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Abstract

The dynamics of a bound state theory - based on a QED like Lagrangian with fermions coupled to
boson fields - has been studied explicitly. Different from the Hamilton approach studied earlier, an
additional acceleration term is found, which is spurious for fundamental bound states. However,
for composite systems of many particles this term drives individual particles to a coherent rotation,
which lowers the kinetic energy and leads to a collapse.
Applied to gravitation - described by magnetic binding of lepton-hadron pairs - a self-consistent fit
of the primary (e-p)2 bound state is obtained. Of importance, the acceleration term is quite large
and drives composite systems to a collapse and complete annihilation. However, stable galactic
objects are obtained, if the lowering of the kinetic energy is compensated by a reduction of binding.
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Of special interest, a ”matter-antimatter symmetric” system, composed of equal amounts of
(e−p+) and (e+p−) pairs (or hydrogen and antihydrogen atoms), leads to a delayed and incomplete
collapse, in which the matter-antimatter symmetry is broken due to the chiral structure of leptons.

Keywords: Dynamics of a fundamental bound state theory; acceleration terms important for composite
gravitational systems; leading to a collapse and annihilation; Rotational velocities of
galaxies and evolution of a matter-antimatter symmetric system.

2010 Mathematics Subject Classification: 81T10, 46N50, 81P10, 83C47.

1 Introduction

Based on the success of quantum electrodynamics (QED), divergent quantum field theories with
first-order Lagrangians - as those in the Standard Model of particle physics (SM), see e.g. ref. [1, 2] -
have been widely used for the description of fundamental forces (except gravitation). Because these
Lagrangians have no (1/mass)n factor, the underlying field theories are renormalizable. However,
in the SM more than 20 external parameters are needed, coupling constants, mixing parameters of
different fields, elementary fermion and boson masses, which had to be adjusted by experimental
data. Another shortcoming is that these theories are divergent and cannot describe the finite
structure of hadrons and atoms (with well defined root mean square radii). Further, in logical
extensions of the SM a series of supersymmetric particles is predicted, which have not been found.
Finally, these theories cannot give a clue on the development of the universe: they can predict
only the creation of matter-antimatter symmetric systems (with the same amount of protons and
antiprotons, or hydrogen and antihydrogen atoms), but in the universe only matter (dominated by
hydrogen atoms) and extremely little antihydrogen atoms have been found. This indicates a strong
breaking of the matter-antimatter symmetry.

On the other side, divergent field theories with higher-order Lagrangians need a (1/mass)n factor
and are therefore not renormalizable. Further, it has been shown that such Lagrangians can generate
unphysical and ambiguous results [3]. However, a special third-order theory introduced in refs. [4, 5]
solves the above problems and leads to the long sought finite bound state description of particles.
This formalism is based on a Lagrangian similar to that of electrodynamics, but with fermions
accompanied by vector-boson operators. The coupling to bosons is essential to guarantee momentum
conservation; further, it leads to constraints on geometry and energy-momentum conservation, by
which unphysical solutions can be eliminated. The fermion and boson fields can be combined to
finite wave functions (for momenta or radii → 0 and ∞) with parameters, which can be determined
from basic constraints. This leads to a description based on first principles and may be considered
as fundamental.

This statement is strongly supported by the fact that this model represents a unified quantum
description of all fundamental forces: by using one universal boson-exchange interaction it can be
applied to hadrons [4], leptons [5] and atoms [4, 6], but also to gravitational systems [5, 7]. The
generated bound states can be considered as the building blocks of nature. Different from the SM,
in which leptons are considered as elementary fermions with masses determined by experimental
data, these particles are understood as composite systems of massless fermions (quantons) bound
by magnetic forces [5].

Of particular interest is gravitation, which has been described by Newton’s theory of gravitation and
Einstein’s theory of general relativity [8]. In the latter, gravitation is considered as a deformation
of space-time caused by massive objects. In this description global space-time related parameters,
curvature, expansion, cosmological constant etc. have to be adjusted to astronomical data, which
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do not allow to make absolute predictions, which can be tested experimentally. Differently, in the
present formalism gravitational systems are understood as states bound by magnetic forces. Since
all parameters of the model are determined from basic boundary conditions, this should allow us to
investigate in an unbiased way all mechanisms, which led from the cosmic beginning to the present
expanding universe.

So far, static matrix elements have been derived from the Lagrangian, but the bound state dynamics
has been calculated by use of a Hamiltonian. In this way reliable and self-consistent solutions could
be extracted, in which about ten boundary conditions could be satisfied by three or four (effectively
one or two) parameters only.

Differently, in the approach discussed here the complete dynamics is derived from the Lagrangian,
which leads to a more complex structure. In addition to the kinetic energy an acceleration term
is obtained, which is spurious for fundamental bound states, but drives the individual particles in
composite systems to coherent rotation.

In the present paper the complete dynamics of the Lagrangian is applied to the basic magnetically
bound (e-p)2 system. Then different gravitational systems are discussed: first, one without additional
condition, which leads rapidly to a collapse; second, stable galactic objects, which require a balance
between coherent motion and binding; and third, a matter-antimatter symmetric system created
out of the vacuum of fluctuating boson fields during the genesis of the universe.

2 Structure of the Bound State Theory

The underlying Lagrangian may be written in the form

L =
1

m̃2
Ψ̄ iγµD

µDνD
νΨ − 1

4
FµνF

µν , (1)

where m̃ is a mass parameter and Ψ in general a two-component fermion field Ψ = (Ψ+ Ψo) and
Ψ̄ = (Ψ− Ψ̄o) with charged and neutral part. Vector boson fields Aµ with charge coupling g
are contained in the covariant derivatives Dµ = ∂µ − igAµ and the Abelian field strength tensor
Fµν = ∂µAν − ∂νAµ.

Interestingly, by assuming DνD
ν ∼ 1 the QED Lagrangian is restored, giving rise to the Coulomb

potential Vcoul(r) = α~/r and the correct binding of atomic states. In the present theory the atomic
binding energies are also reproduced [6], but in a rather complex way, satisfying a linear quantum
condition on the radius. Further, the electric fine structure constant α ∼ 1/137 is reproduced by
the sum of equivalent first order coupling constants.

We insert Dµ = ∂µ − igAµ and DνD
ν = ∂ν∂

ν − ig(Aν∂
ν + ∂νA

ν)− g2AνA
ν in eq. (1) and obtain

for the first term of L

L1 =
1

m̃2
Ψ̄ iγµD

µDνD
νΨ =

i

m̃2
Ψ̄ γµ∂

µ∂ν∂
νΨ+

g

m̃2
Ψ̄ γµA

µ∂ν∂
νΨ

+
g

m̃2
Ψ̄ γµ∂

µAν∂
νΨ+

g

m̃2
Ψ̄ γµ∂

µ∂νA
νΨ− ig2

m̃2
Ψ̄ γµA

µAν∂
νΨ

− ig2

m̃2
Ψ̄ γµA

µ∂νA
νΨ− ig2

m̃2
Ψ̄ γµ∂

µAνA
νΨ− g3

m̃2
Ψ̄ γµA

µAνA
νΨ . (2)

The gauge condition ∂µA
µ = 0 used for simpler Lagrangians (as in QED) is replaced in our case by

∂2Aν = 0.

In eq. (2) the number of field derivatives and boson couplings varies between the first and last term.
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This shows that the various terms are related to static as well as dynamical properties, important
for the description of stationary systems.

As discussed in former papers [4, 5], static fermion matrix elements can be derived from the above
Lagrangian, which can be written in the form M(p′ − p) = < g.s.| K(q) |g.s. >∼ ψ̄(p′) K(q) ψ(p),
where ψ(p) are fermionic wave functions ψ(p) = 1

m̃3/2Ψ(p1)Ψ(p2) of scalar and vector structure with
a coupling of Ψ(p1) and Ψ(p2) to spin=0 and 1 (scalar and vector, respectively). Further, K(q) =

1

m̃2(n+1) [On(q) On(q)], where On is a cubic operator containing boson fields and/or derivatives as
given in eq. (2).

Following this rule, the Lagrangians L1,6, L1,7 and L1,8 give rise to matrix elements of the form

M2g =
α2

m̃5
ψ̄(p′) γµγ

µAν(q) ∂
νAσ(q) A

σ(q) ∂ρA
ρ(q) ψ(p) (3)

and

M3g =
−α3

m̃5
ψ̄(p′) γµγ

µAν(q)A
ν(q) Aσ(q)A

σ(q) Aρ(q)A
ρ(q) ψ(p) , (4)

where α = g2/4π.

In addition, the Lagrangians L1,3 – L1,7 lead to matrix elements, which include the derivative of
the fermion wave function ∂ψ

T1g =
α

m̃3
ψ̄(p′) γµγ

µ ∂νA
ν(q) ∂ρA

ρ(q) ∂ψ(p) (5)

and

T2g =
α2

m̃3
ψ̄(p′) γµγ

µ Aν(q)A
ν(q) Aρ(q)A

ρ(q) ∂ψ(p) . (6)

These matrix elements are related to the kinetic energy of the system.

Finally, the Lagrangians L1,2 - L1,4 lead to a matrix element with second derivative of the fermion
wave function ∂2ψ

B1g =
α

m̃
ψ̄(p′) γµγ

µ Aν(q)A
ν(q) ∂2ψ(p) , (7)

which corresponds to an acceleration of the system. In the expressions (5), (6) and (7) the derivatives
of the fermion wave functions are given by ∂nψ(p) = 1

m̃(3/2+2n) ∂
nΨ(p1)∂

nΨ(p2).

Following the derivation in refs. [4, 5] the γ-matrices can be removed. To generate a bound system an
equal time requirement of the boson fields allows to replace all fermion four-vectors by three-vectors
in momentum or r-space. Analog to the fermion wave functions ψ(p), two coupled boson fields on
the right and left can be regarded as bosonic (quasi) wave functionsW ν

µ (q) =
1
m̃
Aµ(q)A

ν(q) of scalar
and vector character (Aµ(q) and A

ν(q) coupled to spin=0 and 1, respectively). The remaining boson
pair in eq. (4) can be considered as boson-exchange interaction Vv(q) = Aµ(q)A

ν(q). By a reduction
of these quantities to two dimensions, boson wave functions ws,v(q) and an interaction vv(q) are
obtained, which are two-dimensional. This yields matrix elements of the form

M2g =
α2

2m̃3
ψ̄(p′) ws(q)∂

2ws(q) ψ(p) (8)

and

M3g =
−α3

m̃2
ψ̄(p′) ws,v(q)vv(q)ws,v(q) ψ(p) , (9)

further
T1g =

α

m̃2
ψ̄(p′) ∂2ws,v(q) ∂ψ(p) , (10)

T2g =
α2

m̃
ψ̄(p′) ws,v(q)ws,v(q) ∂ψ(p) , (11)

4



Morsch; JAMCS, 28(3): 1-13, 2018; Article no.JAMCS.42590

and
B1g = α ψ̄(p′) ws,v(q) ∂

2ψ(p) . (12)

Transformation to r-space leads to static fermion matrix elementsMng (n=2,3) and the corresponding
binding energies

Eng = 4π

∫
r2dr Mng = 4π

∫
r2dr ψ̄(r) Vng(r) ψ(r) (13)

with potentials (different for scalar and vector states)

V2g(r) =
α2(2s+ 1)(~c)2

8m̃

(d2ws(r)
dr2

+
2

r

dws(r)

dr

) 1

ws(r)
+ Eo , (14)

with s=0 for scalar and s=1 for vector states, and

V3g(r) =
α2(~c)
m̃

∫
dr′ ws,v(r

′) vv(r − r′) ws,v(r
′) (15)

with an interaction vv(r) ∼ −α(~c) wv(r). V2g(r) has the characteristic form of the ”confinement”
potential, required in hadron bound state models [9]. For Eo = 0 the theory couples to the vacuum.
This allows the creation of fermions-antifermion bound states out of the vacuum of fluctuating
boson fields in the form of qq̄ mesons, where q denotes massless elementary fermions (quantons).

Transformation of the dynamical matrix elements to r-space leads to kinetic energies

ETng =
4π

2

∫
r3dr Tng =

4π

2

∫
r3dr ψ̄(r) V Tng(r)

dψ(r)

dr
(16)

with

V T1g =
α(2s+ 1)(~c)3

4m̃2

(d2ws(r)
dr2

+
2

r

dws(r)

dr

)
(17)

and

V T2g =
α2(~c)2

m̃
ws,v(r)ws,v(r) , (18)

whereas the acceleration term is obtained of the form

∆E1g =
4π

2

∫
r4dr B1g =

4π

2
α(~c)

∫
r4dr ψ̄(r) ws,v(r)

d2ψ(r)

dr2
. (19)

For fundamental systems the term (19) is spurious, but for composite systems of many particles it
allows to lower the kinetic energy.

In addition to the fermion matrix elements, there are boson matrix elements of the form

Mg =
α3

m̃2
ws,v(q) vv(q) ws,v(q) (20)

and

T g =
α2

2m̃3
ws,v(q) ∂

2ws,v(q) . (21)

Transformation to r-space leads to a binding energy

Eg = 2π

∫
rdr Mg = 2πα2

∫
rdr ws,v(r) vv(r) ws,v(r) , (22)

a kinetic energy

EgT =
2π

2

∫
r2dr T g = 2π

α2(~c)
4

∫
r2dr ws(r)

1

r

dws(r)

dr
(23)
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and a contribution from acceleration

∆Eg =
2π

2

∫
r2dr Bg = 2π

α2(~c)
8

∫
r2dr ws(r)

d2ws(r)

dr2
. (24)

The full formalism (including the acceleration term) can be exploited in gravitational systems,
described by lepton-hadron (e-p) pairs bound by magnetic forces [5, 7], which arise from the motion
(rotation) of two fermions with relative velocity (v/c). The corresponding matrix elements can be
expressed straight forward by those above with additional velocity factors (v/c) for fermions, but
also for bosons. For static matrix elements this is given explicitly in ref. [5].

For the evaluation of these matrix elements and their eigenvalues fermion and boson wave functions
ψs,v(r) and ws,v(r) have been used of similar form, ψs,v(r) ∼ ws,v(r), with

ws(r) = wso exp{−(r/b)κ} (25)

and

wv(r) = wvo [ws(r) + βR
dws(r)

dr
] . (26)

The normalization of ψs,v(r) and ws,v(r) has been obtained from 4π
∫
r2dr ψ2

s,v(r) = 1 and
2π

∫
rdr w2

s,v(r) = 1, with βR = −
∫
r2dr ws(r)/

∫
r2dr [dws(r)/dr]. The radial form of ws(r)

has been chosen [4, 5] to satisfy the geometric boundary condition

|V v3g(r)| ∼ c w2
s(r) . (27)

The wave function shape and slope parameters κ and b as well as the coupling constant α have been
deduced from boundary conditions related to momentum, energy-momentum conservation and a
mass-radius constraint [4, 5]. We require momentum matching between fermions and bosons

< q2g >
1/2
rec − < q2f >

1/2
rec= 0 (28)

as well as energy-momentum conservation

[< q2g >
1/2 + < q2f >

1/2](v/c) + Eg − x Mf = 0 , (29)

where x =
√

2m̃/Mf and (v/c) taken positive.
The momenta are given by < q2g >=< q2g >rec and < q2fs >=< q2fs >rec , but for vector particles
< q2fv >=

∫
q4dq ψv(q)V

v
3g(q)/ < q0fv >, where the Fourier transformed quantities are given by

(ψv, V
v
3g)(q) = 4π

∫
r2dr j 2

1 (qr)(ψv, V
v
3g)(r).

Further, a mass-radius condition has been derived from the potential V2g(r)

Rat2g =
(~c)2(v/c)2

m̃(Ms/2) < r2 >
= 1 , (30)

where < r2 > should be between < r2ws
> and < r2ψs

>.

2.1 Hamiltonian approach

In previous studies the dynamics of the bound state has been taken from a Hamiltionian H = T+V ,
with T being the derivative of V . This leads to dynamic matrix elements for fermions

TH(n−1)g =
1

2

∫
r3dr ψ̄(r)

dVng(r)

dr
ψ(r) (31)

and for bosons

T gH =
α2

2

∫
r2dr ws,v(r)

dvv(r)

dr
ws,v(r) , (32)
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but there are no acceleration terms.

This approach has given a very satisfactory description of fundamental systems, as hadrons and
leptons, but also of light atoms, in which all the (about ten) boundary conditions had to be fulfilled
by adjusting three or four parameters (effectively one or two) only.

In spite of the success of the Hamilton approach, an explicit consideration of the full dynamics of
the Lagrangian is important to test, whether eq. (1) really leads to a complete bound state theory
with a structure as deduced in ref. [4, 5], but also to investigate, whether the additional acceleration
terms (7) and (24) are important for composite systems.

3 Gravitation Described byMagnetic Binding of Lepton-
Hadron Pairs

As mentioned above, the self-consistency of the above formalism can be tested in gravitational
systems. In addition, it is important to see, whether the acceleration terms (19) and (24) are
sufficiently large to be able to drive in complex systems the random motion of the individual
fermion-hadron pairs to a coherent rotation.

3.1 Fundamental (e-p)2 bound state

A basic state of (e-p)2 structure has been found [5, 7] with an extremely small binding energy in
the order of 10−38 GeV and a first-order equivalent coupling constant consistent with Newton’s
gravitational constant GN . To avoid parameter ambiguities between b and (v/c)2, an additional
boundary condition has been introduced [7], which relates the relative velocity to the kinetic energy
of the system (v/c) =

√
2Ekin/Mtot, where Mtot = (2me + 2mp). To be consistent with previous

studies [4, 5] the parameters κ = 1.35 and α = 2.14 were not changed. Then, the evaluation of
the complete Lagrangian (with all fermion and boson matrix elements as given above) shows a
very consistent description of the (e-p)2 system. In the upper part of table 1 the parameters are
given together with 2Ekin/Mtot (which is in agreement with (v/c)2) and the first-order equivalent
coupling constant αgr consistent with Newton’s gravitational constant GN , see ref. [5, 7]. Further,
the root-mean square radii for bosons and fermions and the masses of the scalar and vector states
are given, which are consistent with the results in ref. [7]. For a radius < r2 >1/2= 2

3
< r2ws

>1/2

+ 1
3
< r2ψs

>1/2 the mass-radius condition Rat2g = 1 is fulfilled also.

In the second part of table 1 the average momenta multiplied with (v/c) are given together with
the boson energies and fermion masses and the energy changes from the acceleration terms for
bosons and fermions. The fact that the values of ∆Eg and x∆Ef are quite similar underlines the
consistency of the present analysis. In the lower part of the table energy-momentum conservation
is shown to be reasonably well fulfilled. In the last two columns the average boson and fermion
kinetic energy Ēkin and the average acceleration contribution ∆Ē is given. This shows that ∆Ē is
as large as about half of the kinetic energy, which indicates that in complex systems the generation
of coherent rotation of (e-p) pairs is very likely. This is confirmed by the study of galactic systems,
see sect. 3.3.

The self-consistency of the results, in which all required boundary conditions are satisfied, indicates
clearly that the Lagrangian (1) has the right structure of a fundamental bound state theory. This is
supported by the details given in fig. 1, in which the normalized wave functions and their derivatives
are given in the upper part. The radial dependence of

∑
nMng(r),

∑
n Tng(r) and B1g(r) (multiplied

7



Morsch; JAMCS, 28(3): 1-13, 2018; Article no.JAMCS.42590

Table 1. Solution of a (e-p)2 bound state from an explicit derivation of the dynamics
of the Lagrangian L, using κ = 1.35, α = 2.14, and values of b and (v/c)2 to fulfill all
above boundary conditions. The dimensional quantities b, < r2ws

>1/2 and < r2ψs
>1/2

are given in fm, the energies, masses and momenta are given in GeV. x is defined as
x =

√
2m̃/Mf or x =

√
2m̃/∆Ef , respectively.

b (v/c)2 2Ekin/Mtot αgr < r2ws
>1/2 < r2ψs

>1/2 Ms Mv

0.269 1.2 10−38 1.2 10−38 5.9 10−39 0.238 0.312 2.6 10−38 1.4 10−37

s < q2g >
1/2 (v/c) < q2f >

1/2 (v/c) Eg xMf ∆Eg x∆Ef
0 1.6±0.3 10−19 1.6±0.6 10−19 -2.3 10−19 1.6 10−19 -4.7 10−20 -5.7 10−20

1 2.3±0.5 10−19 5.4±1.0 10−19 -4.5 10−19 3.7 10−19 -9.3 10−20 -7.9 10−20

s [< q2g >
1/2 + < q2f >

1/2] (v/c) xMf − Eg
1
2
(xEkinf + Eking ) 1

2
(x∆Ef +∆Eg)

0 3.2±0.9 10−19 3.9 10−19 1.1 10−19 -5.2 10−20

1 7.7±1.5 10−19 8.2 10−19 2.2 10−19 -8.6 10−20

by r) are given in the middle part by solid, dot-dashed and dashed lines, respectively, which can
be compared to those of the matrix elements for bosons, Mg(r), T g(r) and Bg(r) (also multiplied
by r) given in the lower part. Importantly, the radial structure of

∑
nMng(r) is similar to that

of Mg(r), indicating that bosons and fermions cover the same volume, as expected. Concerning
the dynamics, the radial distributions of

∑
n Tng(r) and B1g(r) are less extended than T g(r) and

Bg(r), but lead to similar values of the kinetic energy for bosons and fermions and a similar value
of ∆Eg and x∆Ef , as expected.

3.2 Composite gravitational systems without additional condition

For systems of many (e-p) pairs (or H-atoms) the binding energy is given by Ebind = N3 ∑
i,n E

i
ng,

where N is the number of (e-p) pairs in radial direction and Eing the binding energies calculated from
the matrix elements (13). Starting from the initially phase, in with all (e-p) pairs are in random
motion with kinetic energy Ekin = N3 ∑

i,n E
Ti
ng, the acceleration term ∆E allows to change the

random motion of the (e-p) pairs to a coherent rotation. This leads to a lowering of the kinetic
energy of the system (if all particles would rotate coherently, then Ekin ∼ N

∑
i,nE

Ti
ng). By this

effect the virial theorem is broken and the strong binding energy leads to a reduction of the root
mean square radius Rrms. For smaller radii the probability of coherent rotation increases, leading to
a further decrease of the kinetic energy, which drives the system rapidly to a collapse (Rrms → 0).
Because both electrons and protons are given in the present formalism as binding states of three
massless quantons (q q̄2) and (q2 q̄), respectively (see e.g. in ref. [5]), complete annihilation of all
(e-p) pairs occurs for a reduction of the radius to Rrms ≤ ϵ (ϵ being a very small radius). This
would be the same for a system consisting of (e+p−) pairs, since positrons and antiprotons are also
given by three massless quantons (q2 q̄) and (q q̄2), respectively. However, there are two important
exceptions in the evolution of the universe, discussed below.

3.3 Stable galactic systems

The development of a coherent rotation of many H-atoms can be observed in galaxies, for which
their rotational velocities have been measured. As discussed in ref. [7] the radial dependence of the

8
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Fig. 1. Scalar fermion wave function ψs(r) and their derivatives dψs(r)/dr and

d2ψs(r)/dr
2 are given in the upper part by solid, dot-dashed and dashed lines,

respectively. The radial dependence of corresponding matrix elements (multiplied by

r) for fermions,
∑
n rMng(r) (solid line),

∑
n rTng(r) (dot-dashed line) and rB1g(r)

(dashed line), are shown in the middle and for bosons, rMg(r), rT g(r) and rBg(r), in

the lower part.

rotational velocity (for coherent rotation) is given by

vrot(rgal)

c
=

√
2 dEkins (r) rs

dr Ms

Ngal
Nr
gal

fdamp , (33)

where dEkins (r)/dr is the radial derivative of the kinetic energy of the magnetic state in sect. 3.1
given by

dEkins (r)

dr
= 2πψ2

s(r)r
3 (
dV2g(r)

dr
+
dV3g(r)

dr
) (34)

with radius rs and mass Ms. Further, Ngal is the number of (e-p) pairs, which can be different

from Nr
gal given by the geometry < r2 >

1/2
gal = Nr

gal < r2 >
1/2
s , where < r2 >

1/2
s is the rms-radius

9
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of the basic state in sect. 3.1. In addition, a strong damping of coherent rotation (given by fdamp)
has to be assumed to avoid a collapse as discussed in sect. 3.2.
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Fig. 2. Upper part: Radial dependence of the density (dot-dashed line) and the

potentials V2g(r) and V3g(r) of a galactic system with a rms-radius of 1 kpc, given by

solid and dashed lines. The vertical line gives the rms-radius of the density.

Middle part: Deduced velocity distribution (solid line). Lower part: Velocity curve

with radius fitted to the measured data of the galaxy F583-1 of ref. [10] (solid line).

The vertical dashed lines show the maximal rotation velocity.

A second condition requires that the maximum rotation velocity of galaxies is related to (v/c) of
the fundamental state by

vmax
c

= (v/c)
√
Ngal fdamp , (35)

where (v/c) is the rotation velocity of the fundamental state. By the relations (33) and (35) the
parameters δgal and fdamp are fixed, which allowed a deduction of galaxy masses [7].

The radial dependence of the calculated density, potentials and rotation curve are given for a
galactic system with a radius of 1 kpc in the upper two parts of fig. 2. A comparison is made with
rotational velocities [10] measured for the galaxy F583-1 in the lower part. This rotation curve is
typical of many low surface brightness galaxies. By scaling the radius to about 15 kpc, a rather

10
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good description of the data is obtained.

A study of different galaxies are given in ref. [7]. Importantly, a very systematic dependence of the
parameters δgal and fdamp has been found with a damping factor of coherent rotation fdamp ∼ 0.01-
0.1 (for the present case fdamp ∼ 0.1). However, the fact that rather stable systems are observed
shows also that a significant reduction of the binding energy has to be assumed. This has to be a
relic of the high density phase of the universe following the decay of a gravitational system discussed
below.

3.4 Matter-antimatter symmetric system

The present fundamental theory couples to the vacuum (Eo = 0 in eq. (14)); this allows the creation
of fermion-antifermion pairs out of the vacuum of fluctuating boson fields during overlap of boson
fields. These fermion-antifermion pairs can be bound by the potentials (8) and (9) to simple mesons,
which decay to protons and electrons (defined as matter), but also to antiprotons and positrons
(antimatter), leading to an equal number of (e− − p+) and (e+ − p−) pairs (defined as matter-
antimatter symmetric).

In the following discussion the chiral structure of leptons is essential, which is due to the handedness
of the magnetic binding (attraction perpendicular to the motion of charge, but only in one direction).
For leptons of (q+q−)nq− structure the motion is dominated by negative charge, leading to left-
handedness; for (q+q−)nq+ antileptons the motion is dominated by positive charge, giving rise to
right-handedness.

Due to the different chiral structure of the electron (left-handed) and positron (right-handed) pure
gravitational systems with electrons or positrons lead to a coherent rotation in opposite direction [5]
(the accompanying protons or antiprotons are dominated by electric binding and thus without chiral
structure). But in a system containing the same number of electrons and positrons a coherent
rotation is canceled: if in a rotation in one direction (e+p−) pairs probe an attractive potential,
the (e−p+) pairs feel a repulsive force. This leads to stabilization of the system. By continuous
creation of fermion-antifermion pairs out of the vacuum the number of bound particles increases
steadily, accumulating a tremendous mass compatible with that of the whole universe. Most likely
this process took place during the genesis of the universe.

Finally, we have to assume that this gigantic gravitational system became unstable and decayed.
A tiny distortion of the matter-antimatter equilibrium could arise due to CP-violation, a process
found in Ko decay. This distortion could eventually initiate a coherent rotation of (e+p−) pairs
with a stronger binding and a reduction in radius. However, this rotation had the opposite effect
on (e−p+) pairs: due to the opposite chirality of the electron this rotation gave rise to a lowering
of binding and an increasing radius. By further increase of coherent rotation the radius of the
(e+p−) distribution reduced further, whereas the (e−p+) pairs were pushed to larger radii, until
they could separate entirely from the (e+p−) pairs. This process could be facilitated also by the
repulsive interaction between (e+p−) and (e−p+) pairs. Then, a flip of the rotation of the (e−p+)
pairs to the opposite direction was possible, by which their interaction became also attractive (due
to its chiral structure) and led to a reduction in radius. However, the collapse of (e+p−) pairs
(antimatter) has been completed already, before Rrms(e

−p+) → ϵ. The high yield of backward
scattered annihilation photons (from the collapse of the (e+p−) pairs) led to strong heating of the
accumulated (e−p+) pairs, disintegration and radial expulsion of matter, which can be considered
as the origin of the ”Big Bang”.

Ko
2 → π+π− decays have been observed with a branching ratio of 0.20±0.04 %, see ref. [11].

11



Morsch; JAMCS, 28(3): 1-13, 2018; Article no.JAMCS.42590

By the above mechanism we can understand that the present universe exists only of matter, (e−p+)
pairs in the form of multi-hydrogen atoms and a small amount of heavier atoms, whereas the
corresponding (e+p−) pairs (antimatter) have been annihilated. The initiated high photon blast
gave rise to the known background radiation and strong expulsion of matter in radial direction. A
more detailed discussion consistent with the known facts on the cosmic high density phase shall be
given in a future paper.

As a last point, the discussed matter-antimatter symmetry and its breaking in complex systems is
clearly different from the elementary fermion-antifermion symmetry, which cannot be broken.

4 Summary

From the Lagrangian (1) dynamical matrix elements have been derived to test the bound state
character of a fundamental theory. In addition to static and kinetic energy terms an acceleration
component is found, which is spurious for fundamental states, but drives the motion of individual
particles in composite systems to a coherent motion.

An application to gravitation shows the following results:

1. A self-consistent description of a basic magnetic (e-p)2 bound state is obtained, which confirms
previous studies, in which an extremely small binding energy of about 10−38 GeV and a first-
order equivalent coupling constant in agreement with Newton’s gravitational constant GN has been
obtained. The deduced change of the kinetic energy due to the acceleration term amounts to about
50 %.

2. For composite gravitational systems this strong acceleration term drives individual (e-p) pairs
to coherent rotation. Without further conditions this leads to a collapse of the systems, followed
by complete annihilation.

3. The existence of stable galactic objects is possible only, if in addition to a coherent motion of
(e-p) pairs the binding energy is reduced. This has to arise from the decay of the early cosmic state,
see point 4.

4. For systems composed equally of (e−p+) and (e+p−) pairs a complete collapse is prevented by
the different chiral structure of electrons and positrons. We can assume that such a system has been
generated in the early universe by creation of mesons out of the vacuum of fluctuating boson fields,
which decayed equally to (e−p+) and (e+p−) pairs. Due to the matter-antimatter equilibrium a
system of an extremely large mass could be created (twice the mass of the universe). Eventually,
by a small perturbation due to CP-violation a coherent rotation in one direction could arise, which
favored attraction, collapse and annihilation of all (e+p−) pairs. The resulting high photon flux led
to strong heating, disintegration and expulsion (”Big Bang”) of the (e−p+) matter.
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