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Abstract

Human-assisted surveys, such as medical and social science surveys, are frequently plagued by non-response
or missing observations. Several authors have devised different imputation algorithms to account for missing
observations during analyses. Nonetheless, several of these imputation schemes' estimators are based on
known auxiliary variable parameters that can be influenced by outliers. In this paper, we suggested new
classes of exponential-ratio-type imputation method that uses parameters that are robust against outliers.
Using the Taylor series expansion technique, the MSE of the class of estimators presented was derived up to
first order approximation. Conditions were also specified for which the new estimators were more efficient
than the other estimators studied in the study. The results of numerical examples through simulations
revealed that the suggested class of estimators is more efficient.
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1 Introduction

Surveys like medical and social science surveys do face the problem of non-response due to involvement of
human in data collection. These missing values, due to non-response, in turn create complications in data
handling and analysis. Over time, many methods have been developed to address the problem of estimating
unknown parameters in the presence of missing values. Imputation is a common technique used to handle
situations where data is missing. Missing values can be completed with specific substitutes and data can be
analyzed using standard methods. Information about unit of characteristic of interest observed and auxiliary
variable help improve the accuracy of demographic parameter estimates. Hansen and Hurtwitz [1] were the first
to consider the problem of non-response. Several authors also proposed imputation methods to deal with non-
response or missing values. Recent among them include Singh and Deo [2], Toutenburg et al. [3] Kadilar and
Cingi [4], Singh [5], Singh and Horn [6], Gira [7], Audu and Singh [8] Kadilar and Cingi [9] Bhushan and
Bandey [10], Singh et al. [11], Diana and Perri [12] Al-Omari et al. [13], Audu et al. [14-18], Singh et al. [19].
However, some of the estimators in aforementioned literatures depend on known parameters of the auxiliary
variable which are influenced by outliers. In this study, new classes of ratio-type imputation method which
utilized parameters that are free from outliers have been presented.

The remaining sections of this article were organized as follows: In section 2, a class of mean imputation
schemes to obtain estimators of population mean that are not sensitive to outliers were proposed. They are based
on non-conventional robust measures of the auxiliary variable. Distributional properties of the suggested
estimators are given in section 3. Conditions for the efficiency of the new estimators with respect to some
existing estimators were established in section 4. Simulation studies were presented in section 5 to assess the
performance of the proposed scheme estimators with respect to Audu and Singh [8] estimators.

1.1 Notations

The following notations have been used

Y: Study variable.
X: Auxiliary variable.

)?,Y_ : Population mean of the variables X and Y respectively

N: Population Size.

n: Size of the sample

r: Number of respondents.

R: Ratio of the population mean of study variable to population mean of auxiliary variable.

X, : The sample mean for the sample of size n.

X, : The sample mean of the variable X for set @

Y, : The sample mean of the variable Y for set @

SZ,S? : Population variance of the variables X and Y
S,,Sy :Population standard deviation of Y and X.

f, : Population coefficient of skewness of X.

B, : Population coefficient of kurtosis of X.

Py - Population coefficient of correlation between Y and X.
,Brg . Population regression coefficient.

C,,C, : Population coefficient of variation of Y and X.

4 &(2i-N-1 .. .
= Z X(i) . Gini’s mean difference for X.
N-143 2N
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N
D= 2_72'2 i _N+1 Xy : Downtown’s method for X.
N-143 2N
T
Sow = WZ(ZI -N —1)X(i) : Probability weighted moments for X.

i=1

> : Population variance covariance matrix.

Let @ denotes the set of I units response and ®° denotes the se of NI units non-response or missing out of
N units sampled without replacement from the N units population. For each ieCI)l the value of i is

. ¢ v
observed. However, for unit | € @ , Yi is missing but calculated using different methods of imputation.

Using mean method of imputation, values found missing is to be replaced by the mean of the rest of observed
values. The study variable thereafter, takes the form given as,

Y; ied
L= 1.1
Vi v ie®° .

Under the mean method of imputation, sample mean denoted by [10 can be derived as

,[lo = rilz Yi
ieR

1.2)
The variance of ,[lo is given by (1.3).

Var(io) =y, S; &
N N
where l//r,N = r_l — N_l, SYZ :(N —1)_1Z(yi _Y_)Z; Y_ = N_lz yi
i=1 i=1

Under ratio method of imputation, values found missing in the study variable are to be replaced by values

r r
obtained using the expression [ = Z Yi /in =Y, / X, . The study variable thereafter, takes the form given

i1 i1
as
Y; led
=) 14
Vi Bx ie®° o

Under the ratio method of imputation, estimator of population mean denoted by ,[11 can be derived as

Aol
= /'IOXan (1'5)
where X, =r*> %, X =n") X
ieR ieS
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The MSE of £ up O(n"l) is given as:

MSE () = MSE (2 ) +w, , (R*S —2RS,, ) (1.6)

N o — N L
where Sy, = £, S, Sy, S5 =(N-1)" D (x - X) , X=N"Yx,p,,=r"-n",R=Y/X

i=1 i=1
Singh and Horn [6] utilized information from imputed values for responding and non-responding units as well,
thereafter giving study variable the form given by (1.7). The scheme defined in (1.7) is called compromised
imputation scheme as the responses of the respondents were computed by using linear combination of
information on the study and auxiliary variables.

22y @-a)px icd
yi =94 1 (L.7)
(1-2)Bx i

Under this method of imputation, estimator of population mean denoted by /z, can be derived as

i = (A+(1-2)%% 1) (1.8)
The performance of /1, attained optimal when 2 =1—RS,, /SZ and the MSE (/32 )min is given by
MSE(ﬂz )min =MSE (ﬂo)_Wr,nﬂrngx Sy Sx (1.9)

Nevertheless, the precision of /i, depends on  and A is function of Y, Syy s Pyx » Unknown parameters of
study variable y which makes ,&2 impracticable in real life application

Singh and Deo [2] incorporated power transformation parameter to [12 and obtain ,&3 as

i = ity (X, 1%, )" (1.10)
The performance of /2, attained optimal when o = RS, / S} and the MSE (i, )min is given by
A A 2
MSE (f) = MSE (/1) -, ,S% (8, —R) (L.112)

where B, =S /S%
Nevertheless, the precision of /i, depends on & and « is a function of Y, Syx s Py » unknown parameters of

study variable y which makes fz, impracticable in real life application.

Kadilar and Cingi [9] modified the work of Kadilar and Cingi [4] in the case of missing observations and
suggested the following estimators of population mean

fu =+ By (X =% )) X % (112)
fis = (f1o+ B (X =%, )) X X, (1.13)
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£ = (o + By (%, = %)) %, X (1.14)
MSE(4,) = MSE (/1) +w, yS% (R* - 55 (1.15)
MSE () = MSE (4, )+, ,Sx (R* - 53 (1.16)
MSE (&) = MSE (£ )+ v, , (s; (R+ 2, )2 —2(R+,4)Sw ) (1.17)

Audu and Singh [8] studied /i,, /4 and fi suggested by Kadilar and Cingi [9], and proposed the following
generalized class of imputation schemes;

Y, icd

&, (X %) | (118)
(X + 7, )exp (X %)+ 20, icd°

where 7, and 7, are known functions of auxiliary variables like coefficients of skewness ,Bl(x), kurtosis

B, (X), variation C,, , standard deviation S, etc, and 7, # 7, and 77, # 0.

The point estimators of finite population mean under these methods of imputation are given by

oL s (1__jﬂo+ﬁrg(x X)(ﬂlX+ﬂ2)exp{ (wi(x—x) J 119

n X+, @, (X +X, )+ 2m,

Their proposed class of imputation estimators is independent of unknown parameters; hence it is practically
applicable.

MSE(I[li(*)) =¥, \ (S? + YZS)Z( —-2YS,,) (1.20)
ere, i =— A% o @Ky (1o D Ry ) +
where, 77, ZX 47, 1, 2@, X +a,) an ( nj( (m+m,) ﬂrg)

2 Proposed Estimator under Imputation

Having studied the scheme and estimators of Audu and Singh [8], which utilized known functions of the
auxiliary variable, that are sensitive to outliers, we proposed the following schemes to obtain estimators that are
not sensitive to outliers by using nonconventional robust measures of the auxiliary variable defined as

Yi led

Yi=1¥, +B,(X-%) BX+4)-BR+4) | .o 1)
¢jxr ¢k (¢j>z+¢[<)+(¢j¥r+¢k)

(# X +4¢)e p{
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The point estimator of the scheme above is given by

" (3, + o (X -%) (4,X +4) - (6%, +4)
bR [17) el p[ ¢,—>?+¢k>+<¢,x+¢k)J 2

where, ['={(Gxn),(Dxn),(S,,xn)}, 4.4 €, a=123456 G,D and S,, are the Gini’s

mean difference, Downtown’s method and Probability weighted moments, which are the nonconventional
robust measures free from the influence of outliers.

Remark 1: Note that ¢j # ¢ , six different estimators for scheme (2.2) were obtained in the Table 1.

Table 1. Some member of fa for different values of ¢j and ¢,

a Estimators Values of Constants
9 &
Lo v, NG AB(X=X), o (6,X +4)-($% +4) ) (Gxm)  (Dxn)
“‘ﬁyf{l_ﬁj ERT I A 7y swy TrEy
2 fZ:L‘r{l—L](errﬂrg(X 6K rd)e p[(p +4,)- +¢k)} (Gxn)  (S,xn)
n n P X+ (@ X +4)+(4% +4,)
3 L (¥, + B, (X -%.)) ~(¢x +¢)) (Dxn)  (Gxn)
R _ﬁj b%, +4, X+¢k>+(¢,x,+m
4 X —(6.X D x S x
=0y, ofo- YA X))(¢,X+ﬂ)exp((¢‘)§+m Wf”’k)} 0 o
n n O X+ ;X +4)+ (4% +4)
3 y X —X X —(6X S % G x
f5=£Vr+1—£j(Yr+ ig(x xr))(¢1_ @)exp[(qﬁj)erqﬁk) (¢J§+¢k)] (S,uxn) (Gxn)
n n 9%+, (6, X+4)+ (X +4,)
6 I N _ T va _ v X D x
g1 PR T R | ST ey X0
n n P X+ (@ X+4)+(4X +4,)

3 Properties of the Suggested Estimators

In this section, to obtain the MSE of the estimators suggested, let us define:
Theorem 1:

MSE(fa):!//r,N (S\E_ZMapSYSX +M§S)2<) (3'1)

Proof: The MSE of the proposed estimators can be expressed as in (3.2)
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MSE(f,) =AZA] for a=12,34,5,6 (3.2)

~

ot
where A, = { 2

r

2
Z—{ VienSy WenPSySx
- 2
WenPSy Sy WenSx
estimator f, with respectto ¥, and X, and the transpose of A is A]

J JWen = r*—Nand A, isarow matrix of partial derivatives of the

On differentiating the estimator fa with respect to Y, partially, we have,

at_;:£+(l_£j (¢j>z+¢k)ex (¢j)3+@)_(¢j¥r+¢k) (33)
Wr n n (¢jfr+¢k) (¢jx+¢k)+(¢j¥r+@)
Onsetting y, =Y,X =X, Arg =,y we have,
ot
& =1 (3.9)
ayr yr :Y'Xr = X'ﬁrg =18rg

On differentiating the estimator fa with respect to X, partially, considering product rule, we obtain,

% _(1_N)sx N N

X _(1 n)(¢jx +@)(U X +V 5?,] (3.5)
AKX o (9X+4)-(¢%+4)

For U = 9% +4) (4;X +,) and v :exp[(¢j>?+@)+(¢,-¥r+¢k) (36)

v (A6 X+4% +28)+ (X —¢,-x>])v .

X |:(¢j)z+¢k)+(¢j¥r +¢k):|2 |

@Z[(¢jx+@)ﬂ’\rg+(7r+ﬁrg()z_ir))¢j:| 38)

2 (4,X+a)

On setting Y, =Y, X = X,/}rg = ,Brg , in equations (3.6), (3.7), (3.8), we obtain,

(3.9)

Y
yr =Y’Yr=)z’ﬂrg=18rg (¢1X+ﬂ<)

65



Audu et al.; AJPAS, 15(2): 59-74, 2021; Article no.AJPAS.75530

v o . =1
yr:Y’Xr:X’ rg:lBrg

N R

aXr yr :Y_’eri’ﬁrgzﬂrg 2(¢J)Z+(A<)

axr yr =Y_'Yr=)z7ﬁrg=ﬂrg (¢j)z+¢k) (¢j>z+ﬂ<)2

Substituting equations (3.9), (3.10), (3.11), (3.12) into equation (3.5), we obtain,

at_,\i2 = _[1_£J 'B +&
X |y, =V.% =X, B, =B, n)\° 24X +4,)

{2
i
air yr :Y’Kr = X!ﬂrg :ﬂrg
3pY

where, M, = (l—ij By +(é—'

n 25, X +4,)

Therefore,

A=(1 -M,) and its transpose Al =(1
(3.15)

Substitute (3.15) in (3.2), we obtained the mean square error of the estimator as

A S? S, S, |(1
MSE(ta):(l M, )( YNy YenP YZ x][ ]
WenPSy Sy W nSx -M,

MSE () =y, (Sf —2M,pS, Sy +MZS} )

Theorem 2: the estimators fa (a =12,3,4,5, 6) are consistent.

Proof: Let f(x) and g(x) be continuous function, then

Iim(f(x)ig(x))=ii£rg f(x)xlimg(x), pze

X—=>p

Iim(f(x)xg(x)):lxi_r)rg f (x)xlxi_rfgg(x), p # oo

X—=>p

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.16)

(3.17)

(3.18)

(3.19)
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_ f(x) Iimf(x) _
I =X2P , | 0 3.20
Srg(x) limg(x)’ P limg (x)# (220

As — N, n=N. Using the results of (3.18), (3.19) and (3.20), we have

. (limy, +I|m,8 (X -limx)) _
lim(£, )_nm—nm(y) ( 1-lim— j roN =N (6, X + 4,)
r—N r-N nr-oN r—-N n ¢j lim X, +¢k
r—N (3.21)
(¢ X+4)— (¢ imx +4,)
(¢ X+4)+ (4, “mX +4)
Since N=N if r - N, then |inN1 y. =Y, Iirn X = IImE—land IImﬂ = f3,,- Therefore,
|II”T\}( ):\7, vV a=123456 (3.22)

4 Efficiency Comparisons

In this section, conditions for the efficiency of the new estimators over some existing related estimators were
established.

Theorem 3: Estimator fa is more efficient than ,[10 if (4.1) is satisfied.
M, <25, (4.1)

Proof: Minus (3.1) from (1.3), theorem 3 is proved.
Theorem 4: Estimator fa is more efficient than £ if (4.2) is satisfied.

Ven (M2=28,M, )=y, ,(R*~28,R)<0 (4.2)

Proof: Subtract (3.11) from (1.6), theorem 4 is proved.
Theorem 5: Estimator fa is more efficient than /1, and /1, if (4.3) is satisfied.

Wr,nﬂri] +l//r,N (I\/la2 _ZﬂrgY) < 0 (43)

Proof: Subtract (3.1) from each of (1.9) and (1.11), theorem 5 is proved.
Theorem 6: Estimator fa is more efficient than i, if (4.4) is satisfied.

(By-M.) -R?<0 (4.4)

Proof: Subtract (3.1) from (1.15), theorem 6 is proved.
Theorem 47: Estimator fa is more efficient than s if (4.5) is satisfied.

YN (M:_ZﬂrgMa)_Wn,N(Rz_ﬁrig)<o (4.5)
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Proof: Subtract (3.1) from (1.16), theorem 7 is proved.
Theorem 8: Estimator fa is more efficient than i if (4.6) is satisfied.

l//r,N(Ma2_ZﬂrgMa)_Wr,n(Rz_ﬁrzeg)<o (4.6)

Proof: Subtract (3.1) from (1.17), theorem 8 is proved.
Theorem 9: Estimator f, is more efficient than 2™ if (4.7) is satisfied.

(Y+M,)B,+(M2-1*)<0 (4.7)
Proof: Subtract (3.1) from (1.20), theorem 9 is proved.

5 Numerical Examples

In this section, simulation studies were conducted to assess the performance of the estimators of the proposed
scheme with respect to Audu and Singh [8] estimators. Data of size 1000 units were generated for study
populations using function defined in Table 1. Samples of size 100 units from which 60 units were selected as
respondents were randomly chosen 10,000 times by method of simple random sampling without replacement
(SRSWOR). The Biases, MSEs and PREs of the considered estimators were computed using (4.39), (4.40),
(4.41).

1 10000

Bias (6 ) = 15930 D (0,-Y) .0, =i, il7i=12,.17,8, (i=1,23456)  (@39)
d=1
R 10000, . . .
MSE(Qd)zﬁ > (4 —Y)2 6y = fop,i=1,2,..,17,, (1=1,2,3,4,5,6) (4.40)
d=1
.\ [MsE(4) . . .
PRE (4, )= Var(i) x100,6, = fig, 40,i=12,..,17,f, (1=12,3,456)  (4.41)
Ho
Table 2. Populations used for Simulation Study
Populations Auxiliary variable (x) Study variable (y)
| X ~beta(1.1,2.0) Y =50+10X +20X? +e,
I X ~ gamma (10, 25) where, e~(0,4)
I X ~ pois(0.5)
v X ~unif (0,0.4)

Tables 3, 4, 5 and 6 show the results of the biases, MSEs and PREs of the sample mean, Audu and Singh
[8]estimators and estimators of the proposed scheme using the simulated data for populations I, I, 11l and IV

defined in Table 2 respectively. The results revealed that the estimators fa of the proposed scheme, have

minimum biases, MSEs and higher PREs than the Sample mean and Audu and Singh [8] estimators with the
exception of few cases where few members of Audu and Singh [8] estimators outperformed some members of
the proposed estimators.
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Estimators Biases MSEs PREs
Sample mean /}0 0.005212425 0.08212077 100
Audu and Singh [8]
/&1(*) 0.01881164 0.5988081 13.71404
[é*) 0.006281752 0.1573342 52.1951
[13(*) 0.00771724 0.2157503 38.06288
ﬁi*) 0.01400318 0.120201 68.31951
[lé*) 0.009613986 0.2862123 28.69225
ﬁé*) 0.006427576 0.1636258 50.18815
[é*) 0.007157499 0.03267426 251.3317
/&é*) 0.007912665 0.2232647 36.78179
ﬁé*) 0.004970697 0.09101034 90.23235
[11(;) 0.005403985 0.02719941 301.9212
/[’1(;) 0.006415286 0.1630998 50.35002
[11(’2*) 0.01825179 0.1904569 43.11778
[11(;) 0.3306025 21.33659 0.3848824
7, (Z) 0.8956953 1218.282 0.006740701
[11(’5*) 0.004744487 0.07359994 111.5772
/&1(;) 0.00497412 0.09123646 90.00871
/[’1(;) 0.004917712 0.03289367 249.6552
Estimators of Proposed Scheme
fl 0.04056205 0.05404431 151.9508
”2 0.04089361 0.05434909 151.0987
A3 -0.03405898 0.04264035 192.5893
”4 0.00220966 0.03396731 241.7641
”5 -0.03434565 0.04281589 191.7997
{ 0.001591584 0.03389004 242.3153

—
(o]
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Table 4. Biases, MSEs and PREs of Proposed and Some Estimators using Pop. 11

Estimators Biases MSEs PREs

-0.00238708 0.02055153 100

Sample mean /i,

Audu and Singh [8]

/[’1(*) 0.01224332 0.1290456 15.92579
[é*) 0.006784724 0.05279314 38.92841
/&3(*) 0.005456455 0.03706221 55.45144
ﬁi*) 0.008066989 0.06924065 29.6813
[ls(*) 0.00908595 0.08303842 24.74942
ﬂé*) 0.003340483 0.01579654 130.1015
[é*) 0.005124688 0.03338117 61.56624
[lé*) 0.006160419 0.04521465 45.45325
ﬂé*) 0.005198207 0.03418736 60.11442
fﬁ(;) 0.006411459 0.04822499 42.61593
7, (’l“) 0.007531888 0.06224325 33.01808
/&1(’2*) 0.003381086 0.01614697 127.2779
fﬁ(;) 0.002833185 0.01166292 176.2125
/&1(:) 0.004979215 0.03180247 64.62243
[11(;) 0.002918198 0.01232231 166.7831
fﬁ(;) 0.002534123 0.009460828 217.2276
/&1(’7*) 0.003465998 0.01688858 121.6889
Estimators of Proposed Scheme
fl 0.04219346 0.02208199 93.06919
fz 0.04254799 0.0223906 91.78643
”3 -0.03787117 0.01712049 120.0405
”4 0.001111189 0.003437694 597.8289
f5 -0.03817979 0.01735068 118.4479
fe 0.000447942 0.003415049 601.7931
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Table 5. Biases, MSEs and PREs of Proposed and Some Estimators using Pop. 111

Estimators Biases MSEs PREs
Sample mean 2, -0.009713722 2.390206 100
Audu and Singh [8]

/[’1(*) 0.1744741 4.818217 49.60768
[é*) 0.03957149 0.5903091 404.9075
/&3(*) 0.03908925 0.5832271 409.8242
ﬁi*) 0.03088749 0.4790073 498.9915
fls(*) 0.05693135 0.898523 266.015
ﬁé*) 0.04675464 0.7061113 338.5027
[é*) 0.03580307 0.5375918 444.6135
flé*) 0.06873159 1.156279 206.7154
ﬁé*) 0.04801837 0.7283173 328.1819
fﬁ(;) 0.0362162 0.5430662 440.1316
/&1(’1*) 0.06964129 1.177546 202.982
/&1(’2*) 0.06419486 1.053127 226.9626
[ﬁ(;) 0.06333724 1.034183 231.1201
/&1(:) 0.09051003 1.715716 139.3124
fﬁ(;) 0.0338194 0.5124397 466.4365
fﬁ(;) 0.03345816 0.50807 470.4481
/&1(’7*) 0.02742584 0.4462391 535.6334
Estimators of Proposed Scheme

fl 0.06620763 0.4403929 542.7439
fz 0.06673713 0.4411481 541.8148
”3 -0.05414129 0.4264173 560.532
”4 0.004647217 0.3941274 606.4551
f5 -0.05460819 0.4269713 559.8048
fe 0.003650053 0.3940539 606.5682
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Table 6. Biases, MSEs and PREs of Proposed and Some Estimators using Pop. 1V

Estimators Biases MSEs PREs
0.0002986744 0.03345174 100

Sample mean /i,

Audu and Singh [8]

fl(*) 0.03263777 0.5715367 5.852947
fz(*) 0.01207208 0.1363139 24.54023
fs(*) 0.03494594 0.6251446 5.35104

f4(*) 0.006156071 0.03519193 95.05513
fs(*) 0.02070915 0.3089493 10.82758
fe(*) 0.03691146 0.6714911 498171

f7(*) 0.006960825 0.0467871 71.49777
fB(*) 0.01720137 0.2367268 14.13095
fg(*) 0.008072876 0.06462869 51.75989
fl((*;) 0.008144402 0.06582323 50.82056
fl(l*) 0.007881181 0.06145104 54.4364

f1(2*) 0.005492981 0.05355526 62.46209
fl(z*) 0.03097614 0.5334939 6.270313
ﬂg) 0.08076056 1.88362 1.775928
fl(;‘) 0.008613089 0.07375923 45.35261
fl(g) 0.08302571 1.956675 1.709621
fl(;) 0.007885434 0.06152115 54.37437
Estimators of Proposed Scheme

f12 0.02550096 0.03836241 87.19925
f22 0.02569806 0.0384789 86.93527
f32 -0.01804812 0.03207996 104.2761
f42 0.002918864 0.03027092 110.5078
f52 -0.01821237 0.03212954 104.1152
f62 0.002558428 0.03022621 110.6713

6 Conclusions

From the results of the empirical study, it was obtained that some members of the proposed class of estimators
especially f4 and fe are more efficient than Audu and Singh [8] estimators and, therefore, they are
recommended to estimate the population average when certain values of the variables of the study are missing in
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the study. In conclusion, the proposed class of imputation schemes is recommended for use when the
characteristics of the population under study are characterized by outliers or extreme values.
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