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ABSTRACT

The first integrals of second order ordinary differential equations are considered. The necessary
conditions of the existence of analytical first integrals for the equation are presented. Then, the first
integrals of the equation are obtained using Lie symmetry method. The results of the first integrals
are applied to certain classes of partial differential equations, the conditions of nonexistence of
the traveling wave solutions of the partial differential equations are obtained, and traveling wave
solutions of the equations under the certain parametric conditions are also obtained.

Keywords: First integral, lie symmetry, traveling wave solutions, partial differential equations.

1 INTRODUCTION

It is well known that the study of the integrability
of differential equations has been one of the main

topics in mathematics and physics, and other
subjects. The integrability of system of ordinary
differential equations has been studied by many
authors[1]-[5]. First integrals are the powerful tool

*Corresponding author: E-mail: yxiahu@163.com; yxiahu@ncepu.edu.cn;

http://www.sdiarticle3.com/review-history/49505


Hu and du; AJRCOS, 3(3); 1-15, 2019; Article no.AJRCOS.49505

in the study of the integrability of ordinary
differential equations and partial differential
equations (see for instance Refs.[6]-[9] and the
references therein). As we know, searching for
first integrals of a differential equations system
plays a very important role for studying the
system. Many different methods have been used
for studying the existence and searching for first
integrals of ordinary differential systems. For
example, the Lie groups ([10]-[12]), the Darboux
theory of integrability ([13]), the Painlev analysis
([14]), the use of Lax pairs ([15]), the Kudryashov
method([16]), etc. In [2], some simple criteria for
the nonexistence of analytic integrals of general
nonlinear systems are given. There provided a
link between the number of first integrals and the
resonant relations for a quasi-periodic vector field
in [17]. In the paper, we consider first integrals of
the differential equation,

y′′ = ay′ + by2 + cy, (1.1)

a, b, c are constants, and abc ̸= 0. Let y′ = z,
equation (1.1) can be written as the system,{

ẏ = z
ż = az + by2 + cy.

(1.2)

(1.2) has two equilibrium points O1(0, 0) and
O2(−

c

b
, 0). Let us denote the Jacobi matrix of the

vector field of (1.2) at Oi as Ai, (i = 1, 2), and

A1 =

(
0 1
c a

)
,

A2 =

(
0 1
−c a

)
.

So, it is easy to get the eigenvalues of A1 are

λ1,2 =
a±

√
a2 + 4c

2
, those of A2 are λ1,2 =

a±
√
a2 − 4c

2
. In [18]-[19], the existence of first

integrals of plane systems are studied. If the
system has nontrivial analytic first integrals in
a neighbourhood of a trivial solution, then the
eigenvalues of the Jacobi matrix of the system
at the trivial solution have to satisfy certain
resonant condition. In the paper, we first consider
the existence of analytical first integrals of (1.1)
and obtain the first integrals of (1.1) using Lie
sysmmetry method. Then, we consider the
certain partial differential equations, and present
the traveling wave solutions of the equations.

The paper is organized as follows. In Section
2, The sufficient conditions of the nonexistence
for first integrals of system (1.2) are given. In
Section 3, Lie symmetries admitted by (1.2) are
found by differentiating the symmetry condition,
and first integrals of (1.2) are deduced by
constructing an algebraic equations system using
Lie symmetries admitted by (1.2). In Section
4, the parametric conditions of the nonexistence
of traveling wave solutions of the certain partial
differential equations are given. Some classes of
traveling wave solutions of the partial differential
equations are presented in Section 5. Section 6
is conclusions.

2 THE NECESSARY CONDI-
TIONS OF THE EXISTENCE
OF FIRST INTEGRALS

As we know, if the system ẋ = f(x), x ∈ D ⊂
Cn, has nontrivial analytic first integrals in a
neighbourhood of a trivial solution, then the

eigenvalues of the matrix
∂f

∂x
(0) have to satisfy

certain resonant conditions[18], where f(0) = 0.
So, for system (1.1), we have the following result.

Theorem 1. 1) c > 0 and
a2 + 2c− a

√
a2 + 4c

2c
is not a nonnegative rational number.

2) c < 0, a2 + 4c > 0.

3) a2 + 4c < 0.
If one of above conditions is satisfied, then
system (1.2) has no nontrivial analytic first
integrals in a neighbourhood of O1(0, 0).

Proof. We will use the proof by contradiction.
Let us suppose there is an analytic first integral
Ω(y, z) of system (1.2) in a neighbourhood of
O1(0, 0). Without loss of generality, we assume
that Ω(0, 0) = 0. Let us expand the first integral
into the Taylor series

Ω(y, z) = Ω(1)(y, z)+Ω(2)(y, z)+...+Ω(k)(y, z)+...,

where Ω(k)(y, z), k = 1, 2, ... are homogeneous
polynomials in (y, z),

2
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Ω(k)(y, z) =
1

k!
(y

∂

∂y
+ z

∂

∂z
)kΩ|(0,0).

We can rewrite the field vector of (1.2) in a neighborhood of O1(0, 0) as(
z

az + by2 + cy

)
= A1

(
y
z

)
+ o

(
∥ y

z
∥
)
.

After a nonsingular linear transformation, A1 can be changed to a Jordan canonical form J1. For
simplicity, we rewrite the factor field of system (1.2) as the following form,(

z
az + by2 + cy

)
= J1

(
y
z

)
+ o

(
∥ y

z
∥
)
.

1) c > 0. In the case, a2 + 4c > 0, and J1 =

(
λ1 0
0 λ2

)
. So, in a neighbourhood of O1, we

have

λ1y
∂(Ω(1) +Ω(2) + ...)

∂y
+ λ2z

∂(Ω(1) +Ω(2) + ...)

∂z
= 0. (2.1)

Let us equate all the terms in (2.1) of the same order with respect to the variables y, z to 0, we have

λ1y
∂Ω(1)

∂y
+ λ2z

∂Ω(1)

∂z
= 0,

that is, (
λ1 0
0 λ2

) ∂Ω(1)

∂y
|(0,0)y

∂Ω(1)

∂z
|(0,0)z

 = 0.

That maens J1 has a zero eigenvalue, which contradicts the condition that λ1λ2 ̸= 0. So, one can
have Ω(1) = 0. We suppose that we have proved that Ω(1) = Ω(2) = ... = Ω(k−1) = 0. Then it follows
from (2.1) that Ω(k) has to satisfy the following the equation,

λ1y
∂Ω(k)

∂y
+ λ2z

∂Ω(k)

∂z
= 0.

Because Ω(k) is a sum of elementary monomials, Ω(k) = Σk1+k2=kΩk1k2y
k1zk2 , as follows from (2.1),

the formula can be obtained,

(λ1k1 + λ2k2)Σk1+k2=kΩk1k2y
k1zk2 = 0. (2.2)

So,
λ1k1 + λ2k2 = 0,

that is,
k1
k2

= −λ2

λ1
=

a2 + 2c− a
√
a2 + 4c

2c
. (2.3)

when c > 0, (2.3) contradicts the condition that
a2 + 2c− a

√
a2 + 4c

2c
is not a nonnegative rational

number.

2) c < 0.
When a2 + 4c > 0, the left part of (2.3) is nonnegative number, and the right part of (2.3) is negative
number. That is a contradictory.
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When a2 + 4c < 0, A1 has a pair of conjugate imaginary eigenvalues λ1,2 =
a±

√
−(a2 + 4c)i

2
.

There is the nonsingular linear transformation in C2, which changes A1 to the Jordan canonical

J1 =

(
λ1 0
0 λ2

)
. Similarly, from (2.2), one get

(λ1k1 + λ2k2) = (k1 + k2)a+ (k1 − k2)
√

−(a2 + 4c)i = 0.

This is not valid for ki, i = 1, 2 ∈ N, k1k2 ̸= 0.

Therefore, system (1.2) has no analytic first integrals in a neighborhood of O1.

Theorem 2. 1) c < 0 and
−a2 + 2c+ a

√
a2 − 4c

2c
is not a nonnegative rational number.

2) c > 0, a2 − 4c > 0.

3) a2 − 4c < 0.

If one of above conditions is satisfied, then system (1.2) has no nontrivial analytic first integrals
in a neighbourhood of O2(−

c

b
, 0).

Proof. Similarly, we can proof the result.

3 FINDING FIRST INTEGRALS IN OTHER PARAMETRIC CONDI-
TIONS USING LIE SYMMETRY

In the section, we attempt to look for the first integrals of system (1.2) in other regions using Lie
symmetry.

3.1 Infinitesimal Generators
Let X = ξ(x, y)∂x + η(x, y)∂y be the infinitesimal generator of the symmetry group G admitted by
(1.1).

X(2) = ξ(x, y)∂x + η(x, y)∂y + η(1)∂y′ + η(2)∂y′′

is the prolonged infinitesimal generator, where

η(1) = ηx + (ηy − ξx)η
′ − ξyy

′2,

η(2) = ηxx + (2ηxy − ξxx)η
′ + (ηyy − 2ξxy)y

′2 − ξyyy
′3 + (ηy − 2ξx − 3ξyy

′)y′′.

By the linearized symmetry condition, we have

η(−2by − c) + {ηx + (ηy − ξx)y
′ − ξyy

′2}(−a) + ηxx + (2ηxy − ξxx)y
′

+(ηyy − 2ξxy)y
′2 − ξyyy

′3 + (ηy − 2ξx − 3ξyy
′)(ay′ + by2 + cy) = 0.

(3.1)

After setting the coefficients of the powers (y′)i (i = 1, 2, 3) in (3.1) to zero, one can get the
determining equations system

ξyy = 0,
aξy + (ηyy − 2ξxy)− 3aξy = 0,
−aξx + 2ηxy − ξxx − 3ξy(by

2 + cy) = 0,
η(−2by − c)− aηx + ηxx + (ηy − 2ξx)(by

2 + cy) = 0.

(3.2)

4
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The first equation of (3.2) gives

ξ(x, y) = a1(x)y + a2(x). (3.3)

After substituting (3.3) into the second equation
of (3.2), one can have

η(x, y) = [a′
1(x) + aa1(x)]y

2 + a3(x)y + a4(x),
(3.4)

where a1(x), a2(x), a3(x) and a4(x) are functions
of x to be determined. Inserting (3.3) and
(3.4) into the third equation of (3.2), we have a
polynomial of y with degree 2 which is zero if and
only if each variable coefficient is set to zero

ba1(x) = 0,
−aa′

2(x) + 2a′
3(x)− a′′

2 (x) = 0.
(3.5)

Owing to b ̸= 0, we have a1(x) = 0. We deduce
that

ξ(x) = a2(x), η(x, y) = a3(x)y + a4(x).

Similarly, substituting ξ(x) and η(x, y) into the last
equation of (3.2), we obtain a polynomial of y with
degree 2 which is zero if and only if the following
equations are satisfied

b(a3(x) + 2a′
2(x)) = 0,

−2ba4(x)− aa′
3(x) + a′′

3 (x)− 2ca′
2(x) = 0.

−ca4(x)− aa′
4(x) + a′′

4 (x) = 0.
(3.6)

Analyzing the first equation of (3.6) and the
second equation of (3.5), we have

a2(x) = c1e
− a

5
x + c2

and
a3(x) =

2a

5
c1e

− a
5
x,

where c1, c2 are integration constants.
Substituting a2(x) and a3(x) into the second
equation of (3.6), we have

a4(x) =
c1a

b
(
6a2

125
+

c

5
)e−

ax
5 .

Substituting a4(x) into the last equation of (3.6),
we obtain one parametric condition:

6a2 ± 25c = 0. (3.7)

Because c1 and c2 are arbitrary constants, for
simplicity, we may assume c1 = 0, c2 = 1, Then
we find

ξ = 1, η = 0.

Hence, one infinitesimal generator is generated
as X1 = ∂x. We also assume c1 = 1, c2 = 0,
then we obtain

a2(x) = e−
ax
5 , a3(x) =

2a

5
e−

ax
5

and

a4(x) =
a

b
(
6a2

125
+

c

5
)e−

ax
5 .

So, we have two expressions

ξ = e−
ax
5 , η =

2a

5
e−

ax
5 y +

a

b
(
6a2

125
+

c

5
)e−

ax
5 .

Two infinitesimal generators are obtained as
follows

X1 = ∂x X2 = e−
ax
5 ∂x+e−

ax
5 [

2a

5
y+

a

b
(
6a2

125
+
c

5
)]∂y.

(3.8)

3.2 Obtaining First Integrals
Let us return to consider equation (1.1). (1.1)
can also be rewritten as the following third order
autonomous system,

ẋ = 1
ẏ = z
ż = az + by2 + cy.

(3.9)

The partial differential operator associated to
(3.9) is

X =
∂

∂x
+ z

∂

∂y
+ (az + by2 + cy)

∂

∂z
. (3.10)

Based on Lie symmetry method in [20]-[22], we
can have the following result.

Theorem 3. If system (1.1) admits the
Lie symmetry with generators (3.8) under the
condition (3.7), then the generator of the
corresponding Lie symmetry admitted by system
(3.9) is

V1 =
∂

∂x
,

V2 = e−
ax
5

∂

∂x
+ e−

ax
5 [

2a

5
y +

6a3

125b
+

ac

5b
]
∂

∂y

+e−
ax
5 [−a

5
(
2a

5
y +

6a3

125b
+

ac

5b
) +

3a

5
z]

∂

∂z
.

(3.11)
Proof. It is easy to prove the result based on
Theorem 1 in [21].

Next, we will apply the above results to (3.9) for
obtaining first integrals under the condition (3.7).

5
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3.2.1 The First Integral Under the
Condition 6a2 = 25c

(3.9) admits two one-parameter Lie symmetries
with generators

V1 =
∂

∂x
,

V2 = e−
ax
5

∂

∂x
+ e−

ax
5 [

2a

5
y +

2ac

5b
]
∂

∂y

+e−
ax
5 [− c

3
y − c2

3b
+

3a

5
z]

∂

∂z
.

(3.12)

It is easy to find that

[V1, V2] = −a

5
V2.

So we can obtain the corresponding structural
coefficients

C1
1,2 = −C1

2,1 = 0, C2
1,2 = −C2

2,1 = −a

5
.

We can let b1 = 1, b0 = 0, and get the solution f1, f2, f3 from the corresponding algebraic system[20], 1 z az + by2 + cy
1 0 0

e−
ax
5 e−

ax
5 [

2a

5
y +

2ac

5b
] e−

ax
5 [− c

3
y − c2

3b
+

3a

5
z]


 f1

f2
f3

 =

 0
b1
b0

 , (3.13)

and a first integral Ω(x) of (3.9) is given by the following line integral

Ω(x) =

∫ x

x0

f1dx+ f2dy + f3dz,

f1 = 1,

f2 =
by2 + 4cy

3
+ 2az

5
+ c2

3b

−2cyz − 2c2z
b

+ 3az2

5
− 2aby3

5
− 4acy2

5
− 2ac2y

5b

,

f3 =
2a
5
y + 2ac

5b
− z

−2cyz − 2c2z
b

+ 3az2

5
− 2aby3

5
− 4acy2

5
− 2ac2y

5b

.

(3.14)

Then, we can obtain a first integral of (3.9),

Ω(x, y, z) = − 5

6a
ln(−2cyz − 2c2z

b
+

3az2

5
− 2aby3

5
− 4acy2

5
− 2ac2y

5b
) + x.

It can be rewritten as

Ω1 = e−
6ax
5 (−2cyz − 2c2z

b
+

3az2

5
− 2aby3

5
− 4acy2

5
− 2ac2y

5b
) = I1, (3.15)

where I1 is an arbitrary constant.

3.2.2 The First Integral Under The Condition 6a2 = −25c

In this case, (3.9) admits two one-parameter Lie symmetries with generators is

V1 =
∂

∂x
,

V3 = e−
ax
5

∂

∂x
+ e−

ax
5
2a

5
y
∂

∂y

+e−
ax
5 (

c

3
y +

3a

5
z)

∂

∂z
.

(3.16)

It is easy to find that
[V1, V3] = −a

5
V3.

6
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So we can obtain the corresponding structural coefficients

C1
1,3 = −C1

3,1 = 0, C2
1,3 = −C2

3,1 = − a

5.

We can let b1 = 1, b0 = 0, and get the solution f1, f2, f3 from the corresponding algebraic system[20], 1 z az + by2 + cy
1 0 0

e−
ax
5 e−

ax
5
2a

5
y e−

ax
5 (

c

3
y +

3a

5
z)


 f1

f2
f3

 =

 0
b1
b0

 , (3.17)

and a first integral Ω(x) of (3.9) is given by the following line integral

Ω(x) =

∫ x

x0

f1dx+ f2dy + f3dz,

f1 = 1,

f2 =
az + by2 + cy − c

3
y − 3az

5

c
3
yz + 3a

5
z2 − 2a2

5
yz − 2ab

5
y3 − 2ac

5
y2

,

f3 =
2ay
5

− z
c
3
yz + 3a

5
z2 − 2a2

5
yz − 2ab

5
y3 − 2ac

5
y2

.

(3.18)

Then, we can obtain a first integral of (3.9),

Ω = x− 5

6a
ln(

3az2

5
+ 2cyz − 2aby3

5
− 2acy2

5
).

It can be rewritten as

Ω2 = e−
6ax
5 (

3az2

5
+2cyz− 2aby3

5
− 2acy2

5
) = I2,

(3.19)
where I2 is an arbitrary constant.

Here, the obtained first integrals (3.15) and (3.19)
are identical to first integrals in corresponding
parametric condition in [23].

4 APPLICATION TO TRAVEL-
ING WAVE SOLUTIONS OF
THE CERTAIN PDES

The standard form of the Burgers-KdV equation
is

ut + uux + βuxx + suxxx = 0, (4.1)

where β and s are real constants with βs ̸= 0.
In [24], author surveys some recent advances
in the study of traveling wave solutions to (4.1),
a class of traveling solitray wave solutions in
terms of elliptic functions with arbitrary velocity is
obtained by using the first integral method( is first
presented by Feng in 2003) as well as the method

of compatible vector fields. The relevant research
results of (4.1) can be referred to [24, 25] and the
references therein.

The nonlinear reaction-diffusion equation is

∂u

∂t
=

∂2u

∂x2
+ µ+ u− βu2, µ, β ∈ R. (4.2)

When µ = 0, it is the so-called Fisher
equation suggested by Fisher[26]. In [23],
Feng applied the Divisor Theorem for two
variables in the complex domain, to find a first
integral of an equivalent autonomous system.
Then, a class of traveling wave solutions is
obtained accordingly. In [27], the traveling
wave solutions of a similar equation to the
nonlinear reaction-diffusion equation(4.2) were
systematically studied.

In [28], the two-dimensional Burgers-Korteweg-
de Vries equation

(ut + uux + βuxx + suxxx)x + γuyy = 0, (4.3)

where β, s and γ are real constants, is
considered using the first integral method. The
introduction of the two-dimensional Burgers-
Korteweg-de Vries equation can be referred to
[29] and the references therein.

7
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Assume that equation (4.1) and (4.2) have
traveling wave solutions of the form u =
u(ξ), ξ = x−vt. After substitution and performing
one integration accordingly, one can have

u′′ = au′ + bu2 + ru+ d. (4.4)

For (4.1), a = −β

s
, b = − 1

2s
, r =

v

s
, d =

k

s
and

k is an arbitrary integration constant in (4.4). For
(4.2), a = −v, b = β, r = −1, d = −µ in (4.4).

Assume equation (4.3) has the solution in the
form u = u(ξ), ξ = hx+ ly−vt. After substituting
the formula to (4.3), one can have

sh4u(4)+βh3u′′′+αh2(uu′)′+γl2u′′−vhu′′ = 0.

Integrating the above equation twice with respect

to ξ, then we can have (4.4), where d =
k

sh4
, k

is second integration constant and the first one

is set to zero, and a = − β

sh
, b = − 1

2sh2
, r =

vh− γl2

sh4
.

Under the transformation y = u +
−r ±

√
r2 − 4bd

2b
, (4.4) can be changed to (1.1),

where c = ±
√
r2 − 4bd.

In this section, we will consider the traveling wave
solutions of equation (4.1), (4.2) and (4.3) based
on the results of the first integral of (1.1). We
can use first integrals Ω1,Ω2 to derive traveling
wave solutions of equation (4.1), (4.2) and
(4.3) under corresponding parametric conditions.
Comparison with the existing results will also be
provided at the end of this section.

4.1 The Nonexistence of
Traveling Wave Solutions of
PDEs

Based on Theorem 1 and Theorem 2, it is not
difficult to obtain the following results for the
certain partial differential equations.

Theorem 4. 1) c =
√
r2 − 4bd and

a2 − a
√
a2 + 4c

2c
is not a rational number.

2) c = −
√
r2 − 4bd and a2 + 4c > 0.

3) a2 + 4c < 0.

If one of the above conditions is satisfied,
then (4.1), (4.2) and (4.3) have no traveling
wave solutions in a neighbourhood of (u, u′) =

(
r −

√
r2 − 4bd

2b
, 0).

Theorem 5. 1) c = −
√
r2 − 4bd and

−a2 + a
√
a2 − 4c

2c
is not a rational number.

2) c =
√
r2 − 4bd and a2 − 4c > 0.

3) a2 − 4c < 0.

If one of the above conditions is satisfied, then
(4.1), (4.2) and (4.3) have no traveling wave
solutions in a neighbourhood of (u, u′) = (−c

b
+

r −
√
r2 − 4bd

2b
, 0).

4.2 Traveling Wave Solutions of PDEs Under the Condition 6a2 = 25c

From the first integral (3.15), we can deduce traveling wave solutions of the above PDEs.

Case 1. I1 = 0.

Inserting z = y′ into (3.15), one has

2cyy′ +
2c2y′

b
− 3ay′2

5
+

2aby3

5
+

4acy2

5
+

2ac2y

5b
= 0.

Solving the above quadratic equation of variable y′ and getting the following formula,

y′ =
−(10bcy + 10c2)±

√
(10bcy + 10c2)2 + 12ab(2ab2y3 + 4abcy2 + 2ac2y)

−6ab
.

8
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In consideration of the condition 6a2 = 25c, we can obtain

y′ =
5[2c(c+ by)± 2(c+ by)

√
c(c+ by)]

6ab
. (4.5)

Making a substitution Y =
√
c+ by, an exact solution to (4.5) can be deduced,

y =
c

b
[c21(

e
5c
6a

ξ

1∓ c1e
5c
6a

ξ
)2 − 1],

where c1 is an arbitrary constant. Using the identity

1

1 + e−2x
=

1

2
(1 + tanhx)

and choosing c1 = ∓1, one can get the exact solution to (4.5)

y =
c

b
[
1

4
(1 + tanh

5c

12a
ξ)2 − 1].

Utilizing the identity sech2t+ tanh2 t = 1, the above solution can be expressed as follows,

y = − c

4b
sech2 5c

12a
ξ +

c

2b
tanh

5c

12a
ξ − c

2b
. (4.6)

Owning to (4.6), one can get the traveling wave solution to (4.1) under the condition 6a2 = 25c as
follows,

u =
3β2

25α
sech2[

β(x− vt)

10s
]− 6β2

25α
tanh[

β(x− vt)

10s
] + v,

the traveling wave solution to (4.2) under the condition 6a2 = 25c as follows,

u = − 3v2

50β
sech2[

v

10
(x− vt)]− 3v2

25β
tanh[

3v

10
(x− vt)]− α

2β
,

and the solution to (4.3) is

u =
3β2

25s
sech2[

β

10sh
(hx+ ly − vt)] +

6β2

25s
tanh[

β

10sh
(hx+ ly − vt)] +

l2γ − vh

h2
.

Case 2. I1 < 0

Using the similar method in the literature [23], inserting z = y′ into the first integral (3.15), and the
first integral can be expressed as

[e
−3a
5

x(z − 5c

3a
y − 5c2

3ab
)]2 − 2b

3
[e−

2a
5

x(y +
c

b
)]3

= { d

dx
[(y +

c

b
)e−

5c
3a

x]}2e−
5c
3a

x − 2b

3
[e−

2a
5

x(y +
c

b
)]3

= I1.

Owing to 6a2 = 25c, one has − 5c

3a
= −2a

5
and inserts it to the above formula, one has

{ d

dx
[(y +

c

b
)e−

2a
5

x]}2e−
2a
5

x − 2b

3
[e−

2a
5

x(y +
c

b
)]3 = I1. (4.7)

Let Φ =
b

6
(y +

c

b
)e−

2a
5

x, q =
5

a
e

a
5
x, (4.7) can be rewritten as the following equation

(
dΦ

dq
)2 − 4Φ3 − I1 = 0. (4.8)

9



Hu and du; AJRCOS, 3(3); 1-15, 2019; Article no.AJRCOS.49505

Its solution can be expressed in terms of the Weierstrass function ℘(q; g2, g3) with g2 = 0 and g3 =
−I1. We know that the Weierstrass function ℘(q; 0,−I1) for the standard equation (Φ′)2−4Φ3−I1 = 0
can be expressed by the Jacobian elliptic cosine function[30],

Φ(q) = R+H
1 + cn(2

√
Hq + c2;

2−
√
3

4
)

1− cn(2
√
Hq + c2;

2−
√
3

4
)
,

where c2 is an arbitrary constant, R = − 3

√
I1
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

2

50b
e

2ax
5 [

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2−
√

3
4

)

1− cn(c3e
ax
5 + c2;

2−
√

3
4

)
]− c

b
,

where c3 is an arbitrary constant.

Accordingly, one can obtain a traveling wave solution to (4.1) as follows,

u(x, t) = −3c23β
2

25s
e−

2β
5s

(x−vt)[

√
3

3
+

1 + cn(c3e
− β

5s
(x−vt) + c2;

2−
√
3

4
)

1− cn(c3e
− β

5s
(x−vt) + c2;

2−
√
3

4
)
] + v ±

√
v2 + 2k,

one can obtain a traveling wave solution to (4.2) as follows,

u(x, t) =
3c23v

2

50β
e−

2v
5

(x−vt)[

√
3

3
+

1 + cn(c3e
− v

5
(x−vt) + c2;

2−
√

3
4

)

1− cn(c3e
− v

5
(x−vt) + c2;

2−
√

3
4

)
] +

α−
√

α2 + 4βµ

2β

and the solution to (4.3) is

u(x, t) =
−3c23β

2

25s
e−

2β
5sh

(hx+ly−vt)[

√
3

3
+

1 + cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2−
√

3
4

)

1− cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2−
√

3
4

)
]

±
√

(vh− γl2)2 + 2h2k

h2
.

Case 3. I1 > 0.

It is known([30]) that ℘(q; 0,−I1) = −℘(iq; 0, I1) and cn(iq;
2−

√
3

4
)cn(q;

2 +
√
3

4
) = 1. These

relations let us apply the result of (4.8) for I1 > 0, and the corresponding solution can be obtained,

Φ(q) = −R+H
1 + cn(2

√
Hq + c2;

2+
√
3

4
)

1− cn(2
√
Hq + c2;

2+
√
3

4
)
,

where c2 is an arbitrary constant, R = 3

√
I1
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

2

50b
e

2ax
5 [−

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2+
√

3
4

)

1− cn(c3e
ax
5 + c2;

2+
√

3
4

)
]− c

b
,

where c3 is an arbitrary constant.

Similarly, one can obtain a traveling wave solution to (4.1) as follows,

u(x, t) = −3c23β
2

25αs
e−

2β
5s

(x−vt)[−
√
3

3
+

1 + cn(c3e
− β

5s
(x−vt) + c2;

2+
√

3
4

)

1− cn(c3e
− β

5s
(x−vt) + c2;

2+
√

3
4

)
] +

12β2

25sα
,

10
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one can obtain a traveling wave solution to (4.2) as follows,

u(x, t) =
3c23v

2

50β
e−

2v
5

(x−vt)[−
√
3

3
+

1 + cn(c3e
− v

5
(x−vt) + c2;

2+
√

3
4

)

1− cn(c3e
− v

5
(x−vt) + c2;

2+
√

3
4

)
]− 6v2

25β
,

and the solution to (4.3) is

u(x, t) =
−3c23β

2

25αs
e−

2β
5sh

(hx+ly−vt)[−
√
3

3
+

1 + cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2+
√

3
4

)

1− cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2+
√

3
4

)
]

+
2
√

(vh− γl2)sh2 + 2αk

αh
.

4.3 Traveling Wave Solutions of PDEs under the Condition 6a2 = −25c

Case 1. I2 = 0.

Inserting z = y′ to (3.19), one has

3ay′2

5
+ 2cyy′ − 2aby3

5
− 2acy2

5
= 0.

Solving the above quadratic equation of variable y′ and getting the following formula,

y′ =
−10cy ±

√
(10cy)2 − 12a(−2aby3 − 2acy2)

6a
.

In consideration of the condition 6a2 = −25c, we can obtain

y′ =
−5cy ± 5y

√
−bcy

3a
. (4.9)

Making a substitution Y =
√
−bcy, an exact solution to (4.9) can be deduced,

y = − 1

bc
(

c

1− c1e
5c
6a

ξ
)2,

where c1 is arbitrary constant. Using the identity

1

1 + e−2x
=

1

2
(1 + tanhx)

and choosing c1 = −1, one can get the exact solution to (4.9)

y =
c

4b
[1 + tanh(− 5c

12a
ξ)]2. (4.10)

Utilizing the identity sech2t+ tanh2 t = 1, the above solution can be expressed as follows,

y = − c

4b
sech2 5c

12a
ξ − c

2b
tanh

5c

12a
ξ +

c

2b
. (4.11)

Owning to (4.11), one can get the traveling wave solution to (4.1) under the condition 6a2 = −25c as
follows,

u = − 3β2

25sα
sech2[

β

10s
(x− vt)]− 6β2

25sα
tanh[

β

10s
(x− vt)] +

6β2

25sα
,

11
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the traveling wave solution to (4.2) under the condition 6a2 = −25c as follows,

u =
3v2

50β
sech2[

v

10
(x− vt)] +

3v2

25β
tanh[

v

10
(x− vt)]− 3v2

25β

and the solution to (4.3) is

u =

√
(vh− γl2)sh2 + 2αk

2αh
sech2[

−5
√

(vh− γh2)sh2 + 2αk

12βh2
(hx+ ly − vt)]

+

√
(vh− γl2)sh2 + 2αk

αh
tanh[

−5
√

(vh− γl2)sh2 + 2αk

12βh2
(hx+ ly − vt)]

−
√

(vh− γl2)sh2 + 2αk

αh
.

Case 2. I2 < 0

Similarly, using z = y′, the first integral (3.19) can be expressed as

[e
−3a
5

x(z +
5c

3a
y)]2 − 2b

3a
(e−

2a
5

xy)3 = I2.

Owing to 6a2 = −25c, one has
5c

3a
= −2a

5
and inserts it to the above formula, one has

[
d

dx
(ye−

2a
5

x)]2e−
2a
5

x − 2b

3a
(ye−

2a
5

x)3 = I2. (4.12)

Let Φ =
b

6a
ye−

2a
5

x, q =
5

a
e

a
5
x, (4.12) can be rewritten as the following equation

(
dΦ

dq
)2 − 4Φ3 − I2 = 0. (4.13)

Similarly, its solution can be expressed in terms of the Weierstrass function ℘(q; g2, g3) with g2 = 0
and g3 = −I2. We know that the Weierstrass function ℘(q; 0,−I2) for the standard equation (Φ′)2 −
4Φ3 − I2 = 0 can be expressed by the Jacobian elliptic cosine function[30],

Φ(q) = R+H
1 + cn(2

√
Hq + c2;

2−
√
3

4
)

1− cn(2
√
Hq + c2;

2−
√
3

4
)
,

where c2 is an arbitrary constant, R = − 3

√
I2
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

3

50b
e

2ax
5 [

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2−
√

3
4

)

1− cn(c3e
ax
5 + c2;

2−
√

3
4

)
],

where c3 is an arbitrary constant.

Accordingly, one can obtain a traveling wave solution to (4.1) as follows,

u(x, t) = − 3c23β
3

25αs2
e−

2β
5s

(x−vt)[

√
3

3
+

1 + cn(c3e
− β

5s
(x−vt) + c2;

2−
√

3
4

)

1− cn(c3e
− β

5s
(x−vt) + c2;

2−
√

3
4

)
],

one can obtain a traveling wave solution to (4.2) as follows,

u(x, t) =
3c23v

2

50β2
e−

2v
5

(x−vt)[

√
3

3
+

1 + cn(c3e
− v

5
(x−vt) + c2;

2−
√
3

4
)

1− cn(c3e
− v

5
(x−vt) + c2;

2−
√
3

4
)
],

12
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and the solution to (4.3) is

u(x, t) =
−3c23β

2

25αs
e−

2β
5sh

(hx+ly−vt)[

√
3

3
+

1 + cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2−
√

3
4

)

1− cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2−
√

3
4

)
].

Case 3. I2 > 0.

Similarly, let us apply the result of (4.13) for I2 > 0, and the corresponding solution can be obtained,

Φ(q) = −R+H
1 + cn(2

√
Hq + c2;

2+
√
3

4
)

1− cn(2
√
Hq + c2;

2+
√
3

4
)
,

where c2 is an arbitrary constant, R = 3

√
I2
4

and H =
√
3R. Consequently, changing to the original

variables and using the inverse transformations of Φ and q, one can get the following formula,

y =
3c23a

3

50b
e

2ax
5 [−

√
3

3
+

1 + cn(c3e
ax
5 + c2;

2+
√

3
4

)

1− cn(c3e
ax
5 + c2;

2+
√

3
4

)
],

where c3 is an arbitrary constant.

One can obtain a traveling wave solution to (4.1) as follows,

u(x, t) = − 3c23β
3

25αs2
e−

2β
5s

(x−vt)[−
√
3

3
+

1 + cn(c3e
− β

5s
(x−vt) + c2;

2+
√

3
4

)

1− cn(c3e
− β

5s
(x−vt) + c2;

2+
√

3
4

)
],

one can obtain a traveling wave solution to (4.2) as follows,

u(x, t) =
3c23v

2

50β2
e−

2v
5

(x−vt)[−
√
3

3
+

1 + cn(c3e
− v

5
(x−vt) + c2;

2+
√
3

4
)

1− cn(c3e
− v

5
(x−vt) + c2;

2+
√
3

4
)
]

and the solution to (4.3) is

u(x, t) =
−3c23β

2

25αs
e−

2β
5sh

(hx+ly−vt)[−
√
3

3
+

1 + cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2+
√

3
4

)

1− cn(c3e
− β

5sh
(hx+ly−vt) + c2;

2+
√

3
4

)
].

In the section, we deduce the traveling wave
solutions of (4.1), (4.2) and (4.3) under
parameters conditions 6a2 = 25c and 6a2 =
−25c accordingly. The first integrals of (3.9)
and first integrals in [23](formula (19) and (20))
are identical as the parameters conditions are
changed accordingly. In [24], the author studied
the Burgers-Korteweg-de vries equation using
the first integral method, and got the traveling
wave solution of the equation only in the case
I1 = 0 and the case I2 = 0. Almendral
and Sanjuan [31] investigated the invariance and

integrability properties of the Helmholtz oscillator,
and they used the Lie group theory of differential
equations to find a first integral only under the
parametric restraint 6a2 = 25c, which is identical
to our formula (3.15). In [23], authors proposed
an effective method(first integral method) to
obtain traveling wave solutions of a reaction-
diffusion equation (4.2), which are identical to
the above obtained traveling wave solutions of
(4.2) under the condition 6a2 = ±25c. To our
knowledge, the traveling wave solutions of (4.1)
and (4.3) obtained under the condition I1 ̸= 0 or

13
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I2 ̸= 0 are not found in the existing literature.

5 CONCLUSIONS

In this paper, we first presented the condition
of nonexistence of the first integrals of a
class of ordinary differential equations and the
method for getting first integrals of the equations
using Lie symmetry. Then, we obtain the
conditions of the nonexistence of traveling wave
solutions of certain partial differential equations,
and we also apply the above first integrals to
search for traveling wave solutions of the partial
differential equations, which can be converted
to the following form through the traveling wave
transformation

u′′(ξ) = au′(ξ) +R(u), (5.1)

where R(u) = bu2 + ru + d, a ̸= 0, b, r, d
are real. We proposed an effective method to
deal with (5.1) using Lie symmetries admitted
by (5.1). Through constructing an algebra
equations system based on the generators of
Lie symmetries admitted by (5.1), we obtained
first integrals of an explicit form to an equivalent
autonomous system under concert parametric
conditions. Then using first integrals Ii > 0, Ii =
0 and Ii < 0, i = 1, 2, a class of traveling wave
solutions were accordingly derived by solving
this first order differential equation. The method
in the paper to obtaining first integrals need
not let R(u) in (5.1) be a polynomial with
real coefficients, it can be an arbitrary element
function. The technique described herein can
be applied to other partial differential equations
in other subjects, in which (5.1) may be any
order nonlinear ordinary differential equations
and R(u) can be any element functions.
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