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ABSTRACT 
 

Human activities on environmental resources have negatively affected floras and faunas in 
maintaining fair balance. In this research study, selected heavy metals (Al, As, Cd, Cr, Cu, Fe, Hg, 
Pb, Ni, Zn) concentration in three fish species (Clarias gariepinus, Heterotis niloticus and Anguilla 
labiate), surface water and sediment samples in Ogbaru axis of River Niger, Anambra State, 
Nigeria. We evaluated the samples using atomic absorption spectrophotometer (AAS). The result 
of heavy metals (Cu, Fe, Zn, Ni, Pb, Cd, Al, Cd) analysis in fish samples showed that Cr was 
detected in Clarias garipinus and Anguilla labiate with a concentration of 0.001mg/kg in both 
species but was not detected in Heterotis niloticus. Hg and Al were not detected in Anguilla labiate 
but both metals were detected in the other fish species with a mean concentration of 0.311mg/kg 
and 0.019mg/kg respectively for Clarias garipinus and 0.001mg/kg and 0.005mg/kg respectively for 
Heterotis niloticus. In decreasing order, the heavy metal concentration in Clarias garipinus in 
increasing order of Cu >Fe > Ni > Hg > Pb > Zn > As > Cd > Al > Cr, while Heterotis niloticus 
followed the order Cu > Zn > Fe > Ni > Pb > Cd > Al > As > Hg > Cr, and  Anguilla labiate followed 
the pattern of Cu > Fe > Zn > Ni > Pb > Cd > Cr > As > Hg > Al. For surface water, As (0.005mg/l), 
Cd (0.032 mg/l), Cr (0.099 mg/l), Cu (0.186 mg/l), Fe (2.308 mg/l), Hg (1.501 mg/l) and Pb (0.724 

Original Research Article 



 
 
 
 

Ojaniyi et al.; AJACR, 9(1): 64-81, 2021; Article no.AJACR.72239 
 
 

 
65 

 

mg/l) showed high concentration for the raining season compared to dry season, as Al (0.246 
mg/l), Ni (0.773 mg/l) and Zn (2.903 mg/l) were dominant during dry season, while sediment 
samples of Cr (0.112 mg/kg), Cu (0.029 mg/kg), Ni (0.945 mg/kg) and Pb (0.039 mg/kg) 
concentration in raining season were higher than dry season and vice versa for other As, Cd, Fe, 
Hg, Zn. Correlation matrices showed positive value showing that heavy metals were from a similar 
source with migration route and vice versa for negative correlation. Health and exposure risk 
assessment was conducted for carcinogenic and non-carcinogenic exposure in adults and 
children, where the cumulative cancer risk was within USEPA regulatory standard (1.0E-6 – 1.0E-
04) and cumulative hazard index were above 1 for adults (2.02) and children (4.93), implying that 
children are at risk of having adverse health issues compared to adults. Therefore, there is a need 
for regulatory advocacy and special care to mitigate anthropogenic release and safeguard the 
environment. 
 

 
Keywords: River Niger; fish species; surface water; sediment; heavy metal; hazard quotient. 
 

1. INTRODUCTION 
 
The influence of human activities has been 
known to cause immerse environmental impact 
over a long period, which has made it difficult to 
contain pollution across environmental matrices 
especially in aquatic environment [1-3]. All over 
the world, water bodies are continuously 
overburdened with chemical effluents that have 
led to increase in heavy metals, pesticides, 
aromatic and aliphatic hydrocarbons, making it 
unfit for survival of aquatic organisms and inhibits 
water aesthetic [4-7]. Heavy metals are metallic 
chemical element with relatively high density that 
are toxic or poisonous at low concentrations to 
organisms [8]. 
 
According to USEPA [9], heavy metals are 
classified as nutritional metals example are 
chromium (iii), copper, cobalt, iron, manganese, 
molybdenum, selenium, zinc; non-essential 
metals are aluminum, arsenic, cadmium, lead, 
mercury, silver that is been debated by scientific 
critics [9,10]. Heavy metals in trace toxic amount 
can cause oxidative stress in relation to 
ecotoxicity in the aquatic organisms [11], as Woo 
et al. [12] infers that degradation of bacteria is 
possible in marine environment. Due to 
anthropogenic releases, sediment and water 
sources are influenced negatively across various 
environmental factors such as temperature, 
dissolved oxygen, pH, and conductivity that in-
turns causes potential threat to aquatic 
organisms and mammals over a period [13,14]. 
 
Aquatic organisms ingest phytoplankton and 
dissolved food source in water with high metallic 
ions via ion-exchange across lipophilic 
membranes or adsorption on tissue or 
membrane surface, as such leads to increase 
metallic bioaccumulation, which thereafter is 

eaten by other aquatic mammals and humans 
[15-17]. Fish has over the decade been a major 
protein source for humans, which entails that 
peradventure these aquatic organisms or 
mammals have extreme concentration of heavy 
metals, after human consumption, it can lead to 
adverse health effect from high toxicity and 
chemical interaction with human organs and 
tissues [18]. Several studies have conducted 
heavy metal assessment across different aquatic 
organisms, which gives divergent inference in 
relation to anthropogenic pollutants [18-21]. 
 

The purpose of this study is the evaluation and 
health risk assessment of heavy metals in 
selected fish species, water and sediment from 
Ogbaru axis of River Niger, Ogbaru local 
government area, Anambra state, Nigeria. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area  
 

The study area was Ogbaru axis of River Niger 
as shown in Fig. 1. Ogbaru local government 
area has an area of 453 km² in Anambra State, 
Nigeria, which is bounded to the north by Onitsha 
South local government area, in the west by the 
River Niger, in the south-east by Ihiala local 
government area, and in the east 
by Ekwusigo and Idemili South local government 
areas.  
 

The River Niger in Ogbaru axis arises from a 
combination of two springs from Cameroun 
mountain, Cameroun and Guinea Highland, 
Guinea, that co-joins in Kogi State, Nigeria [22]. 
The water is discharged into diverse tributaries in 
the Niger Delta, which thereafter is deposited into 
the Atlantic Ocean. A closer investigation into the 
Rivers Niger shows that several commercial 
activities such as farming and fishing activities, 



oil and gas exploration and solid mineral mining 
is abundant across a large expanse of river lines, 
as such the water volume fluctuates significantly 
as a result of natural and man-made influences 
that causes extreme flooding in Niger Delta, 
Nigeria [23]. 
 
2.2 Sample Collection and Preparation
 
Three sample regiments (fish, surface water and 
sediment) were collected across Ogbaru axis of 
the River Niger. Three species of fish samples: 
Clarias gariepinus (Cat fish), Heterotis niloticus 
(African arowana) and Anguilla labiata 
mottled eel) were bought from the local market 
close to the study area. The fish sam
similar size, which was labelled accordingly, 
packaged in a polyethene bag and transported to 
the laboratory for chemical evaluation.
 

Fig. 1. Map of Nigeria indicating Anambra State with its adjoining local government area and 
study location (River Niger); Modified from Onwuzuligbo 
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similar size, which was labelled accordingly, 
packaged in a polyethene bag and transported to 
the laboratory for chemical evaluation. 

The surface water and sediment samples were 
obtained via two seasons (wet and dry season), 
which was collected at different three (3) 
positions with a distance of five (5) meters and 
mixed to form a composite mixture, thereafter 
was packaged in a precleaned plastic container, 
labelled accordingly and subsequently sent to the 
laboratory for chemical evaluation [25
 

2.3 Laboratory Analysis 
 
2.3.1 Digestion of fish sample 
 
Fish samples were dried at 105˚C in a laboratory 
oven until they reach a constant weight. The 
dried samples were grounded using a porcelain 
mortar and a pestle, as 5g of ground fish 
samples were weighed into Teflon crucible with 
10ml of freshly prepared concentrated HCl/HNO
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 (aqua-regia) in the rations of 3:1 added to each 
sample, thereafter allow the crucible was 
covered and allowed to solubilize. The samples 
in the crucibles were heated in the oven at a 
constant temperature of 150°C for 2 hours until 
the solution became clear and completely 
digested as the samples were cooled. 10ml of 
deionized water was added to each sample and 
filtered using Whatman filter paper into 250ml 
volumetric flask, and made up to 250 ml level 
with deionized water for metal determination of 
arsenic (As), mercury (Hg), lead (Pb), aluminum 
(Al), cadmium (Cd), nickel (Ni), copper (Cu), 
chromium (Cr), zinc (Zn) and iron (Fe) using 
Varian AA240 atomic absorption 
spectrophotometer. 
 
2.3.2 Digestion of surface water samples 
 
5 ml of 10 M concentrated HCl were added to 
250 ml of surface water samples in 500 ml 
beaker, which was placed in water bath at 80°C 
and allowed to evaporate to 25ml. The 
concentrate was transferred to a 50 ml 
volumetric flask and diluted to mark with 
deionized water. Prior to analysis, the solution 
was filtered using Whatman filter paper as 
indicated by Izuchukwu et al, [26]. Similar metal 
determination was done accordingly to Braid et 
al. [25] procedure. 
 

2.3.3 Digestion of sediment samples 
 

Sediment samples were dried at 105°C in a 
laboratory oven for 1 hour, thereafter the 
sediment was ground into fine powder using 
pestle and mortar. 5g of sediment sample were 
weighed into a 250ml beaker as 50ml deionized 
water, 0.5ml of concentrated HNO3 and 5ml of 
concentrated HCl was added accordingly. The 
beaker was thereafter placed on a hot plate in a 
fume cupboard for digestion to prevent chemical 
spillage and allowed to evaporate to 15ml. the 
beaker were removed and allowed to cool to 
room temperature, as the digestate were filtered 
into a 50ml volumetric flask and made up to 50ml 
mark with deionized water, then metal 
determination was conducted as done for water 
samples. 
 

2.4 Data Analysis 
 
Microsoft Excel 2019 data analysis was utilized 
for determination of correlation matrix, which 
evaluates the strength and direction of a linear 

relationship between two variables (or metal ions 
of interest). Correlation coefficient of value 
greater than 0.71 is accepted for correlation 
matrix at significance level of 0.05 [27].  
 
2.4.1 Health risk assessment 

 
Cancer risk (CR) and Hazard Quotient (HQ) are 
indices developed by USEPA risk assessment 
models for evaluation of carcinogenic and non-
carcinogenic health risk in adults and children in 
relation to fish, surface water and sediment 
samples in Ogbaru axis of river Niger. Exposure 
route were employed which is Fish (dietary 
ingestion), surface water (dermal and ingestion) 
and Sediment (dermal, accidental ingestion and 
inhalation) [28, 29]. The formulas are shown 
below: 
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=  
C × EF × ED × ET × 10� × IUR

AT × PEF × VF
                                       (5) 

 
������������

=  
C × EF × ED × ET × 10�

AT × PEF × VF × RfC
                                                (6) 

 
Where C is the concentration of heavy metal in 
sample; EF is exposure frequency; ED is 
exposure duration; IRx is ingestion rate of 
sample; SA is skin surface area; RBA*: relative 
bioavailability for sediment calculation only; AF: 
adherence factor; Kp: dermal permeability 
constant for sediment calculation only; GIABS is 
gastrointestinal absorption factor for sediment 
calculation only; ET is inhalation exposure time; 
AT: average time; BW is body weight; PEF is 
particulate emission factor; VF is volatilization 
factor. 
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Table 1. Parameters used to evaluate health risk assessment [30,31] 
 

Parameter Unit Adult Children 
Concentration of heavy metals (C) mg/kg Laboratory data Laboratory data 
Exposure frequency (EF) day/year 350 350 
Exposure duration (ED) years 30 6 
Fish ingestion rate (IRF) mg/day 30400 12225 
Water ingestion rate (IRW) L/day 1.704 2.88 
Sediment ingestion rate (IRS) mg/day 100 200 
Relative bioavailability (RBA)  unitless See Table 2 See Table 2 
Skin surface area for soil (SAS) cm2/day 6,032 2,373 
Skin surface area for water SAW) cm

2
 19652 6365 

Adherence factor (AF) mg/cm2 0.07 0.2 
Skin adsorption factor ABS unitless See Table 2 See Table 2 
Dermal permeability constant (Kp) unitless 0.001 0.001 
Gastrointestinal absorption factor (GIABS) dimensionless See Table 2 See Table 2 
Inhalation exposure time (ET) hr/day 6 9 
Average time (AT) – carcinogen days/yr 25,550 25,550 
Average time (AT) – non-carcinogen days/yr 10,950 2,160 
Body weight (BW) Kg 80 15 
Volatilization factor (VF) m

3
/kg

 
1.00×10

5
 1.00×10

5
 

Particulate emission factor (PEF) m
3
/kg 6.79×10

8
 1.36×10

9
 

Cancer slope factor (CSF) (mg/kg/day)-1 See Table 2 See Table 2 
Refernce dose (RfD) mg/kg/day See Table 2 See Table 2 
Cancer inhalation unit risk (IUR) (mg/m3)-1 See Table 2 See Table 2 
Reference inhalation concentration (RfC) mg/m

3
 See Table 2 See Table 2 

 

Table 2. Reference values for health risk assessment [30-33] 
 

Heavy metal CSF 
(mg/kg/day)-1 

RfD 
(mg/kg/day) 

IUR 
(mg/m3)-1 

RfC 
(mg/m3) 

RBA GIABS 

Al No CSF 1.00 No IUR 0.005 1 1 
As 1.5 0.0003 4.3 0.000015 0.6 1 
Cd (dietary) No CSF 0.001 1.8 0.00001 1 0.025 
Cd (water) 6.3 0.0005 1.8 0.00001 1 0.05 
Cr (III) No CSF 1.50 No IUR 0.005 1 0.013 
Cr (VI) 0.5 0.003 84 0.0001 1 0.025 
Cu No CSF 0.04 No IUR 0.004 1 1 
Fe No CSF 0.70 No IUR 0.8 1 1 
Hg No CSF 0.0003 No IUR 0.0003 1 0.07 
Ni 0.84 0.02 0.26 0.00009 1 0.04 
Pb 0.0085 0.0035 0.0085 0.0035 1 1 
Zn No CSF 0.30 No IUR 0.03 1 1 

No CSF; No IUR – reference value unavailable 
 

3. RESULTS 
 

3.1 Heavy Metal Concentration in Fish 
Samples 

 

Table 3 and Fig. 2 shows the concentration of 
heavy metals in different fish species assessed 
in Ogbaru axis of River Niger. The highest 
concentration of aluminum (Al) was indicated in 
Clarias gariepinus, followed by Heterotis niloticus 
with the concentration 0.019mg/kg and 0.005 
mg/kg respectively, as Ismaniza et al. [5] 
observed a concentration range of  15.39 – 320.6 

mg/kg for aluminum that was attributed to 
industrial waste, erosion, dissolution of               
minerals and salts, atmospheric dust pollution 
and rain [34]. Highest concentration of arsenic 
(As) was seen in Clarias gariepinus having 
0.093mg/kg while the lowest concentration of 
0.002mg/kg was found in Anguilla labiate which 
was lower than those reported in Zrnčić et al., 
[35] study ranging between 0.021–0.048 μg/g for 
Cyprinus carpio. Ashraf et al, [1] observed a 
concentration of 0.87 mg/kg for Hampala 
macrolepidota from a tin mining catchment             
area.  
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Table 3. Mean concentration of heavy metals in fish species 
 
Heavy metal 
(mg/kg) 

Clarias garipinus 
(Cat fish) 

Heterotis niloticus 
(African Arowana) 

Anguilla labiate (African 
mottled eel) 

Al 0.019±0.027 0.005±0.002 0.000±0.000 
As 0.093±0.004 0.003±0.002 0.002±0.002 
Cd 0.022±0.004 0.020±0.004 0.028±0.001 
Cr 0.001±0.002 0.000±0.000 0.001±0.002 
Cu 2.161±0.033 2.197±0.007 10.560±0.306 
Fe 1.755±0.028 1.234±0.006 1.927±0.022 
Hg 0.311±0.00058 0.00067±0.001 0.000±0.000 
Ni 0.419±0.009 0.514±0.004 0.322±0.006 
Pb 0.276±0.003 0.394±0.1 0.299±0.061 
Zn 0.245±0.04 1.242±0.03 0.556±0.008 

Presented values shown as mean ± SD 

 

 
 

Fig. 2. Percentage stark column of fish samples 
 
Chromium (Cr) concentration was 0.001 mg/kg in 
Clarias gariepinus and Anguilla labiate.                       
The mean concentration of Cu ranged 2.16 
mg/kg – 10.56mg/kg as the highest value                   
was found in Anguilla labiate with the lowest in 
Clarias gariepinus, which was far below                     
Cu in Ikema and Egieborb [36] assessment in 
fish sample having 0.03mg/kg. Mercury 
concentration was highest in Clarias gariepinus 
having 0.311mg/kg, which is lower than 
commission of the European communities [37] 
guideline of 0.5mg/kg. The mean lead 
concentration of Heterotis niloticus had highest 
concentration of 0.394mg/kg followed by Anguilla 
labiate with a concentration of 0.299mg/kg and 
the least value of 0.276mm/kg in Clarias 
gariepinus, which was below FAO/WHO limit of 
0.4mg/kg for fish species [38].  
 

The concentrations of Cadmium ranged between 
0.020mg/kg - 0.028mg/kg. The highest 
concentration was measured in the muscles of 

Anguilla labiate while the lowest was recorded 
from Heterotis niloticus. For zinc, the value 
recorded ranged between 0.245mg/kg - 
1.242mg/kg for all three fish species. The highest 
concentration of nickel (0.514 mg/kg) was 
measured in Heterotis niloticus while the lowest 
concentration of 0.322mg/kg was detected in 
Anguilla labiate. The highest concentration of 
iron (Fe) was predominant in Anguilla labiate 
having 1.93mg/kg, while the lowest value of 
1.23mg/kg was recorded in Heterotis                 
niloticus. 

 
3.1.1 Heavy metal concentrations in surface 

water and sediment samples 
 

Table 4 and Fig. 3 shows the concentration of 
heavy metals in surface water (mg/l) and 
sediments (mg/kg) in seasonal variations (raining 
and dry seasons). For water samples, As, Cd, 
Cr, Cu, Fe, Hg and Pb showed high 
concentration for raining season in comparison to 
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dry season, as Al, Ni and Zn were dominant 
during dry season respectively. Using 
percentage stark column arrangement (Fig. 3i), 
we can see that Al and Zn was 100% at dry 
season, while As. was 100% at raining season; 
Cu and Pb had 96% for raining season and 4% 
for dry season. For sediment samples (Fig. 3ii), 
Cr, Cu, Ni and Pb concentration in raining 
season were higher than dry season, and vice 
versa for dry season that is As, Cd, Fe, Hg, Zn 
were dominant, although As were similar in 
concentration for both season at 0.001 mg/kg. A 
view at Fig. 3ii shows that As, Fe and Zn had 
50%, 46% and 45% cumulative concentration for 
raining season as Al and Hg had 10% and 19% 
for raining season, while 90% and 81% for dry 
season respectively. 
3.1.2 Correlation matrix of fish, surface water 

and sediment samples  
 
Pearson correlation was conducted for the heavy 
metal concentration in fish samples in relation to 
water and sediment as presented in Table 5. The 

correlation coefficient was significant at p ≤ 0.05 
in most cases with presence of positive and 
negative correlation. A review of the three fish 
samples depicts that they had similar correlation 
matrices across all metal substrates in water and 
sediment samples attributed to bioaccumulation 
and bio-speciation of heavy metals and other 
pollutants in tandem to seasonal variation [39-
42]. 
 
A strong correlation indicates that metals across 
both fish and water/sediments have common 
pollution source and similar migration behavior, 
while if there is medium or weak correlation, it 
depicts that there is slight or no influence 
associated between the fish and water/sediment 
samples [43, 44]. In view of this correlating 
regression, positive values show that they are 
from similar or mutual source and reaction mode, 
while negative is associated to different polluting 
or interacting source and biochemical interaction 
taken place no associated to water and sediment 
samples [44-46]. 

 
Table 4. The concentrations of heavy metals in surface water and sediment samples 

 
Heavy metal waterᵃ (mg/l) waterᵇ (mg/l) Sedimentᵃ (mg/kg) sedimentᵇ (mg/kg) 
Al 0.000±0.000 0.246±0.058 0.160±0.018 1.458±0.892 
As 0.005±0.003 0.000±0.000 0.0006±0.0009 0.001±0.003 
Cd 0.032±0.026 0.270±0.190 0.316±0.059 0.788±0.131 
Cr 0.099±0.084 0.039±0.023 0.112±0.052 0.030±0.023 
Cu 0.186±0.167 0.007±0.011 0.029±0.042 0.022±0.033 
Fe 2.308±0.823 0.180±0.063 2.371±0.216 2.653±0.918 
Hg 1.501±1.093 0.195±0.017 0.150±0.035 0.614±0.302 
Ni 0.254±0.067 0.773±0.464 0.945±0.189 0.781±0.134 
Pb 0.724±0.789 0.023±0.014 0.039±0.024 0.002±0.003 
Zn 0.000±0.000 2.903±1.263 0.766±1.016 0.931±1.397 

a: raining season, b: dry season; Presented values shown as mean ± SD 
 

 
 

Fig. 3. Percentage stark column of water and sediment samples 
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Table 6 represents correlation conducted for 
water and sediment samples during wet and dry 
season. We can see therefore that there was 
presence of positive and negative correlation 
across all heavy metals accessed. Al correlated 
with Cd (0.961) and Cr (-0.71) strongly, with As 
correlating with Cu (0.993), Hg (0.952), Ni (-
0.911), Pb (0.976) and Zn (-0.772). vertical 
correlation of Cd and Cr produced medium and 
weak correlation, while Cu, Fe, Hg, Ni, Pb 
correlated strong, medium and weak accordingly, 
as there were presence of negative and positive 
correlation signifying all metal components were 
not from the same source and biochemical 
interaction mode between water and sediment 
samples [47-50]. 
 
3.1.3 Health risk assessment of fish, surface 

water and sediment samples 
 

3.1.3.1 Cancer risk 
 

The result of carcinogenic risk assessment was 
conducted heavy metals (Al, As, Cd, Cr (III), Cr 
(VI), Cu, Fe, Hg, Ni, Pb, Zn) in fish samples, 
surface water and sediment in Ogbaru axis of 
River Niger as presented in Table 7 and 8 across 
different exposure pathways in adults and 
children. Using USEPA reference range of 
1.00E-06 – 1.00E-04 [51], one can see that both 
children and adults were within and above the 
range, which entails that there will be no 
associated cancer issues across different 
exposure pathways. The total exposure pathway 
(total CR) for adults is Al, Cr (III), Cu, Fe, Hg, Zn 
(0.00E+00), As (2.30E-05), Cd (1.74E-05), Cr 
(VI) 1.12E-06, Ni (1.72E-04), Pb (1.33E-06), 
while children is Al, Cr (III), Cu, Fe, Hg, Zn 
(0.00E+00), As (9.90E-06), Cd (2.14E-05), Cr 
(VI) (1.68E-06), Ni (7.83E-05), Pb (5.96E-07). 
The cumulative cancer risk for adults is 2.15E-
04, while children is 1.12E-04, which entails that 
there is likelihood that children will encounter 
cancer health risk compared to adults even 
though the value is within USEPA reference 
range [32]. 
 
3.1.3.2 Hazard quotient (HQ)  
 
The result of heavy metals (Al, As, Cd, Cr (III), Cr 
(VI), Cu, Fe, Hg, Ni, Pb, Zn) in Ogbaru axis of 
River Niger is presented in Table 9 and  10. A 
review of hazard quotient evaluated for all 
exposure pathways in fish, surface water and 
sediment shows that HQ were less than 1 for 
adults, while for children were less than 1 except 
for fish dietary exposure (Anguilla labiate) in Cu 
having 2.09. The total exposure pathway (total 

HQ) of heavy metals for adult is Al (1.26E-05), 
As (1.19E-01), Cd (2.82E-02), Cr (III) (1.61E-06) 
, Cr (VI) (3.01E-04), Cu (1.36E+00), Fe (2.59E-
03), Hg (3.82E-01), Ni (2.30E-02) , Pb (1.01E-
01), Zn (2.57E-03), which shows that Cu is 
greater than 1 and vice versa for others heavy 
metals. For children, the total HQ is Al (4.39E-
05), As (2.60E-01), Cd (1.11E-01), Cr (III) 
(8.93E-06), Cr (VI) (4.45E-03) Cu (2.96E+00), Fe 
(5.89E-03), Hg (1.30E+00), Ni (5.42E-02) Pb 
(2.37E-01) Zn (6.36E-03), which shows that Cu 
and Hg were greater than 1 and less than 1 for 
other heavy metals. Therefore, we can see that 
the cumulative hazard quotient for adults is 2.02, 
while children is 4.93 implying                     
children are extremely at risk in tandem to  
adults. 

 
4. DISCUSSION 
 
Heavy metals in diverse concentration are 
released from a host of natural and 
anthropogenic source that pose negative 
environmental and health-based risk over a 
period of time [52,53]. According to Vu et al. [54], 
anthropogenic activities lead to the release of 
heavy metals that a readily mobile in surface 
water, which thereafter suspend and deposit 
them on sediment fine grains. As these 
anthropogenic metals reach high threshold, 
aquatic organism is impacted negatively via 
bioactivity and mobile bio-accessibility from 
contaminated sediment finegrains and water 
body [55,56]. In this study, heavy metal 
concentration varied over fish, surface water and 
sediment samples, thus implies that biochemical 
transformation and geochemical interaction has 
great impact to floras and faunas in relation to 
humans [57-59]. 
 
According to WHO [60], arsenic (As) is found in 
diet, mostly in fish and shells, which exist as less 
toxic organic form in comparison to inorganic 
form, as such limited data has suggested that 
natural and anthropogenic source could impact 
on the concentration depending on the location.  
Arsenic in high concentration is known to cause 
short- and long-term health risks such as tissue 
and organ cancer, dermal lesion and vascular 
diseases, although arsenic exposure in humans 
are excreted via urine or sweat as organic acids 
in minute concentration [60-63].  
 
Aluminum (Al) and iron (Fe) are known to exist in 
water and sediment as combined component of 
carbonates, sulphates, chlorides, oxides that are 
easily absorbed in tissues and bones of aquatic 
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Table 5. Correlation matrix between fish samples in relation to water and sediment 
 

C. garipinus and 
water 

 Al As Cd Cr Cu Fe Hg Ni Pb Zn C. garipinus and 
sediment Al  -0.574 0.954 -0.181 -0.576 0.797 0.906 0.260 -0.671 0.747 

As -0.481  -0.792 -0.702 0.999 -0.952 -0.173 -0.940 0.992 -0.970 
Cd 0.994 -0.573  0.121 -0.793 0.941 0.739 0.536 -0.862 0.911 
Cr -0.197 -0.765 -0.090  -0.700 0.449 -0.580 0.903 -0.608 0.519 
Cu -0.505 0.999 -0.595 -0.747  -0.952 -0.176 -0.939 0.993 -0.970 
Fe -0.979 0.292 -0.951 0.393 0.318  0.467 0.790 -0.983 0.997 
Hg -0.625 -0.383 -0.537 0.888 -0.358 0.771  -0.173 -0.294 0.395 
Ni 0.970 -0.252 0.937 -0.431 -0.278 -0.999 -0.797  -0.890 0.836 
Pb -0.818 -0.111 -0.750 0.725 -0.084 0.918 0.961 -0.934  -0.990 
Zn 0.999 -0.475 0.993 -0.204 -0.499 -0.980 -0.630 0.971 -0.822  

H. niloticus and 
water 

Al  -0.580 0.956 -0.166 -0.582 0.723 0.990 0.183 -0.648 -0.267 H. niloticus and 
sediment As -0.925  -0.793 -0.707 0.999 -0.982 -0.688 -0.907 0.996 0.940 

Cd 0.998 -0.898  0.130 -0.794 0.893 0.988 0.462 -0.842 -0.537 
Cr -0.139 0.506 -0.076  -0.705 0.562 -0.026 0.939 -0.644 -0.906 
Cu -0.548 0.188 -0.600 -0.752  -0.983 -0.69 -0.906 0.997 0.939 
Fe -0.864 0.991 -0.830 0.618 0.053  0.8123 0.812 -0.995 -0.859 
Hg -0.412 0.728 -0.352 0.960 -0.537 0.814  0.318 -0.748 -0.399 
Ni 0.874 -0.993 0.841 -0.602 -0.072 -0.999 -0.802  -0.867 -0.996 
Pb -0.891 0.997 -0.860 0.574 0.107 0.998 0.781 -0.999  0.907 
Zn 0.912 -0.999 0.884 -0.533 -0.156 -0.995 -0.749 0.996 -0.999  

A. labiate and 
water 

Al  -0.583 0.959 -0.170 -0.583 0.851 0.990 0.327 -0.672 0.880 A. labiate and 
sediment As -0.803  -0.788 -0.702 0.999 -0.923 -0.689 -0.959 0.993 -0.899 

Cd 0.999 -0.792  0.115 -0.789 0.965 0.989 0.581 -0.854 0.978 
Cr -0.129 0.694 -0.111  -0.702 0.373 -0.032 0.876 -0.616 0.318 
Cu -0.513 -0.100 -0.528 -0.785  -0.923 -0.69 -0.959 0.994 -0.899 
Fe -0.982 0.902 -0.978 0.315 0.340  0.915 0.775 -0.961 0.998 
Hg -0.395 0.865 -0.378 0.962 -0.586 0.563  0.455 -0.768 0.937 
Ni 0.993 -0.869 0.990 -0.247 -0.406 -0.997 -0.503  -0.92 0.736 
Pb -0.799 0.999 -0.788 0.699 -0.107 0.899 0.868 -0.865  -0.943 
Zn 0.984 -0.897 0.980 -0.305 -0.349 -0.999 -0.554 0.998 -0.894  

Correlation significant at p ≤ 0.05 
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Table 6. Correlation matrices of water and sediment 
 

  Al As Cd Cr Cu Fe Hg Ni Pb Zn 
Al 1          
As -0.367 1         
Cd 0.961 -0.567 1        
Cr -0.710 0.533 -0.652 1       
Cu -0.442 0.993 -0.644 0.524 1      
Fe 0.333 0.472 0.278 0.395 0.368 1     
Hg -0.14 0.952 -0.390 0.248 0.943 0.426 1    
Ni 0.296 -0.911 0.547 -0.200 -0.930 -0.168 -0.962 1   
Pb -0.497 0.976 -0.699 0.499 0.994 0.268 0.929 -0.949 1  
Zn 0.018 -0.772 0.121 -0.617 -0.700 -0.914 -0.679 0.482 -0.619 1 

Correlation significant at p ≤ 0.05 

 
Table 7. Cancer risk (CR) of heavy metal exposure matrix in adults 

 
 Fish Exposure pathway Surface water Exposure pathways Sediment Exposure pathways Total CR 
 Dietary Ingestion Ingestion Dermal Ingestion Dermal Inhalation  
 C.garipinus H. niloticus A. labiate Waterᵃ Waterᵇ Waterᵃ Waterᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ  
Al No CSF No CSF No Data No Data No CSF No Data No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
As 2.18E-05 7.03E-07 4.68E-07 6.57E-11 0 5.30E-08 0 4.62E-10 4.62E-10 3.25E-12 3.25E-12 1.56E-10 1.56E-10 2.30E-05 
Cd No CSF No CSF No CSF 1.82E-09 1.49E-08 1.47E-06 1.20E-05 1.02E-06 2.55E-06 8.64E-08 2.15E-07 2.07E-08 5.15E-08 1.74E-05 
Cr (III) No CSF No Data No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
Cr (VI) 7.81E-08 No Data 7.81E-08 4.33E-10 1.71E-10 3.50E-07 1.38E-07 2.88E-08 7.71E-09 4.86E-09 1.30E-09 3.42E-07 9.15E-08 1.12E-06 
Cu No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
Fe No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
Hg No CSF No CSF No Data No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
Ni 5.50E-05 6.74E-05 4.22E-05 1.87E-09 5.68E-09 1.51E-06 4.59E-06 4.07E-07 3.29E-07 4.30E-08 3.47E-08 8.91E-09 7.19E-09 1.72E-04 
Pb 3.66E-07 5.23E-07 3.97E-07 5.39E-11 1.71E-12 4.35E-08 1.38E-09 1.70E-10 8.73E-12 7.19E-13 3.69E-14 1.20E-11 6.17E-13 1.33E-06 
Zn No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
 HM 7.72E-05 6.87E-05 4.32E-05 4.24E-09 2.07E-08 3.42E-06 1.67E-05 1.46E-06 2.89E-06 1.34E-07 2.51E-07 5.42E-07 1.96E-07 2.15E-04 

No data – Analytical data unavailable; No CSF; No IUR – reference value unavailable; Total CR: total cancer risk;  HM: sum total of heavy metals 
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Table 8. Cancer risk (CR) of heavy metal exposure matrix in children 
 

 Fish Exposure pathway Surface water Exposure pathways Sediment Exposure pathways Total CR 
 Dietary Ingestion Ingestion Dermal Ingestion Dermal Inhalation  
 C.garipinus H. niloticus A. labiate Waterᵃ Waterᵇ Waterᵃ Waterᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ  
Al No CSF No CSF No Data No Data No CSF No Data No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
As 9.34E-06 3.01E-07 2.01E-07 1.18E-10 No Data 5.23E-08 No Data 9.86E-10 9.86E-10 3.90E-12 3.90E-12 4.68E-11 4.68E-11 9.90E-06 
Cd No CSF No CSF No CSF 3.28E-09 2.68E-08 1.45E-06 1.19E-05 2.18E-06 5.44E-06 1.04E-07 2.58E-07 6.20E-09 1.55E-08 2.14E-05 
Cr (III) No CSF No Data No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUF No CSF 0.00E+00 
Cr (VI) 3.35E-08 No Data 3.35E-08 9.84E-09 3.88E-09 3.45E-07 1.36E-07 7.73E-07 2.07E-07 5.83E-09 1.56E-09 1.02E-07 2.75E-08 1.68E-06 
Cu No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
Fe No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
Hg No CSF No CSF No Data No CSF No CSF No CSF No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
Ni 2.36E-05 2.89E-05 1.81E-05 3.37E-09 1.02E-08 1.49E-06 4.53E-06 8.69E-07 7.01E-07 5.16E-08 4.16E-08 2.67E-09 2.16E-09 7.83E-05 
Pb 1.57E-07 2.24E-07 1.70E-07 9.71E-11 3.09E-12 4.29E-08 1.36E-09 3.63E-10 1.86E-11 8.62E-13 4.42E-14 3.61E-12 1.85E-13 5.96E-07 
Zn No CSF No CSF No CSF No Data No CSF No Data No CSF No CSF No CSF No CSF No CSF No IUR No IUR 0.00E+00 
 HM 3.31E-05 2.94E-05 1.85E-05 1.67E-08 4.10E-08 3.38E-06 1.65E-05 3.83E-06 6.35E-06 1.61E-07 3.01E-07 1.63E-07 5.88E-08 1.12E-04 

No data – Analytical data unavailable; No CSF; No IUR – reference value unavailable; Total CR: total cancer risk;  HM: sum total of heavy metals 

 
Table 9. Hazard quotient (HQ) of heavy metal exposure matrix in adults 

 
 Fish Exposure pathway Surface water Exposure pathways Sediment Exposure pathways Total HQ 
 Dietary Ingestion Ingestion Dermal Ingestion Dermal Inhalation  
 C.garipinus H. niloticus A. labiate Waterᵃ Waterᵇ Waterᵃ Waterᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ  
Al 6.92E-06 1.82E-06 No Data No Data 5.02E-09 No Data 1.74E-06 1.92E-07 1.78E-06 3.47E-10 3.22E-09 1.36E-08 1.26E-07 1.26E-05 
As 1.10E-01 3.64E-03 2.43E-03 3.4E-07 No Data 3.53E-08 No Data 2.04E-06 2.40E-06 2.17E-12 2.17E-12 8.47E-11 8.47E-11 1.19E-01 
Cd 8.02E-03 7.29E-03 1.02E-02 1.35E-06 1.1E-05 2.33E-07 1.91E-06 7.58E-04 1.89E-03 1.37E-08 3.42E-08 2.68E-08 6.68E-08 2.82E-02 
Cr (III) 2.43E-07 No Data 2.43E-07 1.35E-09 5.31E-10 7.00E-07 2.76E-07 8.95E-08 2.40E-08 1.87E-08 5.01E-09 9.49E-09 2.54E-09 1.61E-06 
Cr (VI) 1.21E-04 No Data 1.21E-04 6.74E-07 2.66E-07 7.00E-07 2.76E-07 4.47E-05 1.20E-05 9.72E-09 2.6E-09 9.49E-09 2.54E-09 3.01E-04 
Cu 1.97E-01 2.00E-01 9.62E-01 9.50E-08 3.57E-09 1.31E-06 4.95E-08 8.39E-07 6.59E-07 6.07E-11 4.77E-11 2.37E-09 1.86E-09 1.36E+00 
Fe 9.14E-04 6.42E-04 1.00E-03 6.91E-08 5.25E-09 1.67E-05 1.27E-06 4.06E-06 4.54E-06 5.14E-09 5.75E-09 2.01E-07 2.25E-07 2.59E-03 
Hg 3.77E-01 1.22E-03 No Data 1.02E-04 1.31E-05 1.06E-05 1.36E-06 5.99E-04 2.45E-03 4.65E-09 1.9E-08 1.27E-08 5.19E-08 3.82E-01 
Ni 7.63E-03 9.37E-03 5.87E-03 2.59E-07 7.89E-07 1.79E-06 5.46E-06 5.66E-05 4.57E-05 5.12E-08 4.13E-08 8.00E-08 6.46E-08 2.30E-02 
Pb 2.87E-02 4.10E-02 3.11E-02 4.22E-06 1.34E-07 5.12E-06 1.63E-07 1.34E-05 6.85E-07 8.46E-11 4.34E-12 3.30E-09 1.69E-10 1.01E-01 
Zn 2.98E-04 1.51E-03 6.75E-04 No Data 1.98E-06 No Data 2.05E-05 3.06E-05 3.72E-05 1.66E-09 2.02E-09 6.49E-08 7.89E-08 2.57E-03 
 HM 7.33E-01 2.65E-03 1.01E+00 1.09E-04 2.73E-05 3.72E-05 3.30E-05 1.51E-03 4.44E-03 1.05E-07 1.13E-07 4.24E-07 6.20E-07 2.02E+00 

No Data: Analytical data unavailable; Total HQ: total hazard quotient;  HM: sum total of heavy metals 
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Table 10. Hazard quotient (HQ) of heavy metal exposure matrix in children 
 

 Fish Exposure pathway Surface water Exposure pathways Sediment Exposure pathways Total HQ 
 Dietary Ingestion Ingestion Dermal Ingestion Dermal Inhalation  
 C.garipinus H. niloticus A. labiate Waterᵃ Waterᵇ Waterᵃ Waterᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ Sediment ᵃ Sediment ᵇ  
Al 1.51E-05 3.96E-06 No Data No Data 4.59E-08 No Data 2.03E-05 4.09E-07 3.80E-06 4.92E-09 4.57E-08 2.06E-08 1.91E-07 4.39E-05 
As 2.46E-01 7.92E-03 5.28E-03 3.11E-06 No Data 1.38E-03 No Data 5.11E-06 5.11E-06 1.03E-07 1.03E-07 1.29E-10 1.29E-10 2.60E-01 
Cd 1.74E-02 1.58E-02 2.22E-02 1.23E-05 1.01E-04 5.45E-03 4.46E-02 0.001616 4.03E-03 9.72E-07 4.85E-05 4.07E-08 1.02E-07 1.11E-01 
Cr (III) 5.28E-07 No Data 5.28E-07 1.23E-08 4.85E-09 5.45E-06 2.15E-06 1.91E-07 5.11E-08 2.99E-11 6.15E-10 1.44E-08 3.87E-09 8.93E-06 
Cr (VI) 2.64E-04 No Data 2.64E-04 6.16E-06 2.43E-06 2.72E-03 1.07E-03 9.55E-05 2.56E-05 2.87E-08 3.08E-07 1.44E-08 3.87E-09 4.45E-03 
Cu 4.28E-01 4.35E-01 2.09E+00 8.68E-07 3.27E-08 3.84E-04 1.44E-05 1.79E-06 1.41E-06 2.15E-08 1.69E-08 3.61E-09 2.84E-09 2.96E+00 
Fe 1.99E-03 1.40E-03 2.18E-03 6.31E-07 4.80E-08 2.79E-04 2.12E-05 8.66E-06 9.69E-06 1.04E-07 1.17E-07 3.06E-07 3.42E-07 5.89E-03 
Hg 8.21E-01 2.64E-03 No Data 9.34E-04 1.19E-04 4.13E-01 5.28E-02 0.001279 5.23E-03 1.08E-06 6.29E-05 1.93E-08 7.90E-08 1.30E+00 
Ni 1.66E-02 2.04E-02 1.28E-02 2.37E-06 7.21E-06 1.05E-03 3.19E-03 1.21E-04 9.74E-05 5.81E-08 1.17E-06 1.22E-07 9.82E-08 5.42E-02 
Pb 6.25E-02 8.92E-02 6.77E-02 3.86E-05 1.23E-06 1.71E-02 5.42E-04 2.85E-05 1.46E-06 3.43E-07 1.76E-08 5.03E-09 2.58E-10 2.37E-01 
Zn 6.47E-04 3.28E-03 1.47E-03 No Data 1.81E-05 No Data 7.98E-04 6.53E-05 7.94E-05 7.85E-08 9.55E-08 9.87E-08 1.20E-07 6.36E-03 
 HM 1.59E+00 5.76E-01 2.20E+00 9.98E-04 2.49E-04 4.41E-01 1.03E-01 3.22E-03 9.48E-03 2.79E-06 1.13E-04 6.44E-07 9.43E-07 4.93E+00 

No data – Analytical data unavailable; Total HQ: total hazard quotient;  HM: sum total of heavy metals 
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organisms and humans also. Similarly, they both 
impact water quality such as color, turbidity, 
hardness, conductivity and dissolved oxygen 
[64,65]. There is little indication that aluminum 
and iron have health implication, but 
hypothetically, it has been said that extreme 
aluminum exposure leads to Alzheimer diseases 
in humans [66].  
 
Iron (Fe) is an essential element in human 
nutrition, which estimated daily requirement 
depends on age, sex, physiological status and 
iron bioavailability [60].  
 
Cadmium (Cd) and zinc (Zn) in high 
concentration is an indication of pollution from 
each other, as they are released into the 
environment from several industrial activities 
such as steel, plastics, fertilizer that get absorbed 
and/or assimilated by aquatic organism and 
agricultural plants. Zinc impacts taste at 
minimum concentration of 4mg/l (as sulphate, 
carbonate and chloride).  
 
In humans, cadmium and zinc accumulate in 
kidney after exposure leading to cytotoxicity 
induced tumors in urinary tract and development 
of hyperplasia and subsequently neoplasia 
[67,68,69].  
 
Cadmium (III) and (VI) are known valence group 
of chromium that are prevalent different in 
biochemical interaction in human body [70]. 
Chromium (III) is a vital source of nutrient that 
exist in food source, although chromium (VI) is 
known to be carcinogenic via different exposure 
route (inhalation, oral and dermal). A national 
toxicology program (NTP) study shows that 
chromium (VI) is reduced to chromium (III) in 
human stomach and gastrointestinal tract in a 
dose-response interaction at very low 
concentration, but at high concentration can lead 
to tumor and cancer in organs and tissues in 
humans [71].  
 
Copper (Cu) and lead (Pb) are released into the 
environment from natural and anthropogenic 
sources, as its solubility is initiated by pH 
dominant anions (sulphate, nitrate, phosphate, 
chloride, carbonate) that impacts water quality 
(temperature, taste, color, dissolved oxygen) 
over a period of time [72,73]. Short-term 
exposure of copper leads to gastrointestinal 
irritation (diarrhea), which is concentration 
dependent, as long-term effect can lead to 
metabolic homeostasis and trigger Wilson 
disease in gene carriers [60].  

Exposure to lead has been known to cause 
neurodevelopmental issues, cardiovascular 
diseases, impaired renal function and fertility, 
hypertension, as lead in blood is known to cause 
blood cell-tumor and systolic blood pressure 
[38,65,74]. In children, lead decreases 
intelligence quotient (IQ) point by at least two (2) 
point and increase systolic blood pressure by 
about 3 mmHg [75].  
 

Mercury exist as organic and inorganic forms in 
aquatic environment as inorganic mercury 
exposure in human causes genotoxic health 
activities (tissue and organ tumor) as oral 
exposure above recommended guideline of 
0.0006mg/l result in hemorrhagic gastritis in 
stomach and intestinal tissue and kidney damage 
[63,76-79].  
 

Nickel exist predominantly in food source as 
water and sediment exposure is a minor 
contributor to adult and children over a period of 
time. Although presence of steel industries can 
lead to increase nickel pollution from industrial 
effluents, which impacts the aquatic and land 
environment. High concentration of nickel causes 
dermal allergies (dermatitis) [80].  
 

The correlative review as shown in Table 5 and 6 
shows that diverse activities such as industrial 
effluents and emission, agricultural land use, 
sanitary landfill, mining activities, fishing and 
water-land transport has negative influence on 
surface water and sediment, which in turn leads 
to exposure to floras and faunas over a period of 
time [30,31]. As the aforementioned activities 
takes place, it leads to the release of chemical 
toxins in high concentration that has the potential 
to cause immerse health risk to a population, 
which leads to carcinogenesis, mutagenesis and 
non-carcinogenesis (adverse health effect) [51].  
 

The calculated total cancer risk (Table 7 and 8) 
suggest that children will have cancer-based 
symptoms as compared to adults from fish 
dietary exposure, surface water (ingestion and 
dermal) exposure and sediment (ingestion, 
dermal and inhalation) exposure [51,81].  
 

The calculated total hazard quotient (Table 9 and 
10) suggest that both adult and children are at 
risk of having adverse health issues from all 
exposure pathways for fish most especially, as 
such special care is advocated [31,32].  
 

5. CONCLUSION 
 

The study evaluated significant concentration of 
heavy metals in three fish species, surface water 
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and sediment samples from Ogbaru axis of River 
Niger. However, the concentration was low or 
moderate within set WHO standard, as 
correlation showed positive and negative 
regression indicating that they were from similar 
source and vice-versa thus lead to 
bioaccumulation and increased toxicity in fish 
samples. Cancer risk and hazard quotient 
showed that fish dietary exposure is a major 
contributor compared to surface water and 
sediment exposure for both adults and children 
respectively. Children are more prone to have 
adverse health effect from consumption of fish 
samples exposed to low or moderate heavy 
metal concentration in comparison to adults. 
Based on this results, one can draw that fish 
samples were immensely impacted by 
anthropogenic activities that are released into the 
River Niger that span over a wide distance. 
Therefore, the following recommendations is 
advocated, which are further evaluation of 
pollutants in microscale and nanoscale is 
advocated to derive required information on the 
exposure medium of environmental matrices to 
human, regulatory action and proactive attention 
should be enforced on environmental polluters 
involved in diverse activities, and regular public 
health check on the level of heavy metals among 
the populace in the communities that border the 
study area should be employed in order to 
safeguard health and wellbeing. 
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