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ABSTRACT 
 

In petroleum engineering, reservoir fluid characterization is of great importance. Accurate 
determination of the two-phase gas deviation factor is essential in modeling gas-condensate and 
gas reservoirs, pipeline flow and reserve estimation, this is because the reservoir fluid is in a two-
phase state at pressures below the dew-point pressure. Correlations are replete for predicting 
single-phase gas deviation factor using different Equation of State (EOS), but no correlation have 
been found to accurately predict the two-phase gas deviation factor.  
Traditionally, the two-phase gas deviation factor for a gas-condensate fluid is determined 
experimentally in the laboratory, however, this laboratory experiments are quite expensive, though 
quite reliable. Hence, a need for simple but less expensive methods of determining the two-phase 
gas deviation factor. Thus, this present study modeled the two-phase gas deviation factor of a gas-
condensate fluid using Artificial Neural Network (ANN), a biologically inspired non-algorithmic, non-
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digital, massively, parallel distributive and adaptive information processing system. Its ability to 
perform non-linear, multi-dimensional interpolations makes it unique and fit for this work. 
The results obtained were compared to existing empirical and analytical correlations. Average 
absolute deviation (AAD), root mean square errors (RMSE) and correlation of determination (COD) 
between the ANN output and other correlations gave 1.343%, 1.344% and 61.6% respectively.  
On the basis of the results, it was discovered that ANN approach is an improved, simple, less 
expensive and more accurate method of determining the two-phase gas deviation factor. ANN 
approach gives the closest value to the observed two-phase gas deviation factor from experimental 
work.  
 

 

Keywords: Artificial neural network; gas-condensate reservoir; modeling; two-phase Z-factor. 
 

ABBREVIATIONS 
 

ANN   : Artificial Neural Network 
RMSE  : Root Mean Square Error 
AAD  : Absolute Average Deviation 
COD  : Coefficient of Determination 
Z2ph  : Two-phase Gas Deviation Factor 
DAK  : Dranchuk Abou-Kassem Correlation 
Tpr  : Pseudoreduced Temperature 
Ppr  : Pseudoreduced Pressure 
P  : Reservoir Pressure 
T  : Reservoir Temperature 
ϒg  : Gas Specific Gravity 

 

1. INTRODUCTION 
 
Gas deviation factor also known as gas 
compressibility factor and simply called Z-factor, 
is an important parameter in natural gas 
engineering. It is used in material balance 
equation for the estimation of initial gas in-place 
and for reserves estimation. The Z-factor is a 
dimensionless quantity and defined as the ratio 
of the actual volume of n-moles of gas at 
temperature (T) and pressure (P) to the ideal 
volume of the same number of moles at the 
same T and P, it accounts for the deviation of 
gases from ideality. For most engineering 
calculations, the single-phase Z-factor is mostly 
used [1,2,3]. However, for a gas condensate 
reservoir, the two-phase Z-factor has to be used. 
This is explained by the presence of two-phases 
within the reservoir at pressures below the dew-
point [4,5]. Thus, there is the need to accurately 
determine its value. 
 

Traditionally, the two-phase gas deviation factor 
is determined experimentally in the laboratory, 
through either a Constant Composition 
Experiment (CCE) test or a Constant Volume 
Depletion (CVD) test. However, laboratory 
experiments are expensive, though quite reliable. 
Hence, the need for simple, accurate and less 
expensive methods of determining the two-phase 
gas deviation factor. Several correlations such as 

Hall Yarborough, Dranchuk and Abou-Kassem, 
Rayes et al. [6,7] have been developed to predict 
the two-phase gas deviation factor using the 
different equations of states (EOS). 
 

Numerous studies have harnessed the 
applicability of Artificial Neural Network (ANN) to 
model oil and gas reservoir rock and fluid 
properties [8]. In 1995, [9] used ANN in 
predicting permeability from porosity, while in 
1996, [10] stated in their work that ANN is an 
especially efficient algorithm to approximate any 
function with finite number of discontinuities. In 
his study, [11] used ANN to model bubble-point 
pressure (Pb) and oil formation volume factor (Bo) 
for accuracy and flexibility. In 2002, [12] 
developed an alternate methodology for a better 
determination of relative permeability using ANN, 
their results showed that ANN have the potential 
of providing a toolbox for identifying the 
parameters controlling relative permeability 
characteristics. While in  2013, [13,14] in their 
work applied ANN to compensate for the 
weakness of conventional methods.  
 

2. MATERIALS AND METHODS  
 
For the purpose of this study, the two-phase gas 
deviation factor for a gas-condensate reservoir 
fluid was modelled using ANN. This was 
achieved by using the non-algorithmic, parallel 
distributive and adaptive information processing 
system of ANN to acquire knowledge about the 
relationship that exists between pressure and 
two-phase Z-factor for a given temperature and 
the error of the model is checked against 
experimental value and existing correlations. 
 
According to [1] and [15], ANN is a biologically 
inspired non-algorithmic, non-digital, massively, 
parallel distributive and adaptive information 
processing system. It resembles the brain in 
acquiring knowledge through learning process, 
and storing knowledge in inter-neuron connection 
strengths. ANN’s ability as a nonlinear
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            Input   Hidden                            Output  

 
 

Fig. 1. Neural network flow of computation 
 
mathematical function that transforms a set of 
input variables into a set of output variables (Fig. 
1) makes it unique and fit for this study or work. 
The ANN architecture is a unique way of 
modeling two-phase gas deviation factor. Neural 
Networks is a toolbox designed to train, visualize, 
and validate neural network models. A neural 
network model is a structure that can be adjusted 
to produce a mapping from a given set of data to 
features of or relationships among the data.  
 

According to [16], the nodes represent input and 
output channels and the connection between the 
two channels are called hidden nodes. All input 
and output nodes are not directly connected 
rather they are connected to the hidden nodes; 
all connections have an independent weighting 
factor associated with them. The transformation 
(of input to output) function depending on 
weights contain an algorithm which converts the 
input into a zero (0), positive one (+1), negative 
one (-1) or some other number. The 
transformation functions (e.g. sigmoid, sine, 
hyperbolic tangent etc) provide nonlinearity. The 
results of the transformed function are the output 
of the hidden nodes. The model is adjusted, or 
trained, using a collection of data from a given 
source as input, typically referred to as the 
training set. After successful training, the neural 
network will be able to perform estimation, 
prediction, or simulation on new data from the 
same or similar sources. The Neural Networks 
toolbox supports different types of training or 
learning algorithms. It uses numerical data to 
specify and evaluate artificial neural network 
models. Given a set of data, [xi,yi]i=1N from an 
unknown function, y = f(x), the toolbox uses 
numerical algorithms to derive reasonable 
estimates of the function, f(x). This involves three 
basic steps: First, a neural network structure is 
chosen that is considered suitable for the type of 
data and underlying process to be modeled. 

Secondly, the neural network is trained by using 
a sufficiently representative set of data. Thirdly, 
the trained network is tested with different data, 
from the same or related sources, to validate that 
the mapping is of acceptable quality. 
 

2.1 Initialization 
 

Based on the input data x and the output data y, 
the neural network was initialized with the 
number of hidden neurons specified. Special 
initialization algorithms exist that give well-
initialized neural networks. An initialization with 
better performance is obtained using one of 
these algorithms. In this study, Levenberg-
Marquart (LM) algorithm was utilized due to its 
stability and swift convergence [15].  
 

2.2 Training 
 

Training the network requires a set of training 
data [xi,yi]i=1N containing N input-output pairs. 
The model was thus trained using input data x 
(i.e. P, T, ϒg) and output data y (i.e. Z2ph-factor) 
with a default number of training iterations. 
During training, intermediate results obtained 
were displayed in an automatically created 
workbook. Once training was completed, the 
following information was displayed: 
 

1. Training iteration number 
2. The value of the RMSE 
3. Plots of RMSE as a function of iteration 

 

2.3 Limitations of ANN 
 

Ignorance of neural network functionality is one 
of the limitations in its usage to reservoir fluid 
characterization. Without a comprehensive 
understanding of the way it works or functions, 
neural network are often understood of as “black 
box” approach instead of a beneficial technique 
to generate reproducible models. Another major 
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error associated with neural networks is its 
susceptibility to “over fitting” just like polynomial 
curve fitting. 
 

2.4 Deploy Solution 
 

Eighty-six datasets obtained from four different 
gas condensate reservoirs were used to train the 
network. Once the data set had been trained and 
a training network had been established, the 
neural network can then be used to predict an 
output value given that an input value is provided 
which could be either same or different from the 
sets of training data.  
 

The gas-condensate reservoir EXX under study 
was located in the Niger Delta, Nigeria. PVT 
study of the reservoir showed that the initial 
reservoir pressure and temperature were 4680 
psia and 184°F respectively. From the constant 
mass study performed, the dew point pressure 
was confirmed to be 4490 psia. Fluid parameters 
were: specific gravity at 60°F (0.8028), molecular 
weight (27.31 g/mol), viscosity (0.0299 cp) and 
relative density (0.942) and the condensate-gas 
ratio (63 stb/MMscf). 
 

2.5 Two-Phase Gas Deviation Factor 
 
Gas deviation factor, Z, is a function of 
temperature and pressure: 
 

Z = f (P, T, ϒg)                    (1) 
 
Several correlations have thus modeled the gas 
deviation factor to be dependent on the reduced 
operating conditions; reduced pressure and 

reduced temperature. However, for the purpose 
of this study, the gas deviation factor was 
modelled using the reservoir pressure, 
temperature and gas specific gravity. It is 
assumed that the reservoir was isothermal, thus 
at different reservoir operating conditions, the 
reservoir pressure changes due to depletion 
whilst temperature does not. Thus, this model 
was built by determining the relationship between 
the two-phase gas deviation factor and reservoir 
pressure at a given temperature. The artificial 
neural network, which is well suited for 
performing non-linear, multi-dimensional 
interpolations, was used to estimate the two-
phase gas deviation factor.  

 
The input data (pressure, temprature, gas 
specific gravity) and output data (Z2ph) were 
loaded to the toolbox (Fig. 2). A training function 
was chosen, the training function used was the 
Bayesian Regularization. The data set was 
trained, and the performance of the training 
network was evaluated. After performance 
evaluation of the training network, which showed 
that the network passed for prediction as it was 
able to model the output based on the input data, 
the network was stored to be deployed as a 
solution.  

 
The error types used by [15] in their work on gas 
compressibility factor prediction were employed 
for perfomance evaluation in this study. The 
three types of errors used were: Average 
Absolute Deviation (AAD), Root Mean Square 
Errors (RMSE) and Correlation (or Coefficient) of 
determination (COD) also known as R

2
. AAD

 

 
 

Fig. 2. ANN architecture for the model 
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show the amount of variation that occur around 
the mean as shown below: 
 

  X
N

AAD
1                   (2) 

 

RMSE is an important criterion for comparing two 
parameters. It was used in the work to compare 
observed value of Z2ph with that of ANN model 
and other correlations. RMSE is the square root 
of average squared errors as shown in equation 
(3) below: 
 

 

N

ZZ

RMSE

N

i

Measured
phi

edicted
phi

2

1
2

Pr
2





      (3) 

 

Equation (4) is the COD equation, the higher the 
value the better the goodness of fit as shown in 
Fig. 5. 
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3. RESULTS AND DISCUSSION 
 
Compositional data for gas condensate reservoir 
given in Table 1 was used as input. Artificial 
neural network was used to predict the two-
phase gas deviation factor for a gas condensate 
reservoir at four (4) different reservoir operating 
conditions and the result is shown in Table 2. 
The neural network was able to accurately 
predict the two-phase gas deviation factor. In 
addition, the average absolute deviation between 
experimental values and the ANN result for the 
four reservoir operating conditions was 
determined. The average absolute deviation for 
the gas condensate reservoir at the reservoir 
operating conditions was given as 1.343%  
(Table 3). 
 
The results obtained using ANN was also 
compared with that obtained using existing 
correlations for the same reservoir operating 
conditions. As shown in Table 2,  ANN prediction 
gave the closest value to the observed two-
phase gas deviation factor from experimental 
works. 

 

Table 1. Gas-condensate composition data 
 

Components  Mole fraction Tci (˚R) Pci (Psia) 
Methane, C1 0.7535 343 667.8 
Ethane, C2 0.085 549.8 707.8 
Propane, C3 0.0405 665.7 616.3 
i-Butane, iC4 0.0104 734.7 529.1 
n-Butane, nC4 0.0159 765 551 
i-Pentane, iC5 0.008 829 491 
n-Pentane, nC5 0.0079 845 489 
Hexane, C6 0.0108 913 437 
Heptane, C7+ 0.0507 972 397 
Hydrogen, H2 0 60 187.05 
Nitrogen, N2 0.0156 227.4 491.55 
Oxygen, O2 0 277.8 730.8 
Carbon dioxide, CO2 0.0017 547.6 1070.6 
Hydrogen sulphide, H2S 0 672.4 1306 
Dihydrogenoxide 0 1165 3199 

 
Table 2. Comparison between ANN and other methods of calculating Z2ph 

 
Pseudo-reduced 
Pressure (Ppr) @ 
Tpr=1.47 

Measured 
Z2ph 

Calculated  Z2ph 
ANN Rayes  

et al. 
Hall 
Yarborough 

Papay DAK 

4.55 0.8270 0.8158 0.7829 0.7752 0.7800 0.7765 
4.99 0.8320 0.8316 0.8093 0.7950 0.7968 0.7967 
5.43 0.8410 0.8538 0.8358 0.8181 0.8201 0.8180 
5.71 0.8500 0.8708 0.8530 0.8349 0.8385 0.8334 
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Table 3. Accuracy of ANN compared to existing correlations 
 

 ANN Rayes et al. Hall-Yarborough Papay DAK 
AAD (%) 1.343 2.259 3.803 3.441 3.761 
RMSE (%) 1.344 2.499 3.466 3.171 3.392 
COD (%) 61.600 37.890 20.850 23.690 20.420 

 

 
 

Fig. 3. Regression plot for ANN 
 

 
 

Fig. 4. Error histogram for ANN 
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Fig. 5. Comparison of target and output values related to training, test and error 
 
Table 3 showed the comparison of the average 
absolute deviation (AAD), root mean square 
errors (RMSE) and correlation of determination 
(COD) between the ANN output and other 
correlations, it was obvious that ANN closely 
matched the experimental values of the two-
phase gas deviation factor having a correlation of 
determination value of 61.6% (the highest of the 
three methods), the average absolute deviation 
of 1.343% (the least of the three) and root mean 
square error of 1.344% (the least of the three 
methods). The accuracy of the ANN was further 
confirmed by the performance plots of the 
Artificial Training Network (Figs. 3-4).                     
As shown in Fig. 5, the training stopped at 325 
epoches.   
 
Bearing in mind that the experimentally 
determined data had some forms of uncertainty 
as it was carried out using a visual window-type 
PVT cell with processes modeling that of the 
reservoir behavior, it can be summarized that the 
accuracy of the ANN in the determination of two-
phase gas deviation factor is better in degree to 
existing correlations. Reasons for this are as 
follows: ANN inputs requirement are fewer            
than other correlations, the existing correlations 
are cumbersome, and have validity range of 
usage in the determination of z-factor.              
Also, according to [16], ANN used training 
dataset along with different training algorithms        
to spontaneously correct the weights and 
threshold to minimize error as shown in Figs. 4 
and 5.  

4. CONCLUSION 
 

From the results of this study the following 
conclusions have been reached: 
 

In this study, Artificial Neural Network (ANN) 
proved to be credible and efficient tool for 
modeling the two-phase gas deviation factor 
of a gas-condensate reservoir fluid, with high 
accuracy of prediction compared to 
experimental values and existing 
correlations. The accuracy of the ANN in 
predicting the two-phase gas deviation factor 
was shown by the average absolute 
deviation of 1.343% among existing 
correlations. Hence, ANN demonstrated to 
be a resourceful tool for solving many 
petroleum engineering problems such as 
two-phase gas deviation factor.  
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