and Y respectively 

N: Population Size.  

n: Size of the sample 

r: Number of respondents. 

R: Ratio of the population mean of study variable to population mean of auxiliary variable. 

nx  : The sample mean for the sample of size n. 

rx  : The sample mean of the variable X for set   

ry  : The sample mean of the variable Y for set   

2 2,Y XS S  : Population variance of the variables X and Y  

,Y XS S  : Population standard deviation of Y and X. 

1  :  Population coefficient of skewness of X. 

2  :  Population coefficient of kurtosis of X. 

YX  :  Population coefficient of correlation between Y and X. 

rg  :  Population regression coefficient. 

,Y XC C  :  Population coefficient of variation of Y and X. 

( )

1

4 2 1

1 2

N

i

i

i N
G X

N N

  
  

  
  :  Gini’s mean difference for X. 
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  :  Downtown’s method for X. 

 

  ( )2
1

2 1
N

pw i

i

S i N X
N





    :  Probability weighted moments for X. 

 

  :  Population variance covariance matrix. 

 

Let   denotes the set of r units response and 
c  denotes the se of n r units non-response or missing out of 

n  units sampled without replacement from the N  units population. For each i , the value of iy
 is 

observed. However, for unit 
ci , iy

 is missing but calculated using different methods of imputation.  

 

Using mean method of imputation, values found missing is to be replaced by the mean of the rest of observed 

values. The study variable thereafter, takes the form given as, 

 

.

           i

         i

i

i c

r

y
y

y


 


                    (1.1) 

 

Under the mean method of imputation, sample mean denoted by 0̂ can be derived as 

 
1

0
ˆ

i

i R

r y 



    

                                     (1.2)  

The variance of 0̂  is given by (1.3). 

 
2

0 ,
ˆ( ) r N YVar S                      (1.3)  

where    
211 1 2 1

,

1 1

, 1 ,
N N

r N Y i i

i i

r N S N y Y Y N y
  

 

        

 

Under ratio method of imputation, values found missing in the study variable are to be replaced by values 

obtained using the expression 

1 1

ˆ / /
r r

i i r r

i i

y x y x
 

   . The study variable thereafter, takes the form given 

as 
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i
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                 (1.4) 

 

Under the ratio method of imputation, estimator of population mean denoted by 1̂ can be derived as 

 
1

1 0
ˆ ˆ

n rx x                       (1.5)  

 

where 
1 1,r i n i

i R i S

x r x x n x 
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The MSE of 1̂  up  1n is given as: 

 

   2 2

1 0 ,
ˆ ˆ( ) 2r n X YXMSE MSE R S RS                                                 (1.6)  

 

where    
212 1 1 1

,

1 1

, , 1 , , , /
N N

YX YX Y X X i i r n

i i

S S S S N x X X N x r n R Y X 
   

 

          

Singh and Horn [6] utilized information from imputed values for responding and non-responding units as well, 

thereafter giving study variable the form given by (1.7). The scheme defined in (1.7) is called compromised 

imputation scheme as the responses of the respondents were computed by using linear combination of 

information on the study and auxiliary variables. 

 

.

ˆ(1 )          i

ˆ(1 )                        i

i i

i

c

i

n
y x

ry

x

  

 


  

 
  

                  (1.7) 

 

Under this method of imputation, estimator of population mean denoted by
2̂ can be derived as 

 

  1

2 0
ˆ ˆ 1 n rx x                           (1.8) 

 

The performance of 
2̂  attained optimal when 

21 /YX XRS S    and the  2 min
ˆMSE   is given by 

 

   2 0 ,min
ˆ ˆ

r n rg YX Y XMSE MSE S S                        (1.9) 

 

Nevertheless, the precision of 
2̂  depends on  and   is function of , ,YX YXY S  , unknown parameters of 

study variable y  which makes 
2̂  impracticable in real life application  

Singh and Deo [2] incorporated power transformation parameter to 
2̂  and obtain 

3̂  as 

 

 3 0
ˆ ˆ /n rx x


                                                (1.10) 

 

The performance of
3̂  attained optimal when 

2/YX XRS S   and the  3 min
ˆMSE   is given by 

   
2

2

3 1 ,
ˆ ˆ( ) r n X rgMSE MSE S R                                                (1.11)  

where 
2/rg YX XS S   

Nevertheless, the precision of 
3̂  depends on   and  is a function of , ,YX YXY S  , unknown parameters  of 

study variable y  which makes 
3̂  impracticable in real life application. 

 

Kadilar and Cingi [9] modified the work of Kadilar and Cingi [4] in the case of missing observations and 

suggested the following estimators of population mean 

 

   1

4 0
ˆ ˆ

rg r rX x X x                                                 (1.12) 
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5 0
ˆ ˆ

rg n nX x X x                      (1.13) 
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   1

6 0
ˆ ˆ

rg n r n rx x x x                        (1.14) 

 

   2 2 2

4 0 ,
ˆ ˆ( ) r N X rgMSE MSE S R                       (1.15) 

 

   2 2 2

5 0 ,
ˆ ˆ( ) n N X rgMSE MSE S R                                                  (1.16) 

 

      2
2

6 0 ,
ˆ ˆ( ) 2r n X rg rg YXMSE MSE S R R S                       (1.17) 

 

Audu and Singh [8] studied 
4 5

ˆ ˆ,   and 
6̂  suggested by Kadilar and Cingi [9], and proposed the following 

generalized class of imputation schemes;  
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(1.18) 

 

where 1 and 2  are known functions of auxiliary variables like coefficients of skewness  1 x , kurtosis 

 2 x , variation XC , standard deviation XS  etc, and 1 2   and 1 0  .  

 

The point estimators of finite population mean under these methods of imputation are given by 

 

 
 

 
 

0 1( )

0 1 2

1 2 1 2
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ˆ ˆ 1 exp

2

rg r r
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r r
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             (1.19)  

 

Their proposed class of imputation estimators is independent of unknown parameters; hence it is practically 

applicable.  

 
(*) 2 2 2

,
ˆ( ) ( 2 )i r N Y X YXMSE S S S                                                                                       (1.20) 
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1 2 1 2
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1 21 ( ( ) )rg

r
R

n
  

 
     

 
 

 

2 Proposed Estimator under Imputation 

 
Having studied the scheme and estimators of Audu and Singh [8], which utilized known functions of the 

auxiliary variable, that are sensitive to outliers, we proposed the following schemes to obtain estimators that are 

not sensitive to outliers by using nonconventional robust measures of the auxiliary variable defined as 

 

. ( ) ( ) ( )
( )exp

( ) ( )
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r rg r j k j r k c

j k
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The point estimator of the scheme above is given by 

 

( ( )) ( ) ( )
ˆ 1 ( )exp

( ) ( )

r rg r j k j r k

a r j k

j r k j k j r k

y X x X xr r
t y X

n n x X x

    
 

     

      
              

    (2.2) 

 

where,  ( ), ( ), ( ) , ,pw j kG n D n S n        , 1,2,3,4,5,6a   ,G D  and 
pwS  are the Gini’s 

mean difference, Downtown’s method and Probability weighted moments, which are the nonconventional 

robust measures free from the influence of outliers. 

 

Remark 1: Note that 
j k   , six different estimators for scheme (2.2) were obtained in the Table 1.  

 

Table 1. Some member of 
ât  for different values of 

j  and k  
 

a
 

Estimators Values of Constants 

j  
k  

1 

1

( ( )) ( ) ( )
ˆ 1 ( )exp

( ) ( )

r rg r j k j r k

r j k

j r k j k j r k

y X x X xr r
t y X

n n x X x

    
 

     

      
              

 

( )G n  ( )D n  

2 

2

( ( )) ( ) ( )
ˆ 1 ( )exp

( ) ( )

r rg r j k j r k

r j k

j r k j k j r k

y X x X xr r
t y X

n n x X x

    
 

     

      
              

 

( )G n  ( )pwS n  

3 

3

( ( )) ( ) ( )
ˆ 1 ( )exp

( ) ( )

r rg r j k j r k

r j k

j r k j k j r k

y X x X xr r
t y X

n n x X x
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4

( ( )) ( ) ( )
ˆ 1 ( )exp
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r rg r j k j r k
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j r k j k j r k

y X x X xr r
t y X

n n x X x
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5 
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ˆ 1 ( )exp

( ) ( )

r rg r j k j r k

r j k

j r k j k j r k

y X x X xr r
t y X

n n x X x

    
 

     

      
              

 

( )pwS n
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ˆ 1 ( )exp
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j r k j k j r k

y X x X xr r
t y X
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3 Properties of the Suggested Estimators 

 
In this section, to obtain the MSE of the estimators suggested, let us define: 

Theorem 1:  

 

 2 2 2

,
ˆ( ) 2a r N Y a Y X a XMSE t S M S S M S                                                                               (3.1) 

 

Proof: The MSE of the proposed estimators can be expressed as in (3.2) 
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1 1
ˆ( ) 1,2,3,4,5,6T

aMSE t for a                                                                                     (3.2)  

 

where 1

ˆ ˆ

ˆ ˆ, , , ,

a a

r rr r rg rg r r rg rg

t t

y xy Y x X y Y x X   

  
  
       
 

   

                    
2

, ,

2

, ,

r N Y r N Y X

r N Y X r N X

S S S

S S S

  

  

 
    

 
  , 

1 1

,r N r N and    1  is a row matrix of partial derivatives of the 

estimator 
ât  with respect to r ry and x  and  the transpose of   is  

1

T
 

 

On differentiating the estimator 
ât  with respect to ry partially, we have, 

 

ˆ ( ) ( ) ( )
1 exp

( ) ( ) ( )

j k j k j r ka

r j r k j k j r k

X X xt r r

y n n x X x

     

     

      
              

                                              (3.3) 

 

On setting ˆ, ,r r rg rgy Y x X     , we have, 

 

ˆ
1

ˆ, ,

a

r r r rg rg

t

y y Y x X  




   
                                                                                             (3.4) 

 

On differentiating the estimator 
ât  with respect to rx partially, considering product rule, we obtain, 

 

ˆ
1 ( )a

j k

r r r

t r V U
X U V

x n x x
 

    
     

     
                                                                               (3.5) 
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( )r rg r
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y X x
U X
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exp
j k j r k
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X x
V

X x

   

   

   
 
   
 

               (3.6)     

     

 

   
2

( 2 ) ( )j j j r k j j r

r
j k j r k

X x X xV
V

x X x

     

   

       


    
 

                                                              (3.7) 

 

   
 

2

ˆ ˆ ( )j k rg r rg r j

r j k

X y X xU

x X

    

 

      
 

                                                                    (3.8) 

 

On setting ˆ, ,r r rg rgy Y x X     ,  in equations (3.6), (3.7), (3.8), we obtain, 

 

ˆ ( ), , j kr r rg rg

Y
U

Xy Y x X   


  
                                                                            (3.9) 
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1
ˆ, ,r r rg rg

V
y Y x X  


  

                                                                                               (3.10) 

 

ˆ 2( ), ,

j

r j kr r rg rg

V

x Xy Y x X



  


 

   
                                                               (3.11) 

 

2ˆ ( ) ( ), ,

rg j

r j k j kr r rg rg

YU

x X Xy Y x X

 

    

 
   

       

                              (3.12) 

 

Substituting equations (3.9), (3.10), (3.11), (3.12) into equation (3.5), we obtain, 

 

2ˆ 3
1

ˆ 2( ), ,

ji
rg

r j kr r rg rg

Yt r

x n Xy Y x X




  

   
            

                                     (3.13) 

 

2ˆ

ˆ, ,

i
a

r r r rg rg

t
M

x y Y x X  


 

   
                                                                                   (3.14) 

 

where,
3

1
2( )

j

a rg

j k

Yr
M

n X




 

  
       

                            

                                             

Therefore,  

 1 1 aM    and its transpose  1 1
TT

aM                                                              

(3.15) 

 

Substitute (3.15) in (3.2), we obtained the mean square error of the estimator as 

 

 
2

, ,

2

, ,

1
ˆ( ) 1

r N Y r N Y X

a a

ar N Y X r N X

S S S
MSE t M

MS S S

  

  

  
        

                                            (3.16) 

 

 2 2 2 2

,
ˆ( ) 2i r N Y a Y X a XMSE t S M S S M S                                                                            (3.17) 

 

Theorem 2: the estimators  ˆ 1,2,3,4,5,6at a    are consistent. 

 

Proof: Let f(x) and g(x) be continuous function, then  

 

        lim lim lim ,
x p x p x p

f x g x f x g x p
  

                              (3.18) 

 

        lim lim lim ,
x p x p x p

f x g x f x g x p
  

                              (3.19) 
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lim
lim , , lim 0

lim

x p

x p x p

x p

f xf x
p g x

g x g x



 



                              (3.20) 

 

As ,r N n N  . Using the results of (3.18), (3.19) and (3.20), we have  

 

   
ˆ(lim lim ( lim ))

ˆlim lim lim 1 lim ( )
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( ) ( lim )
exp

( ) ( lim )

r rg r
r N r N r N

a r j k
r N r N r N r N

j r k
r N

j k j r k
r N

j k j r k
r N

y X xr r
t y X

n n x

X x

X x


 

 

   

   

  

   







  
    

 

   
 
   
 

                  (3.21) 

 

Since n N  if r N , then lim , lim ,r r
r N r N

y Y x X
 

   lim 1
r N

r

n
 and ˆlim rg rg

r N
 


 . Therefore, 

 ˆlim , 1,2,3,4,5,6a
r N

t Y a


                                                                                            (3.22)                                 

 

4 Efficiency Comparisons 

 
In this section, conditions for the efficiency of the new estimators over some existing related estimators were 

established. 

 

Theorem 3: Estimator ât is more efficient than 
0̂ if (4.1) is satisfied. 

 

2a rgM                         (4.1) 

 

Proof: Minus (3.1) from (1.3), theorem 3 is proved. 

Theorem 4: Estimator 
ât  is more efficient than 

1̂ if (4.2) is satisfied. 

 

   2 2

, ,2 2 0r N a rg a r n rgM M R R                          (4.2) 

 

Proof: Subtract (3.11) from (1.6), theorem 4 is proved. 

Theorem 5: Estimator ât  is more efficient than 
2̂ and 

3̂  if (4.3) is satisfied. 

 

 2 2

, , 2 0r n rg r N a rgM                           (4.3) 

 

Proof: Subtract (3.1) from each of (1.9) and (1.11), theorem 5 is proved. 

Theorem 6: Estimator ât  is more efficient than 
4̂  if (4.4) is satisfied. 

 

 
2

2 0rg aM R                        (4.4) 

 

Proof: Subtract (3.1) from (1.15), theorem 6 is proved. 

Theorem 47: Estimator ât  is more efficient than 
5̂  if (4.5) is satisfied. 

 

   2 2 2

, ,2 0r N a rg a n N regM M R                      (4.5) 
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Proof: Subtract (3.1) from (1.16), theorem 7 is proved. 

Theorem 8: Estimator 
ât  is more efficient than 

6̂  if (4.6) is satisfied. 

 

   2 2 2

, ,2 0r N a rg a r n regM M R                          (4.6) 

 

Proof: Subtract (3.1) from (1.17), theorem 8 is proved. 

Theorem 9: Estimator 
ât  is more efficient than 

( )ˆ
i


 if (4.7) is satisfied. 

 

   2 2 0a rg aM M                                      (4.7) 

 

Proof: Subtract (3.1) from (1.20), theorem 9 is proved. 

 

5 Numerical Examples 

 
In this section, simulation studies were conducted to assess the performance of the estimators of the proposed 

scheme with respect to Audu and Singh [8] estimators. Data of size 1000 units were generated for study 

populations using function defined in Table 1. Samples of size 100 units from which 60 units were selected as 

respondents were randomly chosen 10,000 times by method of simple random sampling without replacement 

(SRSWOR). The Biases, MSEs and PREs of the considered estimators were computed using (4.39), (4.40), 

(4.41). 

 

       
10000

*

0

1

1ˆ ˆ ˆ ˆˆ ˆ, , , 1,2,...,17, 1,2,3,4,5,6
10000

d d d i a

d

Bias Y i t i    


            (4.39) 

 

       
10000 2

*

0

1

1ˆ ˆ ˆ ˆˆ, , , 1,2,...,17, 1,2,3,4,5,6
10000

d d d i a

d

MSE Y i t i    


          (4.40) 

 

 
 
 

   *

0

0

ˆ
ˆ ˆ ˆˆ ˆ100, , , 1,2,...,17, 1,2,3,4,5,6

ˆ

d

d d i a

MSE
PRE i t i

Var


   



 
     
 
 

        (4.41)   

 

Table 2. Populations used for Simulation Study 

 

Populations Auxiliary variable (x) Study variable (y) 

I  ~ 1.1,2.0X beta  
250 10 20 ,Y X X e     

II  ~ 10,25X gamma   , ~ 0,4where e  

III  ~ 0.5X pois   

IV  ~ 0,0.4X unif   

 

Tables 3, 4, 5 and 6 show the results of the biases, MSEs and PREs of the sample mean, Audu and Singh 

[8]estimators and estimators of the proposed scheme using the simulated data for populations I, II, III and IV 

defined in Table 2 respectively. The results revealed that the estimators ât  of the proposed scheme, have 

minimum biases, MSEs and higher PREs than the Sample mean and Audu and Singh [8] estimators with the 

exception of few cases where few members of Audu and Singh [8] estimators outperformed some members of 

the proposed estimators.  
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Table 3. Biases, MSEs and PREs of Proposed and Some Estimators using Pop. I 

 

Estimators Biases MSEs PREs 

Sample mean 0̂  0.005212425 0.08212077 100 

Audu and Singh [8] 

(*)

1̂  0.01881164 0.5988081  13.71404 

(*)

2̂   0.006281752  0.1573342  52.1951 

(*)

3̂   0.00771724  0.2157503  38.06288 

(*)

4̂   0.01400318  0.120201  68.31951 

(*)

5̂   0.009613986  0.2862123  28.69225 

(*)

6̂   0.006427576  0.1636258  50.18815 

(*)

7̂   0.007157499  0.03267426  251.3317 

(*)

8̂   0.007912665  0.2232647  36.78179 

(*)

9̂   0.004970697  0.09101034  90.23235 

(*)

10̂   0.005403985  0.02719941  301.9212 

(*)

11̂   0.006415286  0.1630998  50.35002 

(*)

12̂   0.01825179  0.1904569  43.11778 

(*)

13̂   0.3306025  21.33659  0.3848824 

(*)

14̂   0.8956953  1218.282  0.006740701 

(*)

15̂   0.004744487  0.07359994  111.5772 

(*)

16̂   0.00497412  0.09123646  90.00871 

(*)

17̂   0.004917712  0.03289367  249.6552 

Estimators of Proposed Scheme 

1̂t  0.04056205  0.05404431 151.9508 

2̂t   0.04089361  0.05434909  151.0987 

3̂t   -0.03405898  0.04264035  192.5893 

4̂t   0.00220966  0.03396731  241.7641 

5̂t   -0.03434565  0.04281589  191.7997 

6̂t   0.001591584  0.03389004  242.3153 
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Table 4. Biases, MSEs and PREs of Proposed and Some Estimators using Pop.  II 

 

Estimators Biases MSEs PREs 

Sample mean 0̂  -0.00238708 0.02055153 100 

Audu and Singh [8] 

(*)

1̂   0.01224332 0.1290456 15.92579 

(*)

2̂   0.006784724  0.05279314  38.92841 

(*)

3̂   0.005456455  0.03706221  55.45144 

(*)

4̂   0.008066989  0.06924065  29.6813 

(*)

5̂   0.00908595  0.08303842  24.74942 

(*)

6̂   0.003340483  0.01579654 130.1015 

(*)

7̂   0.005124688  0.03338117  61.56624 

(*)

8̂   0.006160419  0.04521465  45.45325 

(*)

9̂   0.005198207  0.03418736  60.11442 

(*)

10̂   0.006411459  0.04822499  42.61593 

(*)

11̂   0.007531888  0.06224325 33.01808 

(*)

12̂   0.003381086  0.01614697  127.2779 

(*)

13̂   0.002833185  0.01166292  176.2125 

(*)

14̂   0.004979215  0.03180247  64.62243 

(*)

15̂   0.002918198  0.01232231  166.7831 

(*)

16̂   0.002534123  0.009460828  217.2276 

(*)

17̂   0.003465998  0.01688858  121.6889 

Estimators of Proposed Scheme 

1̂t  0.04219346 0.02208199 93.06919 

2̂t   0.04254799  0.0223906  91.78643 

3̂t   -0.03787117  0.01712049  120.0405 

4̂t   0.001111189  0.003437694  597.8289 

5̂t   -0.03817979  0.01735068  118.4479 

6̂t   0.000447942  0.003415049  601.7931 
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Table 5. Biases, MSEs and PREs of Proposed and Some Estimators using Pop. III 

 

Estimators Biases MSEs PREs 

Sample mean 0̂  -0.009713722 2.390206 100 

Audu and Singh [8] 

(*)

1̂   0.1744741  4.818217  49.60768 

(*)

2̂   0.03957149  0.5903091  404.9075 

(*)

3̂   0.03908925  0.5832271  409.8242 

(*)

4̂   0.03088749  0.4790073  498.9915 

(*)

5̂   0.05693135  0.898523 266.015 

(*)

6̂   0.04675464  0.7061113  338.5027 

(*)

7̂   0.03580307  0.5375918  444.6135 

(*)

8̂   0.06873159  1.156279 206.7154 

(*)

9̂   0.04801837  0.7283173  328.1819 

(*)

10̂   0.0362162  0.5430662  440.1316 

(*)

11̂   0.06964129  1.177546  202.982 

(*)

12̂   0.06419486  1.053127  226.9626 

(*)

13̂   0.06333724  1.034183  231.1201 

(*)

14̂   0.09051003  1.715716  139.3124 

(*)

15̂   0.0338194 0.5124397  466.4365 

(*)

16̂   0.03345816  0.50807  470.4481 

(*)

17̂   0.02742584  0.4462391  535.6334 

Estimators of Proposed Scheme  

1̂t   0.06620763  0.4403929  542.7439 

2̂t   0.06673713  0.4411481  541.8148 

3̂t   -0.05414129  0.4264173  560.532 

4̂t   0.004647217  0.3941274  606.4551 

5̂t   -0.05460819  0.4269713  559.8048 

6̂t   0.003650053  0.3940539  606.5682 
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Table 6. Biases, MSEs and PREs of Proposed and Some Estimators using Pop. IV 

 

Estimators Biases MSEs PREs 

Sample mean 0̂  0.0002986744 0.03345174 100 

Audu and Singh [8] 

(*)

1̂t   0.03263777  0.5715367 5.852947 

(*)

2̂t   0.01207208  0.1363139 24.54023 

(*)

3̂t   0.03494594  0.6251446  5.35104 

(*)

4̂t  0.006156071  0.03519193  95.05513 

(*)

5̂t   0.02070915  0.3089493  10.82758 

(*)

6̂t   0.03691146  0.6714911  4.98171 

(*)

7̂t   0.006960825  0.0467871  71.49777 

(*)

8̂t   0.01720137  0.2367268  14.13095 

(*)

9̂t   0.008072876  0.06462869  51.75989 

(*)

10t̂   0.008144402  0.06582323  50.82056 

(*)

11t̂   0.007881181  0.06145104  54.4364 

(*)

12t̂   0.005492981  0.05355526  62.46209 

(*)

13t̂   0.03097614  0.5334939  6.270313 

(*)

14t̂   0.08076056  1.88362  1.775928 

(*)

15t̂   0.008613089  0.07375923  45.35261 

(*)

16t̂   0.08302571  1.956675  1.709621 

(*)

17t̂   0.007885434  0.06152115  54.37437 

Estimators of Proposed Scheme  

2

1̂t   0.02550096  0.03836241  87.19925 

2

2̂t   0.02569806  0.0384789  86.93527 

2

3̂t   -0.01804812  0.03207996  104.2761 

2

4̂t   0.002918864  0.03027092  110.5078 

2

5̂t   -0.01821237  0.03212954  104.1152 

2

6̂t   0.002558428  0.03022621  110.6713 

 

6 Conclusions 
 
From the results of the empirical study, it was obtained that some members of the proposed class of estimators 

especially 4̂t  and 6̂t are more efficient than Audu and Singh [8] estimators and, therefore, they are 

recommended to estimate the population average when certain values of the variables of the study are missing in 
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the study. In conclusion, the proposed class of imputation schemes is recommended for use when the 

characteristics of the population under study are characterized by outliers or extreme values. 
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