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ABSTRACT

We present a body of results that demonstrate that the golden section can be implemented in the
design of evolving systems. Albeit we only develop the mathematics, both mathematician and
computer expert should find the concept clear. Perhaps of particular interest to the number theorist
is the observation that the sequence T, = 1,4,7,10,13,... defined by ¢t,,, =t, +3,n>1t, =1,
known as the Teleois number system, crops up in our results. Having shown in previous works how
this sequence is closely related to the golden section, this manuscript gives further confirmation
and the fact that Teleois numbers penetrate the golden section renders it a proportion of great
splendour. Our results can find a wide range of applications from information technology to
manufacturing.

Keywords: Cassini identity; evolving systems,; Fibonacci sequence; golden section; Teleois numbers;
transformation vector; zero transformation.

1. INTRODUCTION x is called a parent number and is a seed value
of a quasigeometric sequence satisfying the
Let an integer x satisfy relatign g q Hn ying
y = round(xp), (1.1)
y-x=z hpsq1 = Tound(ghy),n = 1 (1.2)
x # round(zp),
_ 15 studied in [1]. As a natural consequence of

z relation (1.2), H,, also satisfies
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hpyo =hpy1 +hyn>1 (1.3)

but the converse is not true.

The work at hand is devoted to mathematically
demonstrating that the golden section, denoted
@ in equation (1.1) and formally defined by the
ancient Greek mathematician Euclid in his
seminal work The Elements [2] as the division
of a line segment into extreme and mean ratio,
can be implemented in (the design of) evolving
systems. The concept makes much reliance
upon the Cassini identity for H, given generally
as

Rphpsy — hpyt’ = c(=1)%n > 1} (1.4)

a=norn+1

Countless scholars have worked on the
application of the Cassini identity and Fibonacci
numbers in computing science, especially
cryptography, see [3-12].

We herein introduce transformations based on
the Cassini rule and we obtain useful results.
For analysis purposes, the sequence H, shall
be represented in the form

hi = gnyisa 2 fiiz1Ln=4 (1.5a)
where

Gpi g1 = round(pg,),n =1 (1.5b)
and

F, =1,2358, .. (1.6)

The concept of parent number as defined above
has enabled us to regenerate not only the
sequence (1.6) but also the “Lucas numbers”
through the sequence
H, = 7,11,18,29,47, ... (1.7)
We would like to assemble a sequence L,
defined by

lh=fit+fitan=z1 (1.8)

thus

L, = 4,7,11,18,29, ... (1.9)
Now let

2L, =l,n =1 (1.10)
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It follows that

L, = 8,14,22,36,58, ... (1.11)
The sequence (1.9) has profound significance
to the results of this work. The sequence (1.11),
call it the “double Lucas numbers”, is important
in the study of symmetry. One may find the
result of Theorem 1.1 interesting.

Theorem 1.1

Consider two sequences P, and Q,, such that

pi=hn+i—1+fi}l-21’n25 (1.12)
Qi = hnyio1 — f;
It holds that
i + piv2) — @+ qi42) = 1; (1.13)
Proof
Pi + Pivz = (hpgicr + ) + (hpgivr + fiv2)

= hppicr T fi F hngien + fis (1.14)
qi + Qivz = (Anyics — fi) + (Mpsivr — fir2)

= hppic1 — fi + hngivr — fiz (1.15)

(1.14) - (1.15) = hpvica + fi + hpgigr + fizo —
hn+i—1 + fL - hn+i+1 + fi+2
=2(fi + fi+2)
= 2ll
=1

(1.16)

2. RESULTS

In our results, the designations H,,G,,F,, L,
refer to the sequences (1.2), (1.5b), (1.6), and
(1.9) respectively.

2.1 Zero Transformation

Let the sequence H, be defined by
h; = Gnti-1 — fii = 1,n = 4. The Cassini identity
is given by

Rihipy — iyt = c(=1)Hi>1 (2.1)

see Theorem 2.3.

Let the sequence H, be defined by
hi = Gnti—1 + fii = 1,n = 4. The Cassini identity
is given by

hihjey — hiy 2 = c(=1)Li>1 (2.2)

see Theorem 2.4.



Let the constant ¢ be the Cassini value of H,,.
Take h;,i = 5. Let

h—1= pl} (2.3)

hi+1=q,

where P, and Q, also satisfy the relation (1.2).

Now take p; and gq;j=>4. Consider the
sequences
Pj = LPjs1 = 2Pj42 =3 Djs3— 5 :c=c) (2.4)
Pi+Lpjs1+2,Pj42 +3,Djs3+ 5 ic =0,
q;— 1941 —2,qj42 = 3,qj43 = 5,..ic =¢3
qj+1L,qj41+2,qj42+3,qj13+ 5, .ic =y
Let
(h)j = (c1,¢2,€3,€4) (2.5)
and
z=c+c,+e3+c, (2.6)

Theorem 2.1

For the sequence H,, let equations (2.3) to (2.6)
hO/d zZ = 4(hi+j—4— + h‘i+j—2)'

Proof

C1 + Cy = 6]‘} + 2f}'+2 + 8h‘i+j - 8fj+1 - 6h‘i+j—1 -

2hitj1 (2.7)

€3+ ¢y = 8hyyj +8fjiq — 6f; — 2fj45 — 6hyy ;g —

2hitj4 (2.8)
z=16h;; — 12h;y; 4 — 4Ry i
=4(4hirj — 3hipj-1 — Ry jea)
= 4‘(4‘hi+j - 3hi+j—1 - hi+j - hi+j—1)
=4(3hiyj — 4hiyj-1)
=4(hjyja + hiyj2) (2.9)

Proof is complete.

Now let (hj); = (cl',cé,cé,c;)- Let j=i+ 1. For
even |, let the transformation vector for the
mapping

be given by
v = (¢; — CqyCy — C1,C3 — Cp,Cy — C3) (2.11)

For odd i, let the transformation vector for the
mapping
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(h); = (hpui =25 (2.12)
be given by
V= (01— €y — C3,C3 = C4,C4 — €1) (2.13)

Theorem 2.2: zero transformation

Consider the sequence H,. For the mapping
(h)ns1 = (hps)non = 4, let the transformation
vector be given by v = (wy,w,wsw,).
Zé:1 w = 0.

Proof
(hn)ns1 = (€1,€2,€3,C4)

From Theorem 2.1,

z= 4(hn+(n+1)—4 + hn+(n+1)—2) =4(hyp—3 +
hyn-1) (2.14)
(hnsdn = (Cllr Cé! Cé! C:t)

Again from Theorem 2.1,

z = 4‘(h(n+1)+n—4 + h(n+1)+n—2) = 4(hypn_s +
th—l)

Notice that Equations (2.14) and (2.15) are
equal, therefore transformation vector v = (.

(2.15)

2.2 Direct Computation of Transforma-
tion Vector

We first need to state Theorems 2.3 and 2.4.
Theorem 2.3

Let the sequence H,, be defined by
h; = gn+i-1 — fii = 1,n = 4. The Cassini identity
is given by

hihiss = hipr® = c(=1)™*1,i = 1, where

C=gn-1+Gn-3+tcg— 1} (2.16)

Cg = Inn+2 — .9121+1
Proof

We provide proof by the Principle of
Mathematical Induction. Base case: i = 1,
hihs — b3 = (gn — D(gn+z = 3) = (Gns1 — 2)*
= GnOn+2 = 39n — Gn+2 — Gns1 T 40ns1 — 1
=0gn-1t 9n-3+ ¢4 — 1
=c(-1)?



Inductive Hypothesis: Since Identity is true for
i =1, assume it is also true for i = k > 1, that is,

h‘kh‘k+2 - hk+1z = C(_l)k+1,k = 1

Inductive Conclusion: Truth must be established
fori =k + 1, that is
Piyrhies — hk+22 =c(-D?% k=1

We have that

C(—l)k+2 — _C(_l)k+1
= hlzc+1 — hyhysz

To complete the proof we need to show that

2 _ g2
hk+1hk+3 - hk+2 - hk+1 - hkhk+2

Notice that
Pies1hpss — hk+22
= Pypr (hgesr + Mis2) — hiiz
= hityr = yesa (hirz = hiyr)
= hip1 = hichisz
Proof is complete.

Theorem 2.4

Let a the sequence H,, be defined by

hi=gnsia+fiizln=4 The Cassini
identity is given by
hihiry — hiyt® = c(=1)},i = 1, where

(2.17)

C=0gn-1+Gn-3—Cg+ 1}

Cy = InIn+2 — .9121+1
Proof
Follow proof to Theorem 2.3.
Theorems 2.3 and 2.4 are crucial to Theorems
2.5 to 2.12 that deal with the direct computation
of transformation vector.

Theorem 2.5

Let the sequence H,, be such that

h; = In+i-1 — firi =21 gn = Gmin-1 t fnrm:n =
4,niseven Consider the transformation
(his1 = (hiz1); (2.18)
Let the transformation vector be given by

v = (wy, wy,ws,w,). When i is even,
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wy = hipg + i — lisg = 2(gn-1 + gn-3 + ¢9)\ (2.19)
wy=hi 3+ hi_4—li 4 +2(Gn1+gnst Cg)
wy =1l —hy1—hi 1 —2(Gn-1+gn-s+ Cg)
Wy =l g —hi g —hi_4+2(gn1 + gn-s +¢g)
Cg = Inn+2 — g721+1
when i is odd,
wy =hip+hig = licg = 2(gn-1 1+ gn-3 + ¢)\ (2.20)

Wy =Ry +hiog — i+ 2(gnoq + Gnoz + ¢g)
wy=li_g—hi_3—hi_4s—2(gn-1+gns+ Cg)
Wy =l —hipr —hi 1+ 2(Gn1+ Gns t Cg)

Cg = InGn+2 — g721+1
Proof

Scenario I: i is even
Given (h)iv1 = (his); let

(h)iv1 = (01’; Cg.C§,C4’;)
(his1)i = (€1, €2,63,¢4)

Since i is even, equation (2.11) gives the

transformation vector as

v=_(c; — ¢y — 1,03 — 304 —c3).  Consider
(hy)i+1. Using equation (2.5), j =i + 1. It follows

p1 = h; — 1. This means
Piv1 = hai — fina (2.21)

Piv2 = haiv1 — fisz

Pi+s = haii2 — fiss

@i+1 — D@ir3 — 3) — Pis2 — 2)?
= (hzi - fi+1 - 1)(h2i+2 - fi+3 - 3) -
(hais1 — fivz — 2)?
= hyihaio = firshai — 3Ry — firihoiso + fis1fies
+ 3fie1 = hbip1 + 2fii2hsi44
+ 4hyip1 — 4fis2

— fh2—4—hysa + firs +3 (2.22)

With even i, from Theorem 2.3,

haihgivz = B5i41 = —(Gn-1 + Gn-3 + g—1

Also notice that
fisifiss — f2y = —1, therefore Equation (2.22)
reduces to

2fi+2hzi+1 + 4'hzi+1 - fi+3h2i - 3h2i _fi+1h2i+2
- h2i+2 - (3fL + fi+2 - fi+3)
_(gn—l + In-3 + Cg) -1 (223)

Since i is even, it follows c,is given by Equation
(2.23). Now consider (h;,,);.



Qi =hjy +1 , ’
q; = hai + fio Qiv1 = haiv1 + fiv1, Qivz = Raivz + fina

(qzI + 1)(q;+2 + 3) - (q£+1 +2)°
= (hzi + fz + 1)(h2i+2 + fi+2 + 3) - (h2i+1 + fi+1 + 2)2
(2

24)

= hyihoiss + firohoi + 3hy + fihpigs + fifive +3f;
+ h2i+2 + fi+2 +3- h§i+1
- 2ﬁ+1h2i+1 - 4h2i+1 - 4ﬁ+1
By

Since i is even, it follows ¢, is given by the
negation of Equation (2.24), therefore,

Cj; =4hyi41 +4fie + fﬁd —fifira+ 1+ h§i+1
— haihzigz + 2fii1haien — firohai
- 3h2i - fih2i+2 - 3fi - fi+2 - h2i+2

= 4hypsq + fivr + 3fic1 — fivz — (Raihaiez — h3ivq)
+ 2fiv1hoiv1 — firahai — 3hy;

- fih2i+2 - h2i+2
= 2fit1hi41 + 4hoip1 — fiszhai — 3hai — fihaivz — hairs
+3fica—fi

+(Gno1+ Gns+c¢y) -1 (2.25)

Wy =06 — C:l
= 2fihyi11 — fiz1hai — ficihaiza —
(fi—l + fi+1) - Z(gn—l + In-3 + Cg)
=hipr+ hicg — i = 2(gn-1+ gn-3 t ¢4)
(2.26)

Having given a detailed geometric proof for w,
for Scenario | of the Theorem, it is assumed that
the reader may be able to follow the same
procedure in proving all eight scenarios.

It is in the interest of space management that
we state Theorems 2.6 to 2.12 below without
proof. The interested reader shall follow proof to
Theorem 2.5.

Theorem 2.6

Let the sequence H, be such that

hi = gnvi-1 = ful 21, gn = Qmin-1 + fomn =
4,nisodd. Consider the transformation
(h)is1 = (hip);. Let the transformation vector
be given by

v = (wy, wy,ws,w,). When i is even,

wy =hip+hiog =iy —2(Gno1 + Gz + Cg)

wy=hi_;+hi_ 4=l 4 +2(Gn1+Gns+ Cg)

wy =1Ly —hy1—hi 1 —2(Gn1+ Gns + Cg)

Wy =lisg —hisg — iy +2(gn-1 + Gn-z + ¢4)
Cg = InIn+2 — .9121+1

when i is odd,

(2.27)
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wy =hi 3+ R4 — iy —2(gn-1+ gn-z + ¢g)
Wy =Ry +hiog — i+ 2(Gnoq + Gnoz + ¢g)
wy=lig—hi_3—hi_4s—2(gn-1+gns+ Cg)
Wy =l g —hipr —hi_ 1 +2(Gn1 + gns t Cg)

— 2
Cg = InIn+2 — n+1

(2.28)

Theorem 2.7

Let the sequence H,, be such that

hi = Ggnyi-1 = [l 21, Gn = Gmin-1— fomn=
4,niseven Consider the transformation
(h)is1 = (hiye);. Let the transformation vector
be given by

v = (wy,wy,ws,w,). When i is even,

wy =hy + g — L — 2(Gno1 + Gnoz +¢9)Y (2.29)
Wy =hi o+ hi4—li g +2(gn1+ gn-z +¢g)
wz =l —hip1 —hiog —2(gn-1+ gn-3 + ¢4)
Wy =lig—hig—hi_4+2(gn-1+ gn-s +¢g)
Cg = Inn+2 — g%+1
when i is odd,
wy =hi 3+ R4 —lig —2(gn-1 + gn-3 + ¢9)) (2.30)

wy =Ry +hiog — g+ 2(gne1 + gnoz + ¢g)
wy=lig—hi53—hi_4s—2(gn-1+gns+ Cg)
Wy =lig —hip1 —hi_y +2(gn-1 + gn-3 + ¢g)

Cg = InIn+2 — g%+1
Theorem 2.8

Let the sequence H, be such that h; = g,,;_1 —
fui=1, gn = Quin-1 — flomn=4,nisodd.
Consider the transformation (h;);.; = (hiz1);-
Let the transformation vector be given by

v = (wy, wy,wy,w,). When i is even,

Wy = hipq + g — licg = 2(gn-1+ gn-3 + ¢4)) (2.31)
wp=hi3+his—li 4s+2(gn-1+9gns+ Cg)
wg =1y —hiy1 —hi_1 = 2(gn-1 + gn-3 + ¢g)
Wy =lia—hipg—hiy+2(gn-1+ gn-s+cy)
Cg = InIn+2 — g'121+1
when i is odd,
wy =hia+hig = licg = 2(gn-1 + gn-3 + ¢4)\ (2.32)

wy =hy g +hig =l +2(Gn-1+ gns+ Cg)
wy =l 4—hi_3—hi_4—2(Gn-1+gns+ Cg)
Wy =lig = higg —hi_1 + 2(gn-1 + Gns + Cg)

Cg = InGn+2 — g%+1
Theorem 2.9

Let the sequence H,, be such that

hi =Gn+i-1 Tt fi:i = .1' In = AQmin-—1 + fn' mn 2
4,niseven Consider the transformation



(h)i+1 = (hiyr);. Let the transformation vector
be given by

v = (wy, wy, wy,w,). When i is even,

Wy = hipa + g — Loy + 2(gn-1 + gn-3 — ¢4)\ (2.33)
wy =hi a4+ hi g —li 4 —2(gn-1+ Gn-3 — Cg)
wy =l —hiy1 —hiq + 2(Gn1 + Gn-z — ¢g)
Wy =lia—hip—hiy —2(gn-1+ Gn-3 — ¢4)
Cg = InIn+2 — g'r21+1
when i is odd,
wi =R+ Ry = Lig + 2(gn-1 + Gn-z — &) (2.34)

Wy =R +hisg — lisg = 2(Gno1 + Gnes — ¢4)
Wy =lig—hiy —hiy +2(gn-1 + Gn-s — ¢)
Wy =l —hipr —hiog = 2(Gno1 + Gn-z — &)

Cg = InYn+2 — gzz+1
Theorem 2.10

Let the sequence H,, be such that

hi = Ggnsic1H [l 21, gn = Guan-1 + famn=
4,nisodd. Consider the  transformation
(h)is1 — (hiy1);. Let the transformation vector
be given by

v = (wy, wy, wy,w,). When i is even,

Wy = Ripq + g = liog + 2(gn-1 + gn-3 — ¢4) (2.35)
wy =hi a4+ hi g —li g —2(gn-1+ Gn-s — Cg)
wy =l —hiy1 —hi_q + 2(Gn1 + Gn-z — ¢g)
Wy =lia—hip—hiy —2(gn-1+ Gn-3 — ¢4)

Cg = InIn+2 — 9121+1
when i is odd,

wy =hi 3+ hi g —lig+2(gn-1+ gn-z —¢g)
wy =hipy +hiog — i — 2(Gne1 + Gn-z — ¢g)
Wi =ligs—hiy3—hi_4+2(gn-1+ Gn-s — Cg)
Wy =lig —hiy1 —himy — 2(gn-1 + Gn-3 — ¢g)

— 2
Cg = 9InIn+2 — In+1

(2.36)

Theorem 2.11

Let the sequence H,, be such that

hi=gntica+ foi 21, gn = Quin-1 — fomn=
4,niseven Consider the transformation
(h)i+1 = (hiyr);. Let the transformation vector
be given by

v = (wy, wy,ws,w,). When i is even,

wy =R+ hiog — Loy +2(Gn-1 + Gn-s — Cg)
wy =hi_;+hi_s—li_s—2(gn-1+ Gn-s — Cg)
wy =iy — Ry — hiog +2(Gp-1 + Gn-z — g)
Wy =lia—hiy =Ry —2(gn-1 + Gn-3z — ¢4)

— 2
Cg = InYn+2 — In+1

(2.37)
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when i is odd,

wy =hip+hi g —lis+2(gn-1+ Gn-3s—¢y)
wy =hipg+hiog =l —2(gn-1+ gn-3 — ¢4)
wy =l g —hi_3 —hi_4 +2(gn-1 + gn-3 — ¢g)
Wy =1lig =Ry —hio1 — 2(gn-1 + Gns — Cg)

— 2
Cg = InIn+2 — Yn+1

(2.38)

Theorem 2.12

Let the sequence H,, be such that

hi = gnti-1+foi 21, Gn = Gmin-1—fomn=
4,nisodd. Consider the transformation
(hy)i+1 = (hiyy);. Let the transformation vector
be given by

v = (wy,wy, ws,w,). When i is even,

wy = hipg + g — Loy +2(gn-1 + gn-3 — €)Y (2.39)
wy =hi 3+ hi4— iy —2(gn-1+ gn-3 — ¢g)
wz =liy —hip1 —hiog +2(gn-1+ gn-3 — ¢4)
Wy =lig—hig—hi_ 4 —2(gn-1+ gn-3 — ¢g)
Cg = nn+2 — g721+1
when i is odd,
Wy =hia+ Ry = liog + 2(gn-1 + gn-3 — ¢4)\ (2.40)

wy =hipg+hiog — Loy —2(gn-1+ gn-3 — ¢4)
ws =li4g—hi_y —hi_4 +2(gn-1 + gn-3 — ¢g)
Wy =1lig =Ry —hio1 — 2(gn-1 + Gns — Cg)

Cg = InIn+2 — g%+1
2.3 Systems Evolution

A series of the transformations (h;);,, —
(hiz1); i = 4, for the sequence H, yields very
important results. For illustration we give the
first ten such transformations for the sequence

H, =9,15,24,39,63, ... (2.41a)
We only require the transformation vector, the
reason for developing theorems 2.5 to 2.12.
Because the sequence (2.41a) takes the form

hi = gpyi-a + i 21L,n=5 (2.41b)
where G, = F,, it follows that Theorem 2.10 and

hence Equations (2.35) and (2.36) apply. These
transformations are therefore:

(hs)s = (hs)s }
v =1(922,-60,—34)

(2.42)



(hs)e = (he)s } (2.43)
v = (45,107,—-13,-139)
(he)7 = (h7)e } (2.44)
v = (215,31,-183,—-63)
(h7)s = (he)7 } (2.45)
v = (92,306, —60,—338)
(hg)e = (ho)sg } (2.46)
v = (537,107,-505,—-139)
(ho)10 = (h10)9 } (2.47)
v = (215,827,—-183,—-859)
(h10)11 = (h11)10 } (2.48)
v = (1380,306,—1348, —338)
(h11)12 = (R12)11 } (2.49)
v = (537,2191,-505,-2223)
(h12)13 = (ha3)12 } (2.50)
v = (3587,827,—3555,—-859)
(2.51)

(h13)12 = (Mad13 }
v = (1380,5762,—1348,—5794)

Recall v = (wy,w,, ws,w,) . wy,wy in equation
(2.45) equals wy,w, in equation (2.42); w,, w, in
equation (2.46) equals w,,w, in equation (2.43);
wy,wy in equation (2.47) equals w,,w; in
equation (2.44); w,,w, in equation (2.48) equals
w,,w, in equation (2.45); etc. Theorems 2.13
and 2.14 structure this result.

Theorem 2.13

For the sequence H,, let the transformation
vector for the transformation

(h)i+1 = (hiv)i 24, be given by
v=(wy,wy,w3,w,) . If i is even, then (hji3)its —
(hi+a)i+3 has vector v’ = (w;,w,,ws,w,) Such that
Wy = Wy Wy = W,

Proof

Assume theorem 2.9 applies. In the
transformation (h;);,; = (hiy); iF 1 is even,
equation (2.33) gives

wy =hiq+hiog — i+ 2(gno1 + Gnos — Cg)}
w3 =li_qg —hiy1 —himq + 2(gn-1+ Gn-3 — ¢4)
(2.52)

Since i is even, it follows (i +3) is odd. Let
j=(@{+3). We need the transformation
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(hp)je1 = (Rjea);- Since j is odd, from equation
(2.34),

wy = hicg +hi—g =iy + 2(gn-1+ gn-3 — Cg)}

wy =Ly =iy = Ri_s + 2(gn-1 + Gn-3 — ¢g)
(2.53)

But j = (i + 3), it follows

wy = hyq +hiog — iy + 2(gn-1 + Gn-3 — Cg)}

ws =iy —hipg —hi_g + 2(gn-1 + gn-3 — ¢4)
(2.54)

Notice that Equations (2.52) and (2.54) are
equal, therefore result is true.

Remark

In our proof we have assumed that theorem 2.9
applies. The same can be done with any of
theorems 2.5 to 2.12.

Theorem 2.14

For the sequence H,, let the transformation
vector for the transformation

(h)is1 = (hip1)i i = 4, be given by

v = (wy, wy, wy,wy). Ifi is even, then

(hi+3)i+a = (hira)irs has vector

v' = (w;,wy, wy,w,) SUch that w, = w;; wy = ws.

Proof

Assume Theorem 2.12 applies. In the
transformation (h;);,, — (h;+1);, when i is odd,
equation (2.40) gives

wy, =hiq+hiog — iy — 2(gn-1+ Gn-3 — Cg)}
wy =l —hipr —hiog — 2(gn-1 + Gn-3 — ¢4)
(2.55)

Since i is odd, it follows (i + 3) is even. Let
j=(@+3). For the transformation (h;);,; -
(hj+1);, Since j is even, from equation (2.39),

Wz' =h_o+hi_s—l_4s—2(gn1 + Gn-3 — Cg)}

hj—z —hj_4 — 2(gn-1 + gn-3 — ¢4)
(2.56)

WA; = lj_4 -
With j = i 4+ 3, we have

Wy =hiy +hisg —liig — 2(gn-1 + Gn-z — Cg)}
wy =l — Ry — oy — 2(Gn-1 + Gn-3 — ¢4)
(2.57)

Notice that (2.57)=(2.55), therefore result is
true.



Here we have a system that retains and
modifies certain attributes as it evolves. But
equally striking is the fact that this concept
provides once again a link between the golden
section and the Teleois numerical system:

T, =1,4,7,10,13, ... (2.58)
thaz =the1 +3,n = 1,t; = 1}

As implied by theorems 2.13 and 2.14,
replication and modification of attributes occurs
at Teleois positions. Therefore by coding a
system following the concept of this paper one
does not only implement the golden section, but
the Teleois also, about which Hardy et al. [13],
cited by Sherbon [14] say, “Understand the
electromagnetic frequencies of the atom and
you understand why the Teleois proportions
were used.”

3. CONCLUSION

Our theorems demonstrate that the golden
section can be implemented in the design of
evolving systems, which concept should be
appreciated by both geometer and computer
expert, with applications range from information
technology to manufacturing. Albeit the
emphasis is on applications, the results may be
used for further development of the theory of
the golden section.
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