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Abstract

More than 20 years ago, Seta and colleagues hypothesized that cytokines, which are acti-

vated by myocardial injury, significantly drive heart failure progression and would therefore

be effective targets to treat cardiac dysfunction. Unfortunately, several clinical trials inhibit-

ing key cytokines like tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (Il-1β)

turned out negative or even revealed adverse clinical effects. Providing a potential mecha-

nistic explanation for the ineffectiveness of TNF-α blockade in heart failure, novel findings

demonstrate that the membrane-bound precursor form of TNF-α, transmembrane TNF-α
(tmTNF-α), mediates cardioprotective effects during pressure overload-induced cardiac

remodeling. This study suggests that preventing tmTNF-α cleavage by targeting the TNF-α
converting enzyme (TACE) rather than inhibiting TNF-α signaling altogether might be a valu-

able therapeutic approach.

Acute or chronic injuries of the heart initiate cellular signaling cascades causing a variety of

adaptive and maladaptive processes [1]. Enhanced cardiac growth, based on hypertrophy of

cardiac myocytes, for example, is an integral part of myocardial remodeling in response to

injury and predisposes to heart failure. Besides activation of the renin-angiotensin-aldosterone

system (RAAS) and desensitization of adrenergic signaling receptors, the increased synthesis

and secretion of pro-inflammatory cytokines is a major hallmark of heart failure development.

While therapeutic suppression of RAAS activation and β-adrenoceptors have proven to signifi-

cantly combat heart failure progression, multiple clinical trials using anti-inflammatory

approaches have failed to demonstrate positive effects or have even worsened heart failure. For

example, treatment with tumor necrosis factor alpha (TNF-α) neutralizing drugs (Infliximab

and Etanercept) had no beneficial effects on heart failure hospitalization or mortality, and

treatment with high doses of Infliximab even caused adverse clinical outcomes [2,3]. As disap-

pointing as these results were, they drew attention back to the underlying biological processes

and led to further investigation of the molecular interplay between inflammatory mediators

and cardiac remodeling.

While several preclinical studies have shown a direct negative effect of inflammatory cyto-

kines on cardiomyocyte contractility, hypertrophy, and survival, answering the question

whether inflammatory cytokines directly cause heart failure progression in an in vivo setup is
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certainly more difficult [4,5]. Although the administration of TNF-α via osmotic pumps was

sufficient to promote cardiomyocyte hypertrophy and left-ventricular dysfunction [6], this

most likely did not completely represent the complex inflammatory reaction during disease.

Additional supporting data were provided by population studies, which found a 2-fold

increased risk of developing heart failure when suffering from rheumatoid arthritis, a disease

that is associated with a severe and prolonged systemic increase of inflammatory cytokines [7].

The “cytokine hypothesis” is therefore well supported by experimental and clinical data [8].

However, there is also evidence that inflammatory signaling is protective under certain condi-

tions: After acute myocardial infarction, cytokines are up-regulated and orchestrate the resolu-

tion of cellular debris together with invading inflammatory cells. The elevated myocardial

cytokines also signal to local fibroblasts, keeping them initially in a proteolytic state and pre-

venting a premature differentiation into secretory and contractile myofibroblasts [9]. It is

therefore very likely that therapeutic inhibition of the inflammatory reaction will only have

beneficial effects if it outlasts the original stimulus.

The pro-inflammatory cytokine TNF-α signals through 2 different cell surface receptors,

tumor necrosis factor receptor 1 (TNFR1) and tumor necrosis factor receptor 2 (TNFR2).

Immunofluorescence stainings of uninjured human myocardium revealed localization of

TNFR1 predominantly on cardiomyocytes and vascular endothelial cells and rarely on fibro-

blasts and leukocytes, while TNFR2 was mostly found on vascular endothelial cells and some

leukocytes, but not on cardiomyocytes or fibroblasts. However, during inflammation, the

mRNA expression and protein levels of TNFR2 in cardiomyocytes were strongly up-regulated.

Production of TNF-α in the heart was restricted to microvessels and leukocytes [10]. Upon

ligand binding, the adapter protein TNF receptor-associated DD (TRADD) is recruited to the

intracellular death domain (DD) of TNFR1, which subsequently initiates downstream signal-

ing that leads to rapid activation of nuclear factor kappa B (NF-κB) (Fig 1). While initial NF-

κB stimulation is antiapoptotic, the release of TRADD and the receptor interacting protein

(RIP) from the TNFR1 DD enables the formation of a cytoplasmic complex with the Fas-asso-

ciated DD protein (FADD) and caspase 8, which results in cellular apoptosis. Unlike TNFR1,

the intracellular part of TNFR2 does not contain a DD, and upon receptor activation, the TNF

receptor associate factor-2 (TRAF2) is recruited to the intracellular TNFR2 receptor domain,

where it associates with the TNF receptor associate factor-1 (TRAF1) and the cellular inhibi-

tors of apoptosis 1 and 2 (cIAP1/2). Further downstream, the signaling of TNFR2 is mediated

either via NF-κB inducing kinase (NIK) that activates IκB kinase (IKK), or through phosphati-

dylinositol 3-kinase (PI3K) activation of protein kinase B (Akt). Both TNFR2 pathways result

in a persistent up-regulation of NF-κB, mediating the transcription of antiapoptotic genes and

cellular protection [11].

In the issued study, the authors investigated the effect of TNF-α signaling on pressure over-

load-induced cardiac hypertrophy [12]. Using mouse models to specifically delete the 2 TNF-α
receptors, TNFR1 and TNFR2, they were able to examine their particular effects on cardio-

myocytes and cardiac function. Interestingly, they found that only knocking out TNFR1 had

beneficial effects on cardiac remodeling, while deletion of the TNFR2 even exacerbated the

pressure overload-induced cardiac hypertrophy and dysfunction. Moreover, they demonstrate

preferential binding of the insoluble transmembrane TNF-α (tmTNF-α) to the TNFR2, which

they suggest as the primary mediator of protective TNF-signaling during cardiac remodeling.

They further substantiated this finding by direct exposure of cultured cardiomyocytes to insol-

uble tmTNF-α ligand (expressed on NIH3T3 cells, a murine embryo fibroblast cell line),

which protected them from stress-induced hypertrophy. Importantly, the anti-hypertrophic

effects of tmTNF-α on cardiomyocytes were completely dependent on the presence of TNFR2,

but not TNFR1.
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While previous studies had already indicated a protective role for TNFR2-mediated signal-

ing, whereas negative effects were predominantly associated with activation of TNFR1, the spe-

cific ligands for the receptors in the heart were previously less clear [13]. The current study

poses an intriguing mechanistic explanation for the deleterious effects of anti-TNF-α treat-

ments on heart failure; while antagonism to the soluble TNF-α would be desirable, since it

indeed mediates cardiomyocyte hypertrophy and triggers further expression of the pro-inflam-

matory cytokines interleukin 1 beta (IL-1β) and interleukin 6 (Il-6), the blockade of the protec-

tive membrane-bound form tmTNF-α would disrupt its beneficial effects. Conversion of

tmTNF-α into the soluble form is catalyzed by the TNF-α converting enzyme (TACE). Using

an elegant approach, the authors further demonstrated that the pharmacological suppression

of TACE activity improved cardiac remodeling and heart failure in mice during pressure

overload.

Before these interesting new findings could be considered for clinical application, further

questions are still open that will need to be investigated. One critical point to address is which

cell type serves as primary provider of tmTNF-α and whether cardiac fibroblasts, endothelial

cells, or leukocytes thereby contribute to the termination of soluble TNF-α–triggered cardiac

tissue inflammation. Moreover, it is necessary to clarify whether TNF receptor expression on

other cardiac cell types (apart from cardiomyocytes) might also (at least partially) mediate the

effects of TNF-α in the heart. Studies with cell type–specific knockout of TNFR1 and TNFR2

or TNF-α would therefore be very interesting in the context of pressure overload or myocar-

dial infarction. Additionally, the downstream signaling of TNFR2 requires further attention in

order to understand its protective signaling response. It is so far unclear how TNFR2-mediated

Fig 1. Schematic illustration of cardiomyocyte TNFR1 and TNFR2 signalings. Akt, protein kinase B; DD, death

domain; FADD, Fas-associated DD; IKK, IκB kinase; NF-κB, nuclear factor kappa B; NIK, NF-κB inducing kinase;

PI3K, phosphatidylinositol 3-kinase; TACE, tumor necrosis factor alpha converting enzyme; tmTNF-α,

transmembrane tumor necrosis factor-α; TNFR1, tumor necrosis factor receptor 1; TNFR2, tumor necrosis factor

receptor 2; TNF-α, tumor necrosis factor alpha; TRADD, tumor necrosis factor receptor-associated DD; TRAF1,

tumor necrosis factor receptor associate factor-1; TRAF2, tumor necrosis factor receptor associate factor-2.

https://doi.org/10.1371/journal.pbio.3001037.g001
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activation of Akt protects the heart from pressure overload or isoproterenol-induced hypertro-

phy, as Akt is well known to promote adaptive, but, upon prolonged activation, also maladap-

tive cardiomyocyte growth. Which other pathways become activated in cardiomyocytes upon

TNFR2 activation? Investigation of isolated TNFR1 knockout cardiomyocytes after stimula-

tion with tmTNF-α in a phospho-proteomics screen could, for instance, elucidate potentially

protective signaling pathways. Moreover, the role of TACE deserves additional investigation,

as this might be a potentially promising therapeutic target. Which cells are mainly mediating

TNF-α cleavage by delivering TACE? What are the (transcriptional) mechanisms that induce

its expression upon mechanical loading? Is it also induced in response to inflammatory sti-

muli? Answering these questions might open additional options for therapeutic intervention

to prevent excessive TNF-α signaling without abolishing the protective effects of tmTNF-α on

cardiac remodeling.
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