
*Corresponding author: E-mail: esther.isola@uniosun.edu.ng;

Journal of Scientific Research & Reports

22(6): 1-9, 2019; Article no.JSRR.31166
ISSN: 2320-0227

An Exploratory Study of Cognitive Based
Complexity Measures of Online Algorithms

O. Isola Esther1*, O. Olabiyisi Stephen1, O. Omidiora Elijah2

and A. Ganiyu Rafiu2

1
Osun State University, Osogbo, Osun State, Nigeria.

2
Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.

Authors’ contributions

 This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/JSRR/2019/v22i630105
Editor(s):

(1) Dr. Wei-Shih Du, Professor, National Kaohsiung Normal University, Taiwan.
Reviewers:

(1) Radosław Jedynak, Kazimierz Pulaski University of Technology and Humanities, Poland.
(2) De‐gan Zhang, Tianjin University of Technology, China.

(3) Preeti Gulia, M.D.University, India.
Complete Peer review History: http://www.sdiarticle3.com/review-history/31166

Received 24 December 2016
Accepted 15 February 2017

Published 03 April 2019

ABSTRACT

Measuring the complexity of software has been an insoluble problem in software engineering.
Complexity measures can be used to predict critical information about testability of software system
from automatic analysis of the source code. In this paper, Improved Cognitive Complexity Metric
(ICCM) is applied on C programming language. Since C is a procedural language, the cognitive
complexity metric is capable to evaluate any procedural language. This paper presents a cognitive
complexity metric named ICCM. First, the metric is analytically evaluated using Weyuker’s
properties for analyzing its nature. Secondly, perform a comparative study of the metric with the
existing metric such as NCCOP, CFS, CICM and CPCM, and the result shows that ICCM does
better than other metrics by giving more information contained in the software and reflecting the
understandability of a source code. Also, an attempts has also been made to present the
relationship among ICCM, NCCOP, CICM, CFS and CPCM using pearson correlation coefficient
method.

Keywords: Software complexity; cognitive informatics; basic control structure; online algorithms.

Original Research Article

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.JSRR.31166

2

1. INTRODUCTION

Many well known software complexity measures
have been proposed such as [1], Halstead
programming effort [2] Oviedo’s data flow
complexity measures [3], Basili’s measure [4] and
Wang’s cognitive complexity measure [5]. All the
reported complexity measures are supposed to
cover the correctness, effectiveness and clarity of
software and also to provide good estimate of
these parameters. Out of the numerous proposed
measures, selecting a particular complexity
measure is again a problem, as every measure
has its own advantages and disadvantages.
There is an ongoing effort to find such a
comprehensive complexity measure, which
addresses most of the parameters of software.
Reference [6] suggested nine properties, which
are used to determine the effectiveness of
various software complexity measures. A good
complexity measure should satisfy most of the
Weyuker’s properties. For measuring the
complexity of a code, one must consider
most of the internal attributes responsible for
complexity.

Complexity is a difficult concept to define. It can
be found in relation to software development,
software metrics, software engineering for safety,
reverse engineering, configuration management
and empirical studies of software engineering [7].
So far, there is no exact understanding of what is
meant by complexity with various definitions still
being proposed. High complexity of a system
usually means that the complexity cannot be
represented in a short and comprehensive form.
Reference [8] stated that complexity (of a
modular software system) is a system property
that depends on the relationships among
elements and is not a property of any isolated
element. Reference [9,16] defined software
complexity as “the degree to which a system or
component has a design or implementation that is
difficult to understand and verify”. Therefore,
complexity relates both to comprehension
complexity as well as to representation
complexity. There are some complexity measures
based on cognitive aspects such as Cognitive
Functional Size (CFS) proposed by [5] to
measure the complexity of a software, it depends
on input, output parameters and internal control
flow. It excludes some important details of
cognitive complexity such as information
contained in variables and operators.

New Cognitive Complexity of Program (NCCoP)
was proposed by [10] to measure the

cognitive complexity of a program; the metric
considered the number of variables in a particular
line of code and the weight of Basic Control
Structure.

2. REVIEW OF RELATED WORKS

Complexity measures are divided into code
based complexity measures, cognitive
complexity measures and requirement based
complexity measure.

2.1 Code Based Complexity Measures

Code complexity metrics are used to locate
complex code. To obtain a high quality software
with low cost of testing and maintenance, the
code complexity should be measured as early as
possible in coding. Developer can adapt his code
when recommended values are exceeded [11]
Code based complexity measure comprises
Halstead Complexity Measure and Mac Cabe’s
Cyclomatic Complexity and Lines of Code
Metrics.

2.2 Cognitive Complexity Measures

Cognitive complexity measures quantify human
difficulty in understanding the source code [12].
Some of the existing cognitive complexity
measures are Klcid Complexity Metrics,
Cognitive Functional Size (CFS), Cognitive
Information Complexity Measure (CICM),
Modified Cognitive Complexity Measure
(MCCM), Scope Information Complexity Number
of Variables (SICN), Extended Structure
Cognitive Information Measure (ESCIM) and
Unified Complexity Measure (UCM).

2.3 Klcid Complexity Metrics

Klemola and Rilling (2004) proposed KLCID
based complexity measure. KLCID defined
identifiers as programmer defined variables and
based on identifier density (ID).

ID = (1)

For calculating KLCID, number of unique lines of
code was found, lines that have same type and
kind of operands with same arrangements of
operators considered equal. KLCID is defined as:

KLCID =

 (2)

This method can become very time consuming
when comparing a line of code with each line of

CodeofLine

sidentifierofnumberTotal

identifiercontaininglinesuniqueofNumber

linesuniqueofsettheinIdentifierofNumber

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.JSRR.31166

3

the program. It also assumes that internal control
structures for the different software’s are same.

2.4 Cognitive Functional Size

Reference [5] proposed functional size to
measure the cognitive complexity. The measure
defines the cognitive weights for the Basic
Control Structures (BCS). Cognitive functional
size of software is defined as:

CFS = (3)

Where Ni= Number of Inputs, No= Number of
Outputs and Wc= Total Cognitive weight of
software.

Wc is defined as the sum of cognitive weights of
its q linear block composed in individual BCS’s.
Since each block may consist of m layers of
nesting and each layer with n linear BCS, total
cognitive weight is defined as:

Wc = (4)

Only one sequential structure is considered for a
given component.

Now difficulty with this measure is the inability to
provide an insight into the amount of information
contained in software.

2.5 Cognitive Information Complexity
Measure

Cognitive Information Complexity Measure
(CICM) is defined as product of weighted
information count of the software and sum of the
cognitive weights of Basic Control Structure
(SBCS) of the software [13]. The CICM can be
expressed as:

CICM = WICS * SBCS (5)

This establishes a clear relationship between
difficulty in understanding and its cognitive
complexity. It also gives the measure of
information contained in the software as:

Ei = (6)

where Ei represents Information Coding
Efficiency.

The cognitive information complexity is higher for
the programs, which have higher information
coding efficiency. Now the problem with these
measures is that, they are code dependent
measures, which itself is a problem as stated

earlier. Various theories have been put forward
in establishing code complexity in different
dimensions and parameters.

2.6 Modified Cognitive Complexity
Measure

Reference [14] modified CFS into Modified
Cognitive Complexity Measure (MCCM) by
simplifying the complicated weighted information
count in CICM as:

MCCM = (Ni1 + Ni2) * Wc (7)

where Ni1 is the total number of occurrences of
operators, Ni2 is the total number of occurrences
of operands, and Wc is the same as in CFS.

However, the multiplication of information content
with the weight Wc derived from the whole BCS's
structure remains the approach's drawback.
Also, [12] proposed Cognitive Program
Complexity Measure (CPCM) based on the
arguments that the occurrences of inputs/output
in the program affect the internal architecture
and are the forms of information contents. The
computation of CFS was also critized such that
the multiplication of distinct number of inputs and
outputs with the total cognitive weights was not
justified as there was no reason why using
multiplication.

Besides, it was established that operators are
run time attributes and cannot be regarded as
information contained in the software as
proposed by [13]. Based on these arguments,
CPCM was thus defined as:

CPCM = (8)

where Sio is the total occurrences of input and
output variables and Wc is as in CFS.

2.7 Improved Cognitive Complexity
Metric

Improved Cognitive Complexity Metric is defined
as the product of the number of variables and
Cognitive weight of Basic Control Structure of the
software [17]. The ICCM can be expressed as:

ICCM =)(*)3(
1 1

KWMNVANV C

LOC

K

LOC

V

 (9)

where, the first summation is the line of code
from 1 to the last Line of Code (LOC), Arbitrarily
Named Variables (ANV) and Meaningfully
Named Variable (MNV), are the number of
variables in a particular line of code and WC is

 cOi WNN

q

j

m

k

n

i
c lkjW

1 1 1

,,

LOCS

ICS

cio WS

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.JSRR.31166

4

Table 1. Basic control structure (Kushwaha and Misra, 2006)

Category BCS CWU
Sequence Sequence 1
Condition If-else / Switch For / For-in 2
Loop While/do…While 3
Functional activity Functional- call 2
Exception Alert/ prompt throw try-catch 1

the weight of BCS as shown in Table 1
corresponding to the particular structure of line.

3. MATERIALS AND METHODS

A.The metrics are applied on some online
algorithm codes which are written in C language.
Ten(10) different types of online algorithms
codes were considered. These programs were
different from each other in their architecture, the
calculations of ICCM for these online algorithms
are given in Table 2. The structures of all the 10
programs are as follows: the second column of
the tables shows the C codes. The sum of
Arbitrarily Named Variables (ANV), the
Meaningfully Named Variables (MNV) and the
operators in the line is given in the third column
of the table. The cognitive weights of each C
codes lines are presented in the forth column.
The C complexity calculation measure for each
line is shown in the last column of Tables 2 and 3
shows the ICCM, CICM, CFS, CPCM and
NCCOP results of the ten (10) different online
algorithm codes.

3.1 Analytical Evaluation of ICCM using
Weyuker’s Property

The ICCM metric was verified to satisfy all nine
Weyuker’s properties. Weyuker’s [7] properties
have been suggested as a guiding tool in
identification of a good and comprehensive
complexity measure by several researchers.

Property 1: (∃P)(∃Q)(|P| ≠ |Q|) Where P and Q
are program body.

This property states that a measure should not
rank all programs as equally complex.

ICCM for least recently used (LRU) and least
frequently used (LFU) algorithm are considered.
LRU contains seven iterations and six branches,
LFU contains seven iterations and five branches.
The complexity of LRU (ICCM = 405) and LFU
as ICCM = 427. It is clear that the complexity of
LRU and LFU are different, so this property is
satisfied by the proposed measure.

Property 2: Let C be a non-negative number then
there are only finitely many programs of
complexity C.

Calculation of ICCM depends largely on the
number of arbitrarily named variables,
meaningfully named variables and cognitive
weight of Basic Control Structures. Also all the
programming languages consist of finite number
of BCS’s. Therefore ICCM holds for this
properly.

Property 3: There are distinct programs P and Q
such that /p/ = /Q/

Transpose algorithm has the ICCM value of 416,
also considering Move to Front algorithm, the
ICCM is 416. These examples showed that the
two different programs can have the same
complexity, that is 416. So ICCM hold for the
third property.

Property 4: (∃P)(∃Q) (P≡Q & |P| ≠ |Q|)

This property states that the two programs
implementing with different algorithm should
have different complexity. FIFO program, the ‘if
‘condition have been replaced by the sequential
formula “ frame [i] [0] = 0 and frame [i] [1] = -1, in
LRU program . With this change ICCM of FIFO is
333 and for LRU is 405. It is clear that the two
programs with same objects have different
complexity. Hence ICCM holds this property.

Property 5: (∀P)(∀Q)(|P| ≤ |P;Q| and |Q| ≤ |P;Q|).

This property states that if the combined program
is constructed from class P and class Q, the
value of the program complexity for the
combined program is larger than the value of the
program complexity for the class P or the class
Q.

The program body of page replacement
algorithm, this program consists of three program
body, one for calculating FIFO, the other for LRU
and the third program is for calculating the
Optimal. FIFO program contains six alterations
and 6 branches, LRU program contains seven
iterations and four branches. The total cognitive

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.JSRR.31166

5

weight of the complete program (FIFO, LRU and
OPTIMAL) body is = 1096 ICCM. The complexity
of FIFO is 333, LRU = 405, optimal = 315. The
cognitive complexity of Page replacement
algorithm (FIFO + LRU + Optimal) is greater than

FIFO, LRU and Optimal; that is ICCM of FIFO
(333) is less than Page replacement (1096) and
ICCM of LRU (405) is less than 1096 and ICCM
of Optimal (315) is less than 1096. Hence ICCM
holds this property.

Table 2. Frequency count algorithm

Line 1: There is no MNV AND ANV. 0; Line 2: There is 1 MNV and no ANV. 3(0) + 1 = 1

Line 3: There is no variable. 0; Line 4: there are 3 MNV and no ANV. 3(0) + 3 = 3

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.JSRR.31166

6

Property 6(a): (∃P)(∃Q)(∃R)(|P| = |Q|) & (|P;R| ≠
|Q;R|)

Let P be the Transpose program and Q be the
MTF program. The ICCM of both the programs is
416. Appending R to P didn’t give Q program.
Hence property 6(a) is not satisfied by the ICCM.

Property 6(b): (∃P)(∃Q)(∃R)(|P| = |Q|) & (|R;P| ≠
|R:Q|)

This property states that if a new program is
appended to two programs which have the same
program complexity, the program complexities of
two new combined program are different or the
interaction between P and R can be different
than interaction between Q and R resulting in
different complexity values for P + R and Q + R.
If any numbers of statements are added into
programs p and program Q the complexity will
changes. So ICCM hold this property.

Property 7: There are program bodies P and Q
such that Q is formed by permutting the order of
the statement of p and (/p/ ≠ /Q/).

This property states that permutation of elements
within the item being measured can change the
metric values. The intent is to ensure that metric
values due to permutation of programs. Since
variables are dependent on the number of
Arbitratily and meaningfully named variable in a
given program statement and the number of
statements remaining after this very program
statement, hence permuting the order of
statement in any program will change the
value of variables. Also cognitive weights
of BCS’s depend on the sequence of the
statement. Hence ICCM will be different for
the two programs. Thus ICCM holds for this
property.

Property 8: If P is renaming of Q, then /p/ = /Q/

The measure gives the numeric value so
renaming the program will not affect the
complexity of a program. Hence ICCM holds for
this property

Property 9: (∃P)(∃Q)(|P| + |Q|) < (|P;Q|) OR
(∃P)(∃Q)(∃R)(|P| + |Q| + |R|) < (|P; Q;R|)

This property states that the programs
complexity of a new programs combined from
two programs is greater than the sum of two
individual programs complexities. In other words,
when two programs are combined, the
interaction between programs can increase the
complexities metric value.
For the program Page Replacement Algorithm, if
we separate the main program by segregating P
(FIFO), Q (LRU) and R (Optimal), we have the
program Page replacement algorithm. Where the
cognitive complexity of individual are FIFO (333),
(LRU) 405 and (Optimal) 315. The combination
of the three programs into one program has the
complexity of 1053, while the complexity for
Page Replacement Algorithm is 1096. Hence
1053 <1096. This proves that ICCM holds for this
property.

3.2 Demonstration of ICCM

The cognitive complexity metric given by
equation (9) is demonstrated with Frequency
Count Algorithm given by the following Table 2.

4. COMPARATIVE STUDIES BETWEEN
ICCM AND SOME COGNITIVE
MEASURES

The cognitive complexity values for different
existing cognitive measures and ICCM measure
are shown in Table 3 and also the table for
pearson correlation coefficient among the
measures are shown in Table 4. The graphs for
comparison between the existing cognitives
measures and ICCM measure are shown in Figs.
2 and 3.

Table 3. Cognitive complexity values of CICM, CFS, CPCM, NCCOP and ICCM

ALGORITHM CFS CICM CPCM NCCOP ICCM
FC 78 90 55 97 258
OPTIMAL 132 128 91 127 315
FIFO 72 112 74 136 330
LRU 87 93 89 173 405
TRANSPOSE 85 82 60 141 416
LFU
MTF

98
92

102
120

100
93

194
238

427
416

Table 4. Pearson correlation of complexity values for different measure

CFS Pearson Correlation

Sig. (2-tailed)
N

CICM Pearson Correlation
Sig. (2-tailed)
N

CPCM Pearson Correlation
Sig. (2-tailed)
N

NCCOP Pearson Correlation
Sig. (2-tailed)
N

ICCM Pearson Correlation
Sig. (2-tailed)
N

*. Correlation is significant at the 0.05 level (2

Fig. 2. Relative graph between ICCM, NCCOP, CFS, CPCM and CICM for C

5. DISCUSSION

In this research, series of experiments were
conducted to show the effectiveness of the
ICCM. The results as shown in Table 3, indicate
that ICCM gives accurate result compared to the
other existing cognitive complexity measures.
ICCM for FC algorithm has the lowest value of
258 which indicates that lower complexity
information were packed in the software and also
predict how user can easily understand some

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.

7

correlation of complexity values for different measure

CFS CICM CPCM NCCOP
Pearson Correlation 1 .602 .547 .057

 .152 .203 .904
7 7 7 7

Pearson Correlation .602 1 .609 .283
.152 .146 .538
7 7 7 7

Pearson Correlation .547 .609 1 .717
.203 .146 .070
7 7 7 7

Correlation .057 .283 .717 1
.904 .538 .070
7 7 7 7

Pearson Correlation -.005 -.149 .492 .784
*

.992 .749 .262 .037
7 7 7 7

*. Correlation is significant at the 0.05 level (2-tailed).

2. Relative graph between ICCM, NCCOP, CFS, CPCM and CICM for C programs

In this research, series of experiments were
conducted to show the effectiveness of the
ICCM. The results as shown in Table 3, indicate
that ICCM gives accurate result compared to the
other existing cognitive complexity measures.

the lowest value of
258 which indicates that lower complexity
information were packed in the software and also
predict how user can easily understand some

functions in the code. NCCOP, CFS and CPCM
also observed that FC algorithm has the lowest
information packed in the program but were not
able to reflect code comprehensiveness. LFU
algorithm has the highest value of complexity
which is (ICCM = 427), which indicates that LFU
has the highest complexity information packed in
the software. NCCOP, CICM, CFS an
was not able to show that because ICCM
considers the effort for comprehending the code
and the information contained in software.

; Article no.JSRR.31166

correlation of complexity values for different measure in C

NCCOP ICCM
-.005
.992
7
-.149
.749
7
.492
.262
7
.784

*

.037
7
1

7

programs

functions in the code. NCCOP, CFS and CPCM
also observed that FC algorithm has the lowest

packed in the program but were not
able to reflect code comprehensiveness. LFU
algorithm has the highest value of complexity
which is (ICCM = 427), which indicates that LFU
has the highest complexity information packed in
the software. NCCOP, CICM, CFS and CPCM
was not able to show that because ICCM
considers the effort for comprehending the code
and the information contained in software.

Fig. 3. Scatter plots

A relative graph which shows the comparison
between CFS, CICM, CPCM, NCCOP and ICCM
in C program is plotted in Fig.
inspection of this graph shows that ICCM is
closely related to CFS, CICM, CPCM and
NCCOP, in which ICCM reflects similar trends. In
other words, high ICCM values are due to the
fact that ICCM includes most of the parameters
of different measures and measure the effort
required in comprehending the software. For
example, ICCM has the highest value for LFU
(427) which is due to having larger siz
code and high cognitive complexity.

The correlation coefficient is a statistical measure
that measures the relationship between two
variables. If one variable is changing its value
then the value of second variable can be
predicted. it was shown in Fig. 3 that their exist
positive linear relationship between the pairs of
different measurement.

6. CONCLUSION

The result of ICCM exhibits the complexity of
program very clearly and accurate than other
existing cognitive measures. The practical
applicability of the metric was evaluated by
different online algorithm codes written in C
programming language to prove its robustness
and well structureness of the proposed measure.
Also ICCM was evaluated through the most
famous Weyuker’s property, it was fo
eight out of the nine properties have been
satisfied by ICCM and that there exists a degree
of correlation between the measures. The

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.

8

plots of complexity values for different measure

graph which shows the comparison
between CFS, CICM, CPCM, NCCOP and ICCM

. 3. A close
inspection of this graph shows that ICCM is
closely related to CFS, CICM, CPCM and
NCCOP, in which ICCM reflects similar trends. In

rds, high ICCM values are due to the
fact that ICCM includes most of the parameters
of different measures and measure the effort
required in comprehending the software. For
example, ICCM has the highest value for LFU
(427) which is due to having larger size of the
code and high cognitive complexity.

The correlation coefficient is a statistical measure
that measures the relationship between two
variables. If one variable is changing its value
then the value of second variable can be

3 that their exist
positive linear relationship between the pairs of

The result of ICCM exhibits the complexity of
program very clearly and accurate than other
existing cognitive measures. The practical

cability of the metric was evaluated by
different online algorithm codes written in C
programming language to prove its robustness
and well structureness of the proposed measure.
Also ICCM was evaluated through the most
famous Weyuker’s property, it was found that
eight out of the nine properties have been
satisfied by ICCM and that there exists a degree
of correlation between the measures. The

comparative inspection of the implementation of
ICCM versus CFS, CPCM, CICM and NCCoP
has shown that:

 ICCM makes more sensitive

measurement, so it provides information
contained in a software and also measure
the difficulties in understanding the code.

 CFS excludes some important details of
cognitive complexity such as information
contained in variables, whereas ICCM
includes it.

 CICM includes operators which makes it
very complicated to calculate whereas
information is only contained in the
operands/ variables and operators are just
used to perform some operation on
operands. ICCM was able to handle those
isues.

 CPCM is based on total number of
occurences of input and output
parameters, counting the number of input
and output is not clear and ambiguously
interpreted. Whereas ICCM was able to
handle those issues.

 NCCoP wasn’t able to measure the
difficulties of code comprehension, of a
fact empirical validations have shown that
ICCM was able to reflect the difficulty level
of understandability in a program.

The ICCM could be adopted by programmers in
determining the understandability of Procedural
languages and also provides the information
contained in the program.

; Article no.JSRR.31166

comparative inspection of the implementation of
ICCM versus CFS, CPCM, CICM and NCCoP

more sensitive
measurement, so it provides information
contained in a software and also measure
the difficulties in understanding the code.
CFS excludes some important details of
cognitive complexity such as information
contained in variables, whereas ICCM

CICM includes operators which makes it
very complicated to calculate whereas
information is only contained in the
operands/ variables and operators are just
used to perform some operation on
operands. ICCM was able to handle those

is based on total number of
occurences of input and output
parameters, counting the number of input
and output is not clear and ambiguously
interpreted. Whereas ICCM was able to

NCCoP wasn’t able to measure the
mprehension, of a

fact empirical validations have shown that
ICCM was able to reflect the difficulty level
of understandability in a program.

The ICCM could be adopted by programmers in
determining the understandability of Procedural

ovides the information

Esther et al.; JSRR, 22(6): 1-9, 2019; Article no.JSRR.31166

9

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Akanmu TA, Olabiyisi SO, Omidiora EO,

Oyeleye CA, Mabayoje MA, Babatunde A
O. Comparative study of complexities of
breadth- first search and depth-first search
algorithms using software complexity.
Measures Proceedings of the World
Congress on Engineering. I. London, U.K;
2010.

2. Ashish Sharma, Kushwaha DS. A
complexity measure based on requirement
engineering document. Journal Of
Computer Science And Engineering. 2010;
1(1):112–118.

3. Kushwaha DS, Misra AK, Improved
cognitive information complexity measure:
A metric that establishes program
comprehension effort. ACM SIGSOFT
Software Engineering. 2006;31(5):1.

4. Basili VR, Phillip TY. Metric analysis and
data validation across fortran projection.
IEEE Trans. software Eng. 2006;9(6):652-
663.

5. Kushwaha DS, Misra AK. A modified
cognitive information complexity measure
of software ACM SIGSOFT Software
Engineering Notes. 2006;31:1.

6. Visscher BF. Exploring complexity in
software systems. Ph.D. thesis.
Department of Computer Science and
Software Engineering. University of
Portsmouth, UK. 2006;130-138.

7. Kushwaha DS. Misra AK. Robustness
analysis of cognitive information
complexity measure using weyuker
properties. ACM SIGSOFT Software
Engineering. Notes. 2006;31(1):1–
6.

8. Briand LC, Morasca S, Basili VR.
Property-based software engineering
measurement. IEEE Trans. Software Eng.
2006;22(1):68-86.

9. Olabiyisi SO. Universal machine for
complexity measurement of computer
programs. Ph.D Thesis Ladoke Akintola
Unversity of Technology Ogbomoso; 2006.

10. Amit KJ, Kumar R. A new cognitive
approach to measure the complexity of
software. International Journal of Software
Engineering and its Applications. 2014;
8(7):185-198.

11. Misra S, Akman I. A complexity metric
based on cognitive informatics, lecture
notes in computer science. 2008;5009:
620-627.

12. Sanjay Misra, Ibrahim Akman. A new
complexity metric based on cognitive
informatic. Proceedings of 3

rd
 International

Conference on Rough Sets and
Knowledge Technology. 2008;620–627.

13. Misra S. Cognitive program complexity
measure. In Proc. of IEEE. 2009;120–125.

14. Kushwaha DS, Misra AK. A modified
cognitive information complexity measure
of software. Proceeding of the 7

th

International Conference on Cognitive
Systems. 2008;120-131.

15. Olabiyisi SO, Omidiora EO, Isola EO.
Performance evaluation of procedural
cognitive complexity metric and other code
based complexity metrics. IJSER. 2012;
3(9).

16. Isola EO, Sotonwa KA. Performance
evaluation of procedural cognitive
complexity metric on imperative program-
ming languages. IJRASET. 2015;3(viii).

17. Isola EO, Olabiyisi SO, Omidiora EO.
Ganiyu RA, Ogunbiyi DT, Adebayo OY.
Development of an Improved cognitive
complexity metrics for object- Oriented
codes. British Journal of Mathematics &
Computer Science. 2016;18(2):1-11.

© 2019 Esther et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle3.com/review-history/31166

