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ABSTRACT

Prognostics is a term that engineering borrowed from medicine to refer to the discipline concerned
with the Remaining Useful Life (RUL) of an engineering device. This paper surveys the RUL
prediction techniques and classifies them into four categories of model-based techniques,
knowledge-based techniques, experience-based techniques, and data-driven techniques. A
comparative review is given for the main features, prominent advantages, potential shortcomings
and main subcategories for each of these categories. The survey is supported by an extensive list
for up-to-date references.
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1 INTRODUCTION

Prognostics is a term introduced recently into
the reliability engineering discipline. This term
(borrowed from that of medical prognostics) is
concerned with the Remaining Useful Life (RUL)
[1] (also known as the Mean Residual Life (MRL))
of engineering devices. It focuses on predicting
the time in which the device will no longer
perform its intended function. It is the field of
predicting the future reliability and performance of
an engineering device by assessing the deviation
or degradation extent of the device from its
normal operation condition expectation [2].

In recent years, the research on prognostics,
reliability and asset life prediction has been
enhanced in the field of Engineering Asset
Management (EAM). Modern systems such as
aircraft engines are often built with enormous
complexities. These systems are often bundled
with rich electronics and intricate connections
as well as interactions among their subsystems
and components. For example, a typical car
consists of about 30,000 parts, 10 million lines of
software code and 2,000 functional components
[3]. An engine manufacturer such as Rolls-
Royce R⃝ has developed a service agreement
called TotalCareTM in which engines are not sold,
but instead they are leased with a TotalCareTM

service agreement. The cost of lease under the
TotalCareTM service agreement is actually paid
by the hour. The lease requires a support fee
per hour of operation and the Original Equipment
Manufacturer (OEM) or Engine Manufacturer
provides the service support, including tracking
of the inherent uncertainty. This service is
also called Power-By-The-Hour. The Power-By-
The-Hour policy eliminates the requirement for
the lessee to pay hourly maintenance reserves
for the use of the engines in addition to a
fixed monthly lease fee. In the Power-By-The-
Hour service, the lessee is protected from the
unexpected cost of premature engine failure or
capital cost to refurbish the supplier’s owned
engines that require replacement due to life-
limited parts (LLPs), Airworthiness Directive (AD)
compliance and performance degradation. The
lessor is responsible for the cost to refurbish
or repair engines that require removal from the
aircraft and a shop visit to resolve discrepancies.

1.1 Life-Limited Parts (LLPs)
Life-limited Parts (LLPs) are parts that have a
limited service life. When this service life has
been exhausted, the life-limited part must be
removed from the aircraft and replaced before the
aircraft is permitted to fly again. The service life of
the life-limited parts may be expressed in hours of
operation, cycles of operation, or calendar time.

1.2 Airworthiness Directives
(AD)

Airworthiness Directives (AD) are legally
enforceable regulations issued by the Saudi
Arabian’s General Authority for Civil Aviation
(GACA), United States Federal Aviation
Administration (FAA), European Aviation Safety
Agency (EASA) or any other country’s civil
aviation authorities. These regulations are used
to correct an unsafe condition in a product
which could be an aircraft, engine, propeller, or
appliance.

The Power-By-The-Hour service has led to
a shape change in the product Life Cycle
Cost (LCC) profile for the Original Equipment
Manufacturer (OEM). In order for the engine
manufacturer or lessor to account and budget
for unexpected failures and LCC and still make
it appealing for the lessee or operator, the
OEM had to invest in research concerning the
Mean Residual Life (MRL), which is frequently
referred to as the Remaining Useful Life (RUL).
Therefore, scientists studied and applied many
life prediction approaches and techniques.
Failure of an engineering device can be traced
to an implicit deterioration and degradation
mechanism that acts and evolves over time.
Thus, the understanding and identification of the
different potential failure mechanisms present in
engineering devices is essential for accurate RUL
and life prediction [4, 5, 6, 7]. The RUL and life
prediction techniques can be classified into four
categories (see Fig. 1):

• Model-Based Techniques,
• Knowledge-Based Techniques,
• Experience-Based Techniques,
• Data-driven Techniques.

Each of the following four sections is devoted
to an overview of one the aforementioned
categories.
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2 MODEL-BASED
TECHNIQUES

The term ”Model-based techniques” typically
refers to approaches using models derived from
first principles (e.g., physics-based). It simply
depicts methods that use mathematical models
of system behavior. In essence, the model can
be derived from either one of the following two
ways:

• knowledge (when available) from first
principles, known physical laws, expert
experience, dimensional analysis, method
of similitude, prototyping, and the like.

• when a large amount of data is available
for both nominal and degraded behavior.

Models are typically developed from a mixture of
system knowledge and system data. Systems
can be described by discrete state-space
equations of the form:

x(k + 1) = f(k,x(k),ϕ(k),u(k),v(k)),

y(k) = h(k,x(k),ϕ(k),u(k),n(k)),
(2.1)

where x: states, ϕ: parameters, u: input, y:
output, v: process noise, n: sensor noise.

A model-based technique is used when an
accurate and explicit mathematical model of
the degradation process can be developed and
constructed from first principles [8, 5]. It utilizes
the outcome of a consistency check between the
sensed measurement of the actual system and
the outcomes of a mathematical model. The
difference is called the residual. If the residual
is large, then there is a malfunction, and when
the residual is small, then there is a normal
disturbance, noise or modeling error [9]. The
model-based approach is also called Analytical-
Based or Accelerated Degradation Modeling
(ADM).

The pros of the model-based technique include
the features that it:

• relies on the understanding of the physics
of the system,

• experiences changes in the feature vector
due to and commensurate with a change
in the model parameters [10],

• requires less data than the data-driven
approach,

• demands lower cost for implementation.
On the other hand, the cons of the model-based
technique are manifested in the fact that it

• requires more knowledge on the
fundamental theory relevant to the
monitored system,

• demands many assumptions about the
practical operating conditions of the
system,

• suffers from the dependence of its
robustness and accuracy on the
experimental condition under which the
models were developed [11],

• requires the estimation of various physical
parameters of the system,

• might not produce desirable and practical
results since the fault type differs from one
component to another.

The model-based technique can be further
subcategorized as [12]:

• Physics-of-Failure (PoF) Models,
• Statistical Models,
• Kalman/Particle Filtering, or
• Non-linear Dynamics.

2.1 Physics-of-Failure (PoF)
Models

The physics-of-failure (POF) provides a focus for
the life and reliability aspects of components.
It addresses the root causes of failure such as
fatigue, fracture, wear, and corrosion [13]. The
technique of Physics-of-Failure (PoF) prognostics
depends on the product life cycle loading and
failure mechanism to get the Remaining Useful
Life (RUL) and perform prognostics evaluation
[14]. This technique allows assessing the product
reliability under its actual usage conditions. It
utilizes the product model as well as in situ
measuring sensor data integrated together to
assess the product deviation and degradation
form its expected normal operation or operating
conditions and predict of the future reliability
state. Fig. 2. outlines the Physics-of-failure (PoF)
based prognostics and health monitoring (PHM)
methodology. First, the design data, life cycle,
expected life cycle conditions, Failure Modes,
Mechanisms and Effects Analysis (FMMEA) [14,
15, 2, 16, 17, 18], and Physics-of-failure models
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are combined to be the inputs and are called
the virtual life assessment (Virtual Reliability).
The critical failure modes and mechanisms are
prioritized based on the virtual life assess-
ment. The built-in-test results, existing sensory
data, inspection and maintenance records, and
warranty data are also utilized to identify the
abnormal conditions. The monitoring parameters
and sensor location can be determined using
the aforementioned information. It is impossible
to perform data-driven prognostics for a product
that has not been manufactured since there
is no data available for training the algorithm.
For new-product prognostics, we only need to
change the material geometries or properties
to model the product, This is because most
new products are not completely different from
previous products. Similar products can be
referenced via Failure Modes, Mechanisms
and Effects Analysis (FMMEA) [14]. FMMEA
is a systematic approach to identify failure
mechanisms and models for all potential failure
modes and then prioritize them. It is based on
understanding the relationships between [19]:

• Requirements and the physical

characteristics of the product.

• The interactions of product materials with
loads.

• The influence on product failure
susceptibility with respect to the use
conditions.

The methodology of PoF-based prognostics
comes in handy when prognostics analysis is
needed for a new product or for the prognosis
of a legacy system. In the case of legacy
systems, it is difficult to obtain training data
and also very hard to assess the Remaining
Useful Life (RUL) if the failure mechanisms and
their effect on the collected parameters are not
well understood. The PoF-based prognostics
approach depends on the understanding of the
legacy system structure and life cycle conditions
as well as the failure modes and mechanisms.

According to [20], the PoF technique can be
summarized as:

• Establish a list of the probable fault
structure for example chemical, electrical,
physical, mechanical, structural, or
thermal processes leading to failure.

Fig. 1. Taxonomy of prognostics approaches and techniques
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2.2 Statistical Models
Statistical modeling (which is also called the probabilistic-based modeling or usage-based prognostics
modeling) is typically developed based on known information about the degradation of the measure
parameters [21]. The parameters measurements are collected over time to assess the current
severity of the parameters distribution shifts. Changes in these parameters can be accelerated using
the accelerated degradation techniques.

Fig. 2. PoF-based PHM methodology. Graph reproduced from [14]

Accelerated Life Test (Accelerated
Degradation) The accelerated life tests
consist of different test techniques to shorten the
life of products or to hasten the degradation of
their performance. The purpose of such testing
is to obtain degradation data quickly. Such
data is then modeled and analyzed. We do
this because in real life, devices of practical
utility take long time to deteriorate or degrade.
The real life degradation process is usually very
slow at normal wear-and-tear conditions, i.e., the
Mean Time To Failure (MTTF) is comparatively
high. Therefore, to obtain statistical data in
a fast manner from a degradation test, we
employ an accelerated life test by changing and
speeding up the environment variables such as
temperature, vibration amplitude, load, voltage,
corrosive media and pressure [22, 23]. There are
many types of acceleration testing such as:

• High Usage Rate: Also called
compressed time testing, is an easy

method to hasten the deterioration and
shorten the life of many products by
running them at a higher usage rate. We
can achieve such testing by either running
the component faster or by reducing its
time off period. An example of running
a component faster is when a rolling
bearing is run at three or four times its
intended or normal speed. Reduced time
off accelerated testing concerns home
appliances such as washers and dryers
when they are run 24-hour a day while in
normal life they are run one or two hours
a day. Another example of reduced time
off accelerated testing is when a toaster
or a coffee maker are cycled hundreds of
times a day while in normal life they are
cycled three to five times a day.

• Overstress Testing: In overstress
accelerated testing, the product runs in
an overstressed environment to shorten
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its life. This is done by changing the
component overstressed environment
variables such as temperature, thermal
cycling, humidity, vibration, voltage and/or
mechanical load.

• Stress Loading Stress loading is a type of
accelerated testing methods that is done
by applying a stress on the component
until it fails while degradation statistical
data is being gathered. Stress loading
can be carried out using constant stress,
step stress, or linearly increasing stress.
The constant stress refers to the case in
which constant stress or force is applied
while the component is running. The step
stress can be done by applying stress to
the component while changing the stress
setting at specified times. The stress is
applied at low level and at a specified time.
If the component does not fail, the stress
is raised and held for a determined time
and so on and so forth until the component
is failed. Simple step stress uses only
two stress levels. The method of linearly
increasing stress means simply applying
stress and increasing it linearly until the
component fails.

There are many statistical (probabilistic-based)
models. However, this paper will only review
three of them, which are:

2.2.1 Proportional Hazards Model
(Cox Model)

The proportional hazards model (also called Cox
model) is a type of a regression method [24]. This
model is widely used in biomedical applications
to investigate the effects of several covariates on
a survival distribution at the same time. Cox
[25, 26, 27] who introduced this model assumes
no particular type of distribution for the survival
data. Because Cox model is non-parametric
(distribution-free), it cannot extrapolate in time but
in stress. Cox model is a statistical technique
for exploring the relationship between the survival
of the subject (component, part, human being,
etc.) in test and several explanatory variables.
The survival analysis is mainly concerned with
studying the time between entry to the study and
a subsequent event such as inoperability (cease
of operation), breakage, damage, etc. [27].

Cox proportional hazard model or Cox model
cater for estimating the hazard (or risk) of
parts/equipment damage, given its prognostics
variables. The model is briefly explained below:

Let x1, . . . , xn denote the variables, and let
h0(t) denote the unknown life distribution hazard
function at x1 = x2 = · · · = xn = 0. Thus,
the hazard function for the distribution at the
variables x1, . . . , xn is:

h(t;x1, . . . , xn) = h0(t) · e(γ1x1+···+γnxn). (2.2)

The base hazard function h0(t) and the
coefficients γ1, γ2, . . . , γn are estimated from
data. The corresponding reliability function is:

R(t;x1, . . . , xn) = e[−
∫ t
0 h(τ ;x1,x2,··· ,xn)dτ]

= [R0(t)]
e(γ1x1+···+γnxn)

,
(2.3)

where R0(t) is the reliability function at x1 = x2 =
· · · = xn = 0 and in given by

R0(t, 0, 0, . . . , 0) = e[−
∫ t
0 h0(τ)dτ]. (2.4)

The Proportional Hazards Model (Cox Model) is
presented in detail in [26, 28, 29].

2.2.2 Logistic Regression Model

The logistic regression model is also widely used
in biomedical applications in which the predictor
or dependent variable is a binary 0 or 1, on or
off, operational or inoperational, dead or alive,
approved or disapproved, etc. This model could
also be called the qualitative response/discrete
choice model. The logistic regression model is
a probability distribution of an event occurring
depending on the values of the independent
variables, which can be categorical or numerical.
The model estimates the probability that an
event occurs for a randomly selected observation
versus the probability that the event does not
occur. It seeks the effect of a series of variables
on binary response variables and classifies
observations by estimating the probability that
an event observation is a particular category, as
mentioned above, on or off, etc.

The logistic proportional model for the proportion
p in a particular category, for example,
inoperational as a function of n independent
variables x1, . . . , xn is

ln

[
1− p

p

]
= γ0 + γ1x1 + · · ·+ γnxn, (2.5)
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where γ0, γ1, . . . , γn are unknown coefficients to
be estimated from the data.

2.2.3 Cumulative Damage Model

The Cumulative Damage Model is defined
to be the permanent (irreversible) damage
accumulation in a component under a cyclical
usage pattern [30]. It is developed based on the
concepts of bounds on residual fatigue life in two-
stage cycling [31]. Basically, it has been used in
three different areas [32]:

• Mechanical Systems: to predict time of
failure

• Health and Safety: to determine the
humans tolerance level when a person
is exposed to toxic or latently injurious
materials.

• Structural Engineering: to calculate the
structure safety of structural parts when
they are exposed to loads over time.

The cumulative damage can be modeled using
the non-linear Miner’s rule [6]:

D =
(n
c

)r

(2.6)

Where D is the damage, n is the number of
cycles experienced, r is the non-linear damage
exponent, and c is the number of cycles to crack
initiation.

2.3 Kalman/Particle Filtering
Filtering is usually used in many situations in
engineering. For example, radio communication
signals are usually corrupted with noise which
makes the signal unusable. Therefore, a good
filtering algorithm may come in handy to remove
noise [33]. In this subsection, we will discuss
only two types of filtering that could be used in
prognostics to estimate the model parameters:
Kalman Filters and Particle Filters. Filtering using
Kalman/Particle filters has been used in [34, 35]
to predict the state of a battery charge and the
Remaining Useful Life (RUL).

2.3.1 Kalman Filtering

The Kalman filter is a statistical estimator to the
linear-quadratic problem, which is technically the
problem of estimating the instantaneous state
of a linear dynamic system affected by a white

noise [36]. Alternatively, Kalman filtering can
be viewed as a recursive algorithm which can
estimate the true (instantaneous) state of a noisy
system [37]. Kalman filtering can only be applied
to linear systems. Non-linear system can be
filtered using the Extended Kalman Filter which is
an improved version of the original Kalman filter.
A linear system is simply a process that can be
described by the following state (difference) and
output equations:

x⃗k+1 = A⃗x⃗k + B⃗u⃗k + w⃗k

y⃗k = C⃗x⃗k + z⃗k
(2.7)

where A⃗, B⃗, and C⃗ are matrices, u⃗ is a known
control input, y⃗ is the measured output, z⃗ is the
measured noise, w⃗ is the process noise, and k is
the discrete time index.

The x⃗, u⃗, w⃗, y⃗ and z⃗ quantities are vectors, in
general; therefore, they each of them might than
one element. Kalman filters can expressed in
many forms and formulations, one of them is [33]:

Kk = APkC
T
(
CPkC

T + Sz

)−1

. (2.8)

x̂k+1 = (Ax̂k +Buk) +Kk(yk+1 − Cx̂k). (2.9)

Pk+1 = APkA
T + Sw −APkC

TS−1
z CPkA

T .
(2.10)

2.3.2 Particle Filtering

Particle filters are sequential Monte Carlo
statistical simulation techniques which can
provide a very accurate approximation of the
sequential Bayesian estimator [38]. The basic
concept of the particle filters as in [39] is
described next. We use a set of weighted
particles as follows:{

w
(i)
k−1,x

(i)
k−1

}N

i−1
(2.11)

where x
(i)
k−1 is the state of the particle i while the

weight of this particle is w
(i)
k−1. These are used to

approximate the posterior density at a time k− 1.
The weights are normalized, i.e.,

∑N
i=1 w

(i)
k−1 = 1.

This approximation, then, can be expressed as:

p (xk−1|z1:k−1) ≈
N∑
i=1

w
(i)
k−1δx(i)

k−1

(xk−1) (2.12)
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Where δa(x) is a Dirac delta that is concentrated
at a and z1:k−1 is available measurements up to
time k−1. Prognostics using Particle filtering and
particle filters are described in detail in [40, 41,
34, 42, 43].

2.4 Nonlinear Dynamics

Linear dynamical systems can be described
as objects of any type or nature. The state
of a dynamical system evolves over time in
accordance with dynamical rules or as a result
of an evolving deterministic operator [44]. Every
dynamical system has a mathematical model
associated with it, A dynamical system is
considered as a black box whose internal parts
are unknown as shown in Fig. 3.

In this simple method, it is assumed that y(t), a
time series quantity, is obtained by observing the
underlaying autonomous dynamical system and
is mixed with unmonitored and unwanted force or
noise [45]. Inherently, there is another time series
quantity which we also observe, that is the input
u(t).

There are many approaches to develop a model
for the dynamical system. The deterministic
approach, one of them, assumes that the input-
output time series relationships can be modeled

as:

dx

dt
= f (x(t),u(t)) , (2.13)

y(t) = h (x(t)) . (2.14)

Many researchers used the nonlinear dynamics
techniques to model components for prognostics
analysis. Gašperin et al. [46] modeled a
gear to predict its Remaining Useful Life (RUL).
The propagation of the damage of the gear is
inherently a stochastic process; therefore, its
distribution of the Remaining Useful Life (RUL)
must be estimated by the propagation of the
distribution of the current system state. The gear
damage was modeled by a nonlinear dynamical
system with two hidden states and a single
measured output. The gear condition was
described with a dynamical process, which is
affected by random tribological inputs. These
inputs occur due to the impact of the rotating
parts. The aforementioned condition can then
be described by the following state-space model
which is a random process:

xt+1 = f(xt,wt,Θ) (2.15)

yt = g(xt, et,Θ) (2.16)

Prognostics using nonlinear dynamical systems
are described in detail in [47, 48].

Fig. 3. Conceptual model of a single-input, single output system
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3 KNOWLEDGE-BASED
TECHNIQUES

When it is difficult to perform prognostics analysis
on engineering devices using model-based
techniques, the knowledge-based techniques
may come in handy. Knowledge-based
prognostic techniques predict the Remaining
Useful Life (RUL) by assessing the similarity
between a data bank of a predefined failures
and an observed current situation [11]. The
predefined failure data are usually collected
from subject-matter experts as well as via an
interpretation of a set of rules [49]. Fuzzy
logic and expert systems are the most common
techniques used to predict the Remaining Useful
Life (RUL).

3.1 Expert Systems
An expert system is mainly a computer program
or a set of computer programs that emulates
the performance and decision-making ability of
a knowledgeable human being. A knowledge-
based expert system consists of either one of the
following:

• Rule-based expert system,
• Model-based expert system,
• Case-based expert system.

3.1.1 Rule-based Expert System

In a rule-based expert system, the knowledge
is represented in an IF Condition(s) THEN
action(s) such as, ”If Exhaust Gas Temperature
(EGT) is more than 650◦ THEN the inlet fans are
malfunctioned.” These IF-THEN statements form
a knowledge database comprised of heuristic
factual data gathered by many experts over many
years as shown in Fig. 4. In order for any
rule-based expert system to be useful, it ought
to be complete as well as exact as much as
possible [50]. For a complete rule-based expert
system, all rules and information available should
have been one-to-one mapped. To be exact,
the aforementioned mapping should be logically
consistent such that no chain of logical rules
pulled from the knowledge base contradicts with
the human operator A rule-based system is often
called a production system [51].

3.1.2 Model-based Expert System

A model-based expert system is used on a good
model that mimics the structure and behavior
of an engineering device. Generally, a model-
based expert system, not to be confused with
Model Based Techniques previously discussed
in section 2, requires deeper reasoning to
predict the Remaining Useful Life (RUL). In a
model-based expert system, there are three
fundamental tasks for prognostics:

1. Hypothesis Generation,

2. Hypothesis Testing,

3. Hypothesis Discrimination.

It is assumed that there is only a single
point of failure [52]. The explanation of the
aforementioned tasks is described in detail in
[52]. In this process, the source of the problem
prediction and the use of the observation get
separated to improve the confidence of each
problem source. The modeled system’s behavior
is then compared with the observed behavior
of the same system and if they differ from one
other, then there is a discrepancy in the system
provided the model is correct and accurate.

3.1.3 Case-based Expert System

In our normal life, we tend to look for
the services of experienced/older doctors and
professionals. This is because we think that
the experienced doctors or professionals have
been around for a while and treated/fixed similar
issues in the past; therefore, they quickly
can figure out the remedy. A case-based
expert system is a technique that depends on
past experience (cases) to find a solution for
the existing/current problem. Similarly, to the
experienced doctors or professionals, a case
based method takes information on a current
behavior of a problem and searches for the
most similar past issue/problem (case). One
of the advantages and strengths of the case-
based expert systems is that they become better
and better overtime when more cases are added
and analyzed. The knowledge-based expert
systems are all explained in detail in the Artificial
Intelligence (AI) Literature in [51, 53, 54, 55, 56,
57, 52].
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3.2 Fuzzy Logic
Fuzzy logic was presented in 1965 by Zadeh
[58]. Basically, it was an extension to the
classical Boolean logic in order to relax the
tough constraint of the Excluded Middle (of being
either absolutely true or absolutely false). Zadeh
suggested that why not have something like
0.75 true [59]? The aforementioned 0.75 true
statement can be interpreted as ”not really true”.
Fuzzy logic theory alleviates the harsh constraint
of the classical logic set theory of true and false
by allowing partial set association based on a

variable degree of truth. It provides a mechanism
for the linguistic phrases such as low, medium,
high, often, few, etc. in a nonlinear mapping of
the vector of the input data into a scalar single
output [60].

A fuzzy prognostics system comprises of: a
knowledge base, a fuzzy rule database and a
program (algorithm) as shown in Fig. 5. The
algorithm fuzzifies the crisp input, utilizing both
databases to make inferences based on the
fuzzified input, produces a fuzzy output, and
finally defuzzifies it into a crisp output.

Fig. 4. Rule-based architecture
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Fig. 5. Fuzzy logic system

Similarly to all knowledge-based systems, the
fuzzy logic system uses the IF-THEN rules to
solve a problem, but unlike the other knowledge-
based systems, fuzzy logic is intentionally made
imprecise [11]. Fuzzy logic systems are regularly
used to enhance other prognostics models [61,
62, 63, 64]. Majidian and Saidi [65] predicted
the Remaining Useful Life (RUL) of a set of boiler
tubes using fuzzy logic algorithms.

With its robust mathematical framework, fuzzy
logic can deal with real-life imprecision and
non-statistical uncertainty. Fuzzy logic and its
applications are discussed in abundance in [66,
59, 67, 68, 69, 58, 65, 61, 62, 63, 64].

4 EXPERIENCE-BASED
TECHNIQUES

Probably the simplest technique of prognostics is
based on the well-known probability distributions.
Those are distribution functions based on
identical events records of failures logged over a
period of time. The experience-based technique
is extensively used in reliability analysis. When
studying probability, it is assumed that some
probabilities and/or related quantities can be
calculated based on this knowledge assumption.
Conversely, in mathematical statistics, data is
observed to compute related quantities and/or
other probabilities or to predict the RUL [70].

The method of experience-based models
depends mainly on mathematical statistics which
is classified as parametric or non-parametric.
This classification depends on our knowledge
of the data distribution that belongs to a given
family in which parameters such as the mean
(µ) and the standard deviation (σ) can easily be
computed.

4.1 Parametric Distributions

A parametric distribution can concisely be
described with just a few parameters without
having to report the entire curve. A parametric
model can be used to extrapolate —in time—to
either the upper tail of a distribution or the lower
part. It provides smooth estimates of the failure-
time distribution which are perfect for prognostics
analysis.

The following parametric distributions can be
used for prognostics to predict the RUL:

• Location-scale and Log location-scale,

• Exponential,

• Normal and Lognormal,

• Smallest and Largest Extreme Value,

• Weibull,

• Logistic and Log-Logistic.
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4.1.1 Location-Scale & Log
Location-Scale Distribution

The Location-Scale is one of the parametrized
probability distribution families. It is parametrized
by a location and a scale. For any random
variable X where x belongs to the location-scale
family, its CDF is a function of (x− a)/(b). The
Location-Scale CDF is:

Fx(X|a, b) = F
(x− a

b

)
−∞ < a < ∞, b > 0

(4.1)
If the distribution of X is absolutely continuous
the (a, b) is the location-scale parameter with a
pdf:

fx(x|a, b) =
1

b
f
(x− a

b

)
(4.2)

Transforming the location-scale distribution using
X = log(Y ) in which Y = ex produces
a log-location-scale distribution. Based on
this transformation, the location parameter µ
becomes θ = eµ and the scale parameter σ
becomes λ = 1/σ where θ is called the scale
parameter and λ is called the power parameter
[71].

Mukhopadhyay and Roy [72] used the log-
location-scale distribution to perform Bayesian
accelerated life testing as well as reliability
analysis. The model used is:

fYj = (y|θj , τj , z) = τjfj(τj(y−µj(θj , z))) (4.3)

4.1.2 Exponential Distribution

The exponential distribution which is also
called the negative exponential distribution is
a probability distribution that describes a time
between two events occurring. The pdf of the
exponential distribution is:

f(x) =

{
λe−λx, if x ≥ 0

0, x < 0
(4.4)

The exponential distribution as a one-parameter
distribution can be used in prognostics by taking
the hazard function to be constant, λ(t) = λ > 0,
all over the range of T [26]. The failure frequency
is:

f(t) = λe−λt (4.5)

Hence, the CDF is

F (t) = 1− e−λt (4.6)

Therefore, the reliability function will be

R(t) = e−λt (4.7)

The reliability function which is also called the
survival function [73] has a mean (µ) and
variance (σ2) as follows:

µ =
1

λ
(4.8)

σ2 =
1

λ2
(4.9)

Gebraeel et al. [74] modeled the exponential
degradation function as:

S(ti) = ϕ+ θe(βti)e

(
ϵ(ti)−σ2

2

)
(4.10)

where S(ti) denotes the degradation signal as a
continuous stochastic process, continuous with
respect to time t, ti ≥ 0, i = 1, 2, . . . , ϕ
is a constant deterministic parameter, θ is a
lognormal random variable and ln(θ) has a mean
µ0 and variance σ2

0 , β is a normal random
variable with a mean µ1 and variance σ2

1 , ϵ(ti) is a
random error part following a normal distribution
with a zero mean and variance σ2.

The hazard rate will then be:

h(t) = λ (4.11)

which is constant and independent of time. The
only distribution that has a constant failure rate is
the exponential distribution [75].

Based on that, the Mean Time Between Failures
(MTBF) is 1/λ and the failure rate is λ while 1/λ
is the 63rd percentile meaning that 63% of the
population will have failed by then.

Failure experts claim that electronic components
fail randomly, thus, exhibiting exponential
distribution failure. The exponential distribution
is no longer used heavily in reliability applications
[76].

4.1.3 Normal and Log-Normal
Distribution

Without any doubts, the most famous and most
widely used probability distribution model is the
Normal Distribution which is also known as the
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Gaussian Distribution. A random variable X with
pdf:

f(x;µ, σ2) =
1√
2πσ2

e
−(x−µ)2

2σ2 (4.12)

is a normal random variable with the mean µ
(−∞ < µ < ∞) and standard deviation σ > 0.

The normal distribution hazard function increases
without limits. Therefore, it can be used to
model products with wear-out failure such as
the life of incandescent lamp filaments as well
as the electrical insulation. Nelson [27] used
the normal distribution Cumulative Distribution
Function (CDF) to model the population fraction
failing by age y.

F (y) =

∫ y

−∞

1
√

2πσ2
e

(−1
2

(
x−µ
σ

))
dx, −∞ < y < ∞

(4.13)

The mean µ and standard deviation σ should
be in the same measurement of y whatever it is,
hours, months or cycles.

Evaluating 4.13 at µ = 0 and σ = 1 yields:

F (y) = Φ

[
(y − µ)

σ

]
, −∞ < y < ∞ (4.14)

Which is the standard normal distribution
function. Additionally, Daniel Inman et al.
[77] used the normal distribution to model the
statistical strength and toughness of composite
materials under dispersed type load sharing as:

Gn(σ) = Φ

(
σ − µn

γn

)
σ ≥ 0 (4.15)

where

Φ(z) =
1√
2π

∫ z

−∞
e

−t2

2 dt (4.16)

with mean µ and standard deviation γn.

The Lognormal distribution is widely used to
predict metal fatigue, solid state components and
electrical insulation life. Engineering devices that
follow the lognormal distribution can be modeled
as:

F (t) = Φ

[
(log(t)− µ)

σ

]
, t > 0 (4.17)

which is the population fraction by age t. Note
that log(.) here is base e usually written as (ln(.))
and should not be confused with base 10. Nelson
[27] showed the lognormal reliability function to
be:

R(t) = 1− Φ

[
(log(t)− µ)

σ

]
(4.18)

4.1.4 Smallest and Largest Extreme
Value Distribution

The smallest and largest extreme value
distribution is characterized by scale and location
parameters. The smallest extreme value
distribution is skewed to the left and is used to
model the minimum value from a distribution of
random observations. It is also used to model
time to failure for a system that fails when its
weakest component fails. Whereas, the largest
extreme value distribution is skewed to the right
and is used to model the maximum value from
a distribution of random observations. It is also
used to describe extreme phenomena such as
extreme velocities.

The smallest extreme value distribution is used,
also, to predict the life of a series system in
which the systems fails if any component fails.
Whereas, the largest extreme value is used to
predict the life of a parallel system in which the
system fails when all its components fails.

The probability density function (pdf) of the
smallest extreme (the minimum) is:

f(x) =
1

b
e(

x−a
b )e−e(

x−a
b )

, −∞ < x < ∞
(4.19)

where a is the location and b is the scale
parameter.

The pdf of the largest extreme (the maximum) is
[78, 75]:

f(x) =
1

b
e(−

x−a
b )e−e(−

x−a
b )

, −∞ ≤ x ≤ ∞
(4.20)

where again a is the location and b is the
scale parameter. Note that the two exponentials
in equation 4.20 have extra negative sign
when compared with the corresponding ones in
equation 4.19.

4.1.5 Weibull Distribution

The Weibull distribution is widely used in
reliability analysis. It is frequently used to model
the time to failure. The pdf of the Weibull
distribution is:

f(x) =
β

δ

(x
δ

)β−1

e−(
x
δ )

β

, forx > 0 (4.21)
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where δ is the scale parameter and is > 0 and β
is the shape parameter and is also > 0.

The pdf of a Weibull distribution as used in
prognostics analysis is:

f(t) =
β

η

(
t− γ

η

)β−1

e

[
−
(

t−γ
η

)β]
(4.22)

where η is the characteristic life, β is the shape
factor and the γ is the location parameter. Thus
the Hazard rate of a Weibull distribution is:

h(t) =
β

η

(
t− γ

η

)β−1

, t ≥ γ; η > 0 (4.23)

The Cumulative Distribution Function (CDF) of a
Weibull distribution is:

F (t) = 1− e

[
−
(

t−γ
η

)β]
, t ≥ γ;β, η > 0 (4.24)

The reliability function can be expressed as
follows:

R(t) = 1− F (t) = e

[
−
(

t−γ
η

)β]
, t ≥ γ;β, η > 0

(4.25)

4.1.6 Logistic and Log-logistic
Distribution

The logistics distribution is usually used for
growth models. Its Probability Density Function
(pdf) is:

F (t) =
e

(t−µ)
σ

σ
(
1 + e

(t−µ)
σ

)2 ,

−∞ < t < ∞,−∞ < µ < ∞, σ > 0

(4.26)

where µ is the location parameter and σ is the
scale parameter. The logistic failure rate and the
reliability functions are:

λ(t) =
e

(t−µ)
σ

σ
(
1 + e

(t−µ)
σ

) (4.27)

R(t) =
1

1 + e
(t−µ)

σ

(4.28)

The Probability Density Function (pdf) of the log-
logistic distribution is:

f(t) =

(
β
α

) (
t
α

)β−1[
1 +

(
t
α

)β]2 , α > 0, β > 0 (4.29)

The survivor and hazard functions are shown
below:

S(t) =
1

1 +
(

t
α

)β (4.30)

h(t) =

(
β
α

) (
t
α

)β−1

1 +
(

t
α

)β (4.31)

The log-logistics distribution got its name due to
the fact that it handles a random variable Y given
by:

Y = log T (4.32)

where T is the logistic random variable. The pdf
of Y is given by:

fY (y) =

(
b−1

) (
e

y−µ
b

)
(
1 + e

y−µ
b

)2 (4.33)

where µ = logα, b = β−1, −∞ < µ < ∞, b > 0.

4.2 Non-parametric Distributions
When it is difficult to fit the data to a known
or specific probability distribution family, a non-
parametric distribution is used. A method
using this type of distribution is also called
a distribution-free method or technique [75].
Additionally, no assumption about the distribution
of the underlaying population is made other than
that it is continuous [79].

5 DATA-DRIVEN
APPROACHES

Data driven approaches depend on large sets of
time series data. They use statistical or artificial
intelligence techniques on relatively large
sets of measured component degradation or
performance data to predict component reliability
and states. Many of the existing approaches of
the data-driven prognostics analysis use neural
networks to model the system and hence its RUL.
Data driven methods can be grouped into four
main categories: multivariate statistical, black-
box, signal analysis and graphical methods.

5.1 Multivariate Statistical
Methods

Multivariate statistical analysis focuses
on analyzing several related variables

43



Bjaili and Rushdi; JERR, 18(4): 30-50, 2020; Article no.JERR.62205

simultaneously. Each of those variables is
equally important. The most important statistical
methods are:

5.1.1 Principal Component Analysis

The technique of principal component analysis is
one of the simplest of the multivariate methods.
The main objective of this analysis is to take
a bunch of variables such as x1, x2, x3, . . . , xp,
and then find a combination of these to generate
indices Z1, Z2, Z3, . . . , Zp which are uncorrelated
[55]. This lack of correlation indicates that they
measure different dimensions of the data and
in the order such that V ar(Z1) ≥ V ar(Z2) ≥
V ar(Z3) ≥ · · · ≥ V ar(Zp) where V ar(·) denotes
the variance. Principal component analysis
works as follows:

Assume we have a p number of X variables as
x1, x2, x3, . . . , xp, then their combination is:

Z1 = a11x1 + a12x2 + · · ·+ a1pxp (5.1)

Then the second principal component:

Z2 = a21x1 + a22x2 + · · ·+ a2pxp (5.2)

The above is chosen so that V ar(Z2) is as large
as possible subject to the constraint that:

a2
21 + a2

22 + . . .+ a2
2p = 1 (5.3)

Since Z1 and Z2 have zero correlation for the
data. Therefore, the ith principal component is:

Zi = ai1x1 + ai2x2 + · · ·+ aipxp (5.4)

In particular, V ar(Zi) = λi and the constants
ai1, ai2, . . . , aip, are the elements of the
corresponding eigenvectors scaled so that:

a2
i1 + a2

i2 + . . .+ a2
ip = 1 (5.5)

Future information on the principal components
analysis is can be found in [80, 78]

5.1.2 Linear and Quadratics
Discriminant Analysis

Discriminant Analysis (DA) is a statistical model
which uses a set of independent variables to
discriminate between two or more groups of a
dependent variable [81]. The linear discriminant
analysis (LDA) is, also known as Fisher’s linear
discriminant, a method used in machine learning,

statistics and pattern recognition. LDA is
most commonly used as dimensionality reduction
technique to find a linear combination of features
that characterizes or separates two or more
classes of objects or events. The Quadratic
Discriminant Analysis (QDA) is a generalization
of the LDA.

The LDA and QDA are the simplest discrimination
analyses due to their linearity. A linear
decision boundary is easy to understand and
visualize. Assume that we draw a sample from
a multivariate normal distribution N(µ,Σ) that
has a mean µ and covariance matrix Σ. The
multivariate density can then be:

P (x) =
1√

(2π)D|Σ|
e−

1
2
(x−µ)TΣ−1(x−µ) (5.6)

A sample of data is drawn from two classes, each
described by a multivariate normal density

P (x) =
1√

(2π)D|Σ|
e−

1
2
(x−µk)

TΣ−1(x−µk) (5.7)

LDA can be applied as follow: Assume that each
of fk(x), k = 1, · · ·K follows a multivariate
normal distribution (µk,Σ) with a mean µk and
common covariance matrix Σ [24]. Then:

log

[
P (G = k|X = x)

P (G = j|X = x)

]

= log
fk(x)

fj(x)
+ log

(
πk

πj

)

= log[πk/πj −
1

2
(µk + µj)

T
Σ

−1
(µk − µj)

+ x
T
Σ

−1
(µk − µj)]

(5.8)

If 5.8 is greater than zero then k will be grouped
in a vector; otherwise j will be grouped instead.
For classes k = 1, 2 the posterior probability
P (k|x) of observing an instance of class k at
point x can be found using Bayes rule as follows:

P (k|x) = πkP (k|x)
p(x)

(5.9)

Note that the unconditional probability P(x) does
not depend on k. Taking the natural logarithm of
the posterior odds:

log
P (k = 1|x)
P (k = 2|x) = log

π1

π2
− 1

2
log

|Σ1|
|Σ2|

+ xT (
Σ−1

1 µ1 − Σ−1
2 µ2

)
− 1

2
xT (Σ−1

1 − Σ−1
2 )x

− 1

2
(µ1Σ

−1
1 µ1 − µ2Σ

−1
2 µ2)

(5.10)
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We can obtain the hyperplane that separates the
two classes by equating this log-ratio to zero [82].
The above is the quadratic function of x. Hence,
it is called the Quadratic Discriminant Analysis
(QDA). If the covariance matrix Σ1 = Σ2, then
the quadratic terms disappears making it Linear
Discriminant Analysis (LDA).

5.1.3 Partial Least Squares

Partial Least Squares (PLS) is a regression
approach that splits the predictors or independent
variables to a smaller set of uncorrelated
components then performs least square
regression on them rather on the whole original
data [83, 84].

The core functionality of PLS is dimension
reduction which works under the assumption of a
basis latent decomposition of the predictor matrix
in which X ∈ ℜn×p and response matrix in which
Y ∈ ℜn×q as follows:

X = TPT + E (5.11)

Y = UQT + F (5.12)

where, X ∈ ℜn×m is a matrix that is capable
of producing k linear combinations known as
scores, Y ∈ ℜn×p matrix of responses, T ∈ ℜn×l

is called X-scores U ∈ ℜn×l is called the Y-
scores, P ∈ ℜm×l and Q ∈ ℜp×l are matrices
of coefficients known as loadings and E ∈ ℜn×p

and F ∈ ℜn×q are random errors matrices.

5.1.4 Canonical Variate Analysis

Canonical Variate Analysis (CVA) is a technique
that focuses on finding the relationship between
groups of variables in a data set. Assumes
that we have two data sets, namely X and Y
such that X = {x1, x2, x3 . . . xn} and Y =
{y1, y2, y3 . . . yn}. The CVA main function is to
find whether X and Y are related, i.e., can Y
be represented by X? Basically, CVA finds the
linear combinations of X and Y that are highly
correlated.

6 CONCLUSION

The concept of the Remaining Useful Life (RUL)
studied herein is also known as the Mean
Residual Life (MRL) for an engineering device.
This is the corner stone of the emerging field
of engineering prognostics, which mimics the

older field of medical prognostics, by allowing
an engineering device to play a role similar
to that of the human body. The Remaining
Useful Life is simply a scientific prediction of
the time in which an engineering device will no
longer perform its intended function. Prognostics
is, therefore, the field of predicting the future
reliability and performance of an engineering
device by assessing the deviation or degradation
extent of the device from its normal operation
condition expectation.

This paper surveys the prediction techniques
for the Remaining Useful Life (RUL) of an
engineering device under continuous operation.
The paper classifies these techniques into four
categories, namely model-based techniques,
knowledge-based techniques, experience-based
techniques, and data-driven techniques. A
comparative exposition is given for the main
features, prominent advantages, potential
shortcomings and main subcategories for each
of these technique categories. The survey is
supported by an extensive list for up-to-date
references. The present survey is intended to
supplement many excellent reviews that address
the prognostics of devices of contemporary vital
importance [85, 86, 87, 88, 89, 90, 91, 92, 93, 94].
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