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Abstract

Cancer is the second-leading cause of death in the United State and surgery
remains the primary treatment for most solid mass tumors. However, accu-
rately identifying tumor margins in real-time remains a challenge. In this
study, the design and testing of hyperspectral imaging (HSI) system based on
a single-pixel camera engine is discussed. The primary advantage of a single
pixel architecture over traditional scanning HSI techniques is its high sensi-
tivity and potential to function at low light levels. The objective for the imag-
ing system described here is to detect changes in the reflectance spectra of
tissue and to use these differences to delineate tumor margins. This paper
presents the results of a 19-patient pilot study that assesses the ability of the
HSI system to use reflectance imaging to delineate adenocarcinoma tumor
margins in human pancreatic tissue imaged ex vivo. Pancreatic tissue excised
during pancreatectomy was imaged immediately after being sent to the pa-
thology lab. A pathologist sectioned the tissue and placed samples into stan-
dard tissue embedding cassettes. These tissue samples were then imaged us-
ing the HSI system. After imaging, the samples were returned to the patholo-
gist for processing and analysis. The HSI was later compared to the histologi-
cal analysis. The spectral angle mapping (SAM) and support vector machine
(SVM) algorithms were used to classify pixels in the HSI images as healthy or
unhealthy in order to delineate margins. Good agreement between margins
determined via HSI (using both SAM and SVM) and histology/white light
imaging was found.
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1. Introduction

The American Cancer Society estimates that more than 1.8 million people will
be diagnosed with cancer and over 600,000 will die from the disease in 2020 [1].
Surgery remains the primary treatment for most solid mass tumors. The objec-
tive of surgery is to remove malignant tissue, while minimizing damage to adja-
cent healthy tissue to preserve function and/or for cosmetic reasons. A signifi-
cant challenge for cancer surgery is ensuring that no residual malignant tissue is
left behind as recurrent tumors lead to high mortality rates [2]. Consequently,
the success of cancer surgery depends on a doctor’s ability to accurately deli-
neate tumor margins.

Multiple imaging modalities are routinely available for preoperative tumor
diagnosis and surgical planning, including x-ray, ultrasound, computed tomo-
graphy (CT), magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET) and single photon emission computed tomography (SPECT). How-
ever, these techniques are not usually available during surgery. Paraffin section
of inked surgical margins is the gold standard for margin assessment. Unfortu-
nately, this process is time-consuming and results are not available until several
days after surgery. Typically, surgeons determine the tumor resection margins
during procedures based on palpation, visual inspection and frozen section his-
tology. In some cases, intraoperative ultrasound is also used to guide tissue exci-
sion [3]. We have constructed a single-pixel hyperspectral imaging (HSI) system
to examine the reflectance spectra of tissue. HSI systems are not currently avail-
able for bulk tissue analysis during procedures. The long-term goal of this project
is to provide an additional intraoperative imaging modality to clearly delineate
tumor margins and identify areas of residual disease in real time.

Recent research has demonstrated that optical spectroscopy can be used to
distinguish between healthy and diseased or damaged tissue. Both reflectance
and fluorescence spectroscopy have been shown to effectively identify unhealthy
tissue [4] [5] [6] [7]. Autofluorescence emission is produced by the natural con-
stituents of tissue (no exogenous fluorescent substances are added) when the
tissue is illuminated by UV light. The autofluorescence of collagen, near 400 nm,
and nicotinamide adenine dinucleotide phosphate, NAD(P)H, near 475 nm,
have been noted for their high sensitivity to the presence of a range of different
diseases [8] [9] [10]. The sensitivity arises because the autofluorescence spectra
of proteins change due to alterations in the makeup and structure of unhealthy
tissue compared to healthy tissue. Reflectance spectroscopy provides informa-
tion about tissue morphology. Alterations in tissue morphology, including hyper-
plasia, nuclear crowding, and increased nuclear/cytoplasmic ratio are associated

with disease progression and can cause changes in the wavelength dependence of
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the reflected spectrum [11] [12].

HSI is a hybrid imaging modality that combines imaging and spectroscopy. By
collecting spectral information at each position in a 2-D image, HSI generates a
3-D dataset of spatial and spectral information. Because HSI captures both spa-
tial and spectral information, this technique has potential applications for non-
invasive disease diagnosis and surgical guidance. Conventional HSI systems em-
ploy spatial or spectral scanning to acquire a hypercube. Spatial scanning tech-
niques (pushbroom or whiskbroom systems) obtain a spectrum in one location
and then the object/spectrometer is translated to obtain spatial information. The
full hyperspectral image is recovered after scanning is complete. In spectral scan-
ning, a 2-D image is projected through a tunable filter or filter wheel and indi-
vidual images are captured at different wavelengths. The hyperspectral image is
reconstructed by combining the separate monochromatic images. Traditional
HSI scanning techniques have been successfully applied to a range of diseases
including cancer, hemorrhagic shock, heart and retinal diseases [12] [13] [14].
HSI cancer studies have included distinguishing protein biomarkers on individ-
ual tumor cells in vitro, analyzing the morphological and structural properties of
histological specimens to classify cancer grade, examining the tissue surface to
identify precancerous and malignant lesions in vivo, and measuring the tissue
blood volume and oxygenation to quantify tumor angiogenesis and metabolism
[12].

A challenge with the use of HSI technology for intraoperative imaging has
been that traditional scanning techniques suffer from poor temporal and spatial
resolution and low optical throughput. Higher spectral and spatial resolution is
important as it can potentially capture more subtle spectral and spatial variations
of different tissue types necessary for an effective interoperative tool. Low optical
throughput hampers the ability to increase spatial and spectral resolution in tra-
ditional HSI systems. These problems have led to the development of techniques
that can capture the whole data cube in a single snapshot. For example, image
mapping spectroscopy (IMS) uses an array of densely packed mirror facets to
spatially distribute neighboring image regions to isolated regions on a CCD [15]
[16] [17]. A prism then disperses the spectral content from the mapped image
into the surrounding empty regions on the CCD. Johnson et al have used a
computed tomographic imaging spectrometer (CTIS) to capture both spatial and
spectral information in a single frame for retinal imaging spectroscopy [18].
CTIS captures the spatial and spectral information by imaging the scene through
a two-dimensional grating disperser. This produces multiple, spectrally dis-
persed images that are recorded by a focal plane array.

In this study, the design and testing of a new HSI system based on a sin-
gle-pixel camera engine are discussed. The primary advantage of a single pixel
architecture over traditional scanning HSI techniques is its high sensitivity and
potential to function at low light levels. In a single pixel camera, the light ga-

thered from a scene falls onto one pixel. Scanning techniques measures only 1/N
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of total light per pixel, while CS measures 1/2 of total light in a single detector
[19]. This efficient light acquisition of an HSI system based on a single pixel en-
gine provides high sensitivity which can enable the high spatial and spectral res-
olution needed for intraoperative imaging. Single pixel imaging can provide
higher spectral and spatial resolution than other non-scanning HSI techniques
such as IMS. While single-pixel HSI is not a snapshot technique, it can in prin-
ciple acquire images at high rates.

The Nyquist-Shannon sampling theorem states that a band-limited input sig-
nal can be recovered without distortion if it is sampled at a rate of at least twice
the highest frequency component of interest within the signal. For some signals,
such as images that are not naturally band limited, the sampling rate is dictated
not by the Nyquist-Shannon theorem but by the desired temporal or spatial res-
olution. However, it is common in such systems to use an anti-aliasing low-pass
filter to band limit the signal before sampling it, and so the Nyquist Shannon
theorem plays an implicit role. Recently, an alternative theory, compressive
sampling/sensing (CS), has emerged demonstrating that signals can be recon-
structed from far fewer measurements than the Nyquist limit [20]. A single pixel
camera uses a single detector to create a 2-D image of a scene rather than using a
traditional array detector and relies on the mathematical theory and algorithms
of CS. CS relies on the empirical observation that many types of signals or im-
ages can be well approximated by a sparse expansion in terms of a suitable basis,
that is, by only a small number of non-zero coefficients. This is the key aspect of
many lossy compression techniques such as JPEG and MP3, where compression
is achieved by storing only the largest basis coefficients. In mathematical form, a

signal, x, can be represented in some basis, ¥, such that
N
x=>aV¥, (1)
i1

If only a small number, m, of the coefficients, &, , are nonzero then x is
m-sparse in the domain W . In addition, the signal x is compressible if the re-
presentation in Equation (1) has just a few large coefficients.

In conventional imaging systems, an image is captured and then compressed.
CS offers the opportunity to capture the image directly in its compressed form.
Instead of measuring an N-pixel sampled version of x, the incident light-field
from a scene, CS acquires a condensed representation of M < N linear measure-

ments of xand a set of test functions {¢, }L such that [21]
y =dx (2)

Incoherence requires that the rows of @ (the measurement matrix) cannot
represent the columns of ¥ in a sparse way (and vice-versa). Random matrices
are largely incoherent with any fixed basis ¥ . This allows the use of known fast
transforms such as a Walsh, Hadamard, or Noiselet transforms as the test func-
tion for CS [22].

In CS, the number of samples taken is smaller than the number of coefficients

in the full image or signal. Converting the information back to the intended do-
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main involves solving an underdetermined matrix equation meaning there could
be a large number of candidate solutions. Consequently, a strategy to select the
best solution is needed. Different approaches to recover information from in-
complete data sets have existed for several decades. Candeés et al. [23], discovered
that this reconstruction problem could be seen as an optimization problem and
be efficiently solved using the /,-norm. Their discoveries made it possible to
reconstruct MRI data from what appeared to be highly incomplete data sets in
terms of the Nyquist-Shannon criterion.

One of the first realizations of a single-pixel imaging system based on the idea
of CS was developed at Rice University [24]. In this system, light reflected from
an object was multiplied by a random code and then captured by a single detec-
tor. The random code multiplication was accomplished by a spatial light mod-
ulator. The signal samples from detector are then processed to reconstruct the
image. Other researchers have developed compressive spectral imaging systems
based on the single-pixel-camera design, [25] [26] coded apertures [27] [28] [29]
and schemes based on spectral modulation [30]. However, they do not offer suf-
ficient wavelength resolution or the dynamic range needed to be an effective
medical imaging technique. The single pixel imaging system described here
overcomes these issues.

The single-pixel camera engine used in the HSI described here uses a digital
micromirror device (DMD) as a spatial light modulator to optically calculate li-
near projections of a scene onto pseudo-random binary patterns. Hadamard
matrices, which fulfill the sparsity requirements for CS, are used as the binary
patterns. A single-pixel imaging system produces an image by rapidly obtaining
many measurements of the intensity of a scene using different Hadamard ma-
trices. Typically, a single-pixel imaging system functions in one wavelength
band. In the HSI system described here, this method of single-pixel imaging
based on CS has been made to be hyperspectral by replacing the single detector
with a spectrometer. The dispersive element of the spectrometer spreads the
light across the linear detector array. Each pixel along the array acts as a single
pixel detector independently operating at a specific wavelength. The reconstruc-
tion of an image can be performed using any of the pixels, which corresponds to
a reconstruction as a function of wavelength, or HSI [31] [32].

In this pilot study, our HSI system based on a single-pixel camera design is
used to image human tissue for the first time to access the applicability of this
single pixel approach to cancer detection. This paper presents the results of a
study that included 19 patients to assesses the ability of the HSI system to use
reflectance imaging to delineate adenocarcinoma tumor margins in human pan-
creatic tissue imaged ex vivo. Hyperspectral images were analyzed and margins
were identified using the Spectral Angle Mapping (SAM) algorithm [33]. In ad-
dition, the support vector machine (SVM) algorithm [34] was used to analyze a
subset of samples and these results were compared to the SAM analysis. The HSI
results were compared to margins determined via histology and white light im-

aging.
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2. Methods

Pancreatic tissue excised during pancreatectomy was imaged immediately after
being sent to the pathology lab, before processing or staining. After receiving the
sample, a pathologist sectioned the tissue into 2 cm x 2 cm X 0.5 cm pieces and
placed samples into standard tissue embedding cassettes. These tissue samples
were then imaged using the HSI system. After imaging, the samples were re-
turned to the pathologist for processing and analysis. The HSI was later com-
pared to the histological analysis. Tissue samples were divided into three groups:
malignant tissue, healthy tissue, or tissue containing both malignant and healthy
tissue (a margin). Some patients contributed tissue samples to multiple groups.
The number of tissue samples in each group is shown in Table 1.

Figure 1 shows a schematic of the HSI system. This setup is similar to the sin-
gle pixel camera described by [24] with the single detector replaced by a spec-
trometer to enable HSI. A white light source illuminates the tissue sample, and
an image of the sample is formed on the DMD by the means of a lens. The DMD
serves as the spatial light modulator in the system and is programmed to mul-
tiply the light with the test functions. The spatially modulated light is focused to

a point by a collection lens and launched into a fiber to a spectrometer. In the

Table 1. Number and type of pancreatic tissue samples used in study.

Number and Type Tissue Type
of Pancreatic Tissue Healthy Malignant Margin
12 9 19

Collecting Lens
& Fiber

N[ |~ DMD

Spectrometer

Imaging Lens White Light

Source

Sample Stage

Figure 1. Schematic of the hyperspectral imaging system. The sample stage is illuminated
by a white light source. Light is collected from the sample by an imaging optic and an
image is formed on the DMD. The light is then reflected off the DMD through a series of
collection optics and into a fiber where the signal is sent to a spectrometer.
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spectrometer, light is dispersed and directed to a linear array detector. The signal
at each pixel of the array detector corresponds to a particular wavelength. Each
of the pixels along the array functions as a single pixel camera, each at a different
wavelength. The digital micromirror device (DMD) in the system is a DLP5500
0.55" XGA with 1024 x 768 pixels. The spectrometer is an Ocean Optics QE Pro
Spectrometer (spectral range 350 - 750 nm, 1044 pixels in the linear array, and
dispersion 0.335 nm/pixel). The spatial resolution of the system is set by the size
of the pixels used in the binary codes used on the DMD. In this study, 32 x 32
Hadamard matrices were used on the DMD, with a FOV of 1.9 cm x 1.9 cm, re-
sulting in a spatial resolution of 0.44 mm/pixel. LabVIEW software was used to
manipulate the DMD and capture the signal from the spectrometer.

The HSI imaging system was mounted on a vertical stage and imaged the tis-
sue samples from above (see Figure 1). Either a halogen lamp (150 W, Model
I-150 Optical Fiber Light Source, Cuda) or xenon (300 W, Circon MV 9086)
source was used as the source for reflectance spectroscopy. Both light sources
were mounted 23° from the vertical axis and aligned to illuminate the specimen.
This provided uniform illumination across the 1.9 cm x 1.9 cm imaging area.

To begin the experiment, a series of Hadamard matrices were generated, each
a matrix of zeros and ones (these were the test functions for CS). These pseudo-
random codes were loaded into the DMD and applied one at a time. The mirrors
whose pixels were designated as zero in the code were rotated to reflect light
away from the spectrometer detector array, while mirrors with pixels designated
as one were rotated to reflect light onto the detector array. The use of pseudo-
random measurement patterns, linked to the programmable mirror positions in
the DMD, ensured that the light signal was compressible and universally inco-
herent. For each code, the output signal from each pixel along the linear array of
the detector was stored in a vector with its location index corresponding to its
respective code. To obtain reflectance imaging, 800 Hadamard patterns were
used on the DMD with an integration time of 100 ms for each code to acquire
the intensity measurements needed to reconstruct the image. Total acquisition
time was approximately 7 minutes. After image acquisition a MATLAB program
based on the NESTA algorithm was used to reconstruct the compressed images
[35]. NESTA is a fast and robust first-order method than solves basis-pursuit
problems.

In addition to the hyperspectral imaging, a white light image was obtained for
all samples using a traditional 8-megapixel CMOS array camera (iSight camera).
These white light images do not contain spectral information. The morphology
of structures seen in these white light images was compared to structures seen in

the hyperspectral images and in the histology slides.

3. Results and Discussion

3.1. Spectral Angle Mapping

SAM analysis compares a known reference spectrum to the spectrum of each
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pixel in a spectral image of an object to look for differences between the two
[33]. SAM has been used by other researchers for the classification of HSI in-
cluding the identification of nerve fibers [36] and for the automatic detection of
altered mucosa of the human larynx [37]. To create the reference spectrum, two
wavelength bands of interest are chosen and the intensities of all pixels in the
reference image are determined in these two bands. These pixel intensities are
graphed as a scatterplot and a linear regression is performed to define a refer-
ence vector. For comparison, a vector is created for each pixel in the image of the
object. For each pixel, the intensity of the pixel in the two wavelength bands is
plotted and the vector is drawn from the origin to this point. The reference and
pixel vectors are then compared using the normalized dot product producing a
spectral angle between the two vectors. This method is insensitive to differences
in intensity since the SAM algorithm uses only the vector direction and not the
vector magnitude for comparison. In this study, this process was modified so
that it was repeated for multiple wavelengths to create a hyperspectral angle.
Figure 2 shows the reflectance spectra of a pancreatic tissue and illustrates the
differences between healthy and cancerous tissue. Absorption by blood (near 575
nm) is evident in the spectra. A series of reference vectors was created using the
hyperspectral images of healthy pancreatic tissue for reflectance imaging. There
was significant variation in the spectra of both healthy and malignant tissue
from patient to patient. Because of this, reference vectors were determined on a
patient-by-patient basis. The shape of the reflectance spectra of healthy and
cancerous tissue are similar between 650 and 675 nm, but large differences are
apparent from 450 to 520 nm. The x-coordinate for all reference vectors for ref-
lectance imaging was the average intensity over the 650 - 655 nm wavelength
band in the image of healthy tissue. The wavelength band used for the y-coordinate

for the reference vectors was varied in 5 nm increments across the wavelength

70 —— Healthy B

60 = ==Tumor ./
50 i

)
30 !

% Reflectance

350 450 550 650
Wavelength (nm)

Figure 2. The reflectance spectrum of healthy and cancerous pancreatic tissue. The red
and green regions indicate the wavelength ranges used to construct vectors for SAM
analysis.
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band 450 - 520 nm. This analysis resulted in a series of reference vectors across

multiple wavelengths for each tissue sample.

3.2. SAM Analysis of Reflectance Images of Healthy Pancreatic
Tissue

Samples of healthy pancreatic tissue were obtained from 12 patients. These tis-
sue samples did not contain any malignant tissue. We did not obtain samples of
healthy tissue from all patients because in some cases regions of healthy tissue
could not be identified by the pathologist due to the extent of disease. SAM
analysis was applied to these images of healthy tissue to provide a measure of
how uniform the spectra of the healthy tissue were as a function of position
across the sample. A series of spectral angles was calculated for each reference
vector and these spectral angles were summed to form a hyperspectral angle.
Figure 3 shows representative examples of white light and HSI of healthy pan-
creatic tissue. The white light images have been scaled so that they have the same
spatial resolution as the HSI. Some structures within the tissue are evident in the
white light image. However, these structures are not seen in the HSI indicating
that they have the same spectrum as healthy tissue. For the healthy tissue the
spectral angle is approximately constant across the sample. The hyperspectral
angle has an average value of 0.98" + 4.02° for the reflectance images of the 12
samples. This small angle indicates good agreement between the reference spec-
tra and the spectra in the pixels in each of the hyperspectral images of healthy

tissue.

3.3. SAM Analysis of Reflectance Images of Malignant Pancreatic
Tissue

Samples of entirely malignant pancreatic tissue were obtained for 9 patients.
SAM analysis was applied to the images of these samples to access the ability of
HSI to identify malignant tissue. In all cases, a series of reference vectors of
healthy tissue were formed from a sample of healthy tissue for each patient.
SAM analysis was then performed on the images of malignant tissue comparing
the spectra in these images to the healthy tissue reference vectors. Figure 4 shows

representative examples of white light and HSI of malignant pancreatic tissue.

2

0

-2
1cm

Figure 3. (a) White light image of healthy pancreatic tissue. The red circular structure
near the center of the image is a blood vessel. (b) The SAM image based on the HSI. The
spectral angle is approximately uniform across the tissue.
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40

20

Figure 4. (a) White light image of a tissue sample that was entirely malignant. (b) The
reconstructed SAM image.

The spectral angle has an average value of 35.84° + 1.34° for the 9 tissue samples.
This large spectral angle indicates that the spectrum of malignant tissue is sig-
nificantly different from healthy tissue. HSI imaging and SAM analysis are capa-

ble of differentiating between healthy and malignant tissue.

3.4. SAM Analysis of Reflectance Images of Samples Containing
both Healthy and Malignant Pancreatic Tissue

Tissue samples from 19 patients contained transition regions from healthy to
cancerous tissue—margins. SAM analysis was applied to these images, using the
spectrum of healthy tissue for each patient as the reference vector. Figure 5
shows representative examples of white light and HSI of a sample containing
both healthy and malignant tissue. In the HSI, regions with large spectral angles
are regions in which the spectrum of the tissue is significantly different from that
of healthy tissue. Regions in the HSI where the hyperspectral angle was two
standard deviations away from the reference vector for healthy tissue were iden-
tified as malignant. The HSI results were compared to histology. The total num-
ber of pixels classified in the HSI as malignant was determined for each tissue
sample. The histology slide images were overlaid with the white light images and
malignant regions were identified in the white light images. These white light
images were scaled to the same spatial resolution as the HSI and the total num-
ber of pixels classified as malignant was determined for each sample. These pixel
areas as measured via SAM and in white light/histology were compared using a
Bland-Altman plot [38]. Figure 6 shows good agreement between lesion areas as
measured in the reflectance HSI via SAM and white light/histology images. All
measurements fall within two standard deviations of the mean difference and
there is little difference between the bias and the line of equality. This plot sug-
gests that the HSI in combination with SAM is imaging the same cancerous re-
gions as is seen in the histology slides. The HSI system is sensitive to the spectral

signature of cancer in the tissue.

3.5. SVM Analysis of Reflectance Images of Samples Containing
both Healthy and Malignant Pancreatic Tissue

SVM is a kernel-based machine learning technique that has been widely used in
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(b) >
0
-5
1cm

Figure 5. (a) A white light image of pancreatic tissue. The red line denotes the border of
the malignant region as identified by histological analysis. (b) The reconstructed SAM
image, the lighter color corresponds to a larger spectral angle indicting the presence of
malignant tissue. (c) A comparison of the pixels identified as malignant via HSI and via
histology. The red pixels correspond to the pixels identified as malignant via histology,
the blue pixels were identified by HSI and pink/purple pixels were identified using both

techniques.
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Figure 6. A Bland-Altman plot comparing the areas of the malignant regions as deter-
mined in the HSI using SAM and white light/histological images of pancreatic tissue. The
solid orange line represents the mean of the difference, and the dotted red lines show two
standard deviations of the mean difference. Most of the measurements fall within two
standard deviations of the mean difference and there is little difference between the bias

and the line of equality.

the classification of hyperspectral images [39] [40] [41] [42]. For comparison,
SVM analysis of a subset of 10 tissue samples from the 19 that contained transi-
tion regions from healthy to cancerous tissue was performed. In each image,
eight pixels were selected to build the training model for SVM. Four of these
pixels were labeled as healthy, and the other four pixels were labeled as unheal-
thy. The unhealthy pixels were given a value of 1 and the resulting classified pix-
el values were summed together to give an overall count for the number of un-

healthy pixels. These values were then compared to the number of pixels classi-
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fied by SAM and white light histology. The pixel areas as measured via SVM and
in the white light/histology were compared using a Bland-Altman plot (see Fig-
ure 7). This graph shows good agreement between lesion areas as measured in
the reflectance HSI via SVM and white light/histology images. All measurements
fall within two standard deviations of the mean difference and there is little differ-

ence between the bias and the line of equality. Figure 8 displays a Bland-Altman
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Figure 7. A Bland-Altman plot comparing the areas of the malignant regions as deter-
mined in the HIS using SVM and white light/histological images of pancreatic tissue. The
dotted red line represents the mean of the difference. The dotted black lines show two
standard deviations of the mean difference, and the thin blue lines show the limits of the
95% confidence interval. Most of the measurements fall within two standard deviations of
the mean difference and there is little difference between the bias and the line of equality.
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Figure 8. A Bland-Altman plot comparing the areas of the malignant regions as deter-
mined in the HIS using SVM versus SAM. The dotted red line represents the mean of the
difference. The dotted black lines show two standard deviations of the mean difference,
and the thin blue lines show the limits of the 95% confidence interval. Most of the mea-
surements fall within two standard deviations of the mean difference and there is little
difference between the bias and the line of equality.
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plot comparing the classification method based upon SVM versus SAM. The
majority of points (all but one) fall within the limits of agreement and there is no
apparent trend showing a bias towards one method or another. The two classifi-
cation methods seem to work equally well at classifying the HSI data in this

study.

4. Conclusions

An HSI system based on a single-pixel camera design for use in discriminating
between healthy and malignant pancreatic tissue based on the reflectance spectra
of the tissue has been constructed and tested. Pancreatic tissue samples contain-
ing a margin from 19 patients were imaged ex vivo using the single-pixel HSI
system in reflectance mode. Good agreement was found between the areas of the
cancerous regions measured in the reflectance HSI and the areas measured via
white light imaging augmented with histology using both SAM and SVM classi-
fication algorithms. These results confirm that our camera is sensitive to spectral
differences between healthy and malignant pancreatic tissue. The system cur-
rently takes about 7 minutes to collect a single image which is insufficient for
“real-time” imaging. The current limitation on acquisition time is hardware
(both the speed of the DMD and computer) that can be overcome in future im-
aging systems. Further, other groups have shown recently that single pixel com-
pressive imaging can be made faster [43]. In addition, for this technology to be
most useful in an intraoperative setting, we will integrate HSI imaging into en-
doscopic and laparoscopic probes using a coherent fiber bundle. Ekpenyong
pointed out that it can be difficult to calibrate HIS systems at low light levels
[44]. The single-pixel system described here is designed to function efficiently at
low light levels and may help alleviate these difficulties.

Research has shown that autofluorescence spectroscopy of tissue can be used
in conjunction with reflectance spectroscopy to improve the specificity and sen-
sitivity of cancerous regions in tissue [45]. Adding the ability to image autofluo-
rescence spectra in future studies will improve our detection technique. The au-

tofluorescence signal of collagen and NAD(P)H are very faint and had a lower

1cm

Figure 9. (a) A white light image of a pancreatic tissue sample. The red line denotes the
border of the malignant region. In this case, all tissue on the right of this line was classi-
fied as malignant via histology. (b) The reconstructed SAM image, the lighter color cor-
responds to a large spectral angle relative to the reference vector for healthy tissue.
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signal to noise than the reflectance images. For this reason, the high sensitivity of
single pixel imaging makes it preferable to other imaging modalities. We have
performed a pilot study of HSI autofluorescence imaging on pancreatic tissue. A
3 mW nitrogen laser (SRS, NL100) was used as the excitation source for autoflu-
orescence spectroscopy. Preliminary results for one patient in this study are
shown in Figure 9. We obtained HSI of a sample of healthy tissue, and a margin
sample for this patent and performed SAM analysis of these images as outlined
in Section 3.1. Figure 9 shows the white light and HSI of the margin sample, the
boundary between the malignant tissue and the healthy tissue is shown in red. In
the HSI, regions with large spectral angles are regions in which the spectrum of
the tissue is significantly different from that of healthy tissue.

Before this HSI technique can be used in a surgical setting, the effects of blood
profusion must be addressed. In the study presented here, no blood was present
on the surface of the tissue; however, many groups have shown the presence of
blood absorption affects the spectroscopy of tissue [46]. We will need to next test

this technique on a live animal model to investigate these effects in more detail.
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