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Abstract

A linear differential equation with polynomial coefficients, which is expressed by

Lu(t) :=
∑lx
k=0

∑mx
m=0 ak,mt

m dk

dtk
u(t) = 0 for t > 0, is studied, where ak,m are constants.

In the present study, the lefthand side of the equation is rewritten as Lu(t) :=
∑lx
l=−∞D

l
tu(t),

where Dl
tu(t) =

∑lx
k=max{0,l} ak,k−lt

k−l dk
dtk

u(t), and each of Dl
tu(t) is called a block of classified

terms in Lu(t). The solution is presented by taking advantage of the expression of the differential
equation in terms of blocks of classified terms. When the differential equations is of the second
order, six differential equations with two blocks of classified terms are chosen, such that their
solutions are ordinarily expressed by the hypergeometric series, or the confluent hypergeometric
series, or other two related series, except for some special values of coefficients. It is shown that
all the other differential equations with two blocks of classified terms are reduced to one of these
six by a change of variable.
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1 Introduction

In (Morita and Sato [1, 2, 3]) the solutions of Laplace’s differential equation and of fractional
differential equation of that type were discussed, where the differential equations are expressed by

(a2t+ b2) · 0D2σ
R u(t) + (a1t+ b1) · 0Dσ

Ru(t) + (a0t+ b0)u(t) = f(t), t > 0, (1)

for σ = 1 and σ = 1/2. Here al, bl ∈ R for l ∈ Z[0,2] are constants, and 0D
lσ
R u(t) are the Riemann-

Liouville fractional derivatives [1], and their analytic continuations [2, 3]. Here R and Z are the
sets of all real numbers and all integers, respectively, and Z[a,b] = {n ∈ Z|a ≤ n ≤ b} for a, b ∈ Z
satisfying a < b. We also use C which is the set of all complex numbers, and Z>a = {n ∈ Z|n > a}
Z<a = {n ∈ Z|n < a} for a ∈ Z, and R>a = {x ∈ R|x > a} for a ∈ R.

In the present paper, we study the differential equations of order lx ∈ Z>0, with coefficients of
polynomials, which are of the form:

lx∑
k=0

∞∑
m=0

ak,mt
m dk

dtk
u(t) =

lx∑
k=0

(ak,0 + ak,1 · t+ ak,2 · t2 + ak,3 · t3 + · · · ) · d
k

dtk
u(t) = 0, t > 0, (2)

where ak,m for k ∈ Z[0,lx] and m ∈ Z>−1 are constants. We assume that a finite number of the
constants are nonzero.

In (Morita and Sato [2, 3, 4]), the solutions of special cases of Equation (1) or (2) were studied
with the aid of distribution theory and the AC-Laplace transform, that is the Laplace transform
supplemented by its analytic continuation. In the study, the following condition was adopted.
Definition of the AC-Laplace transform and the formulas are given in 5.1, and used in Section 5.2.

Condition 1.1. u(t) and f(t) in (1) are expressed as a linear combination of gν(t) = 1
Γ(ν)

tν−1 for

t > 0 and ν ∈ S, where S is a set of ν ∈ R>−M\Z<1 for some M ∈ Z>−1.

As a consequence, u(t) is expressed as follows:

u(t) =
∑
ν∈S

uν−1
1

Γ(ν)
tν−1, (3)

where uν−1 ∈ C are constants. Because of this condition, obtained solutions are expressed by a
power series of t multiplied by a power tα:

u(t) = tα
∞∑
k=0

pkt
k, (4)

where α ∈ C\Z<0, pk ∈ C and p0 6= 0.

A basic method of solving Equation (2) is to assume the solution in the form (4) with α /∈ Z<0. The
solution is obtained by determining the coefficients pk recursively; See e.g. Section 10.3 in Whittaker
and Watson [5]. We present a formulation of this method, where we use (z)k and (z)−k for z ∈ C,

k ∈ Z>−1, which denote (z)k =
∏k−1
m=0(z +m) if k ∈ Z>0, and (z)0 = 1, as usual, and

(z)−k =

k−1∏
m=0

(z −m) = (−1)k(−z)k, k ∈ Z>0, (5)
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and (z)−0 = 1.

We reassemble the terms of Equation (2) as

lx∑
l=−∞

Dl
tu(t) = 0, t > 0, (6)

where

Dl
tu(t) =

lx∑
k=max{0,l}

ak,k−l · tk−l
dk

dtk
u(t), (7)

and call Dl
tu(t) a block of classified terms. In fact, we confirm that the lefthand side of (2) is

expressed as the lefthand side of (6), by writing m = k − l in (2), as follows:

lx∑
k=0

k∑
l=−∞

ak,k−l · tk−l
dk

dtk
u(t) =

lx∑
l=−∞

lx∑
k=max{0,l}

ak,k−l · tk−l
dk

dtk
u(t). (8)

When lx = 2, Equation (6) is expressed as

D2
tu(t) +D1

tu(t) +D0
tu(t) +D−1

t u(t) +D−2
t u(t) + · · · = 0, t > 0, (9)

where

D2
t = a2,0

d2

dt2
, D1

t = a2,1t ·
d2

dt2
+ a1,0

d

dt
, D0

t = a2,2t
2 · d

2

dt2
+ a1,1t ·

d

dt
+ a0,0,

D−1
t = a2,3t

3 · d
2

dt2
+ a1,2t

2 · d
dt

+ a0,1t, D−2
t = a2,4t

4 · d
2

dt2
+ a1,3t

3 · d
dt

+ a0,2t
2, · · · .

(10)

When Dl
t is operated on tα for α ∈ C\Z, we have

Dl
tt
α = Al(α)tα−l, (11)

where

Al(α) =

lx∑
k=max{0,l}

ak,k−l · (α)−k . (12)

For Dl
t given in (10), the Al(α) satisfying (11) are given by

A2(α) =a2,0 · (α)−2 , A1(α) = a2,1 · (α)−2 + a1,0α, A0(α) = a2,2 · (α)−2 + a1,1α+ a0,0,

A−1(α) =a2,3 · (α)−2 + a1,2α+ a0,1, A−2(α) = a2,4 · (α)−2 + a1,3α+ a0,2, · · · . (13)

Theorem 1.1. Let Al(α) be given by (12), and k̃ = max{k ∈ Z[0,lx]]|ak,k−l 6= 0}. Then Al(α) is a

polynomial of degree k̃. If k̃ > 0, there exist roots of Al(α) = 0. Let kx ∈ Z>0 be the total number
of distinct roots of Al(α) = 0, which are αk for k ∈ Z[0,kx]. Then Al(α) is expressed as

Al(α) = ak̃,k̃−l

kx∏
k=1

(α− αk)mk , (14)

where mk ∈ Z>0 for k ∈ Z[1,kx] satisfy
∑kx
k=1 mk = k̃. Then we have k̃ solutions of

Dl
tu(t) = 0, (15)

which are given by tαk , and also

tαk loge t, · · · , t
αk (loge t)

mk−1, (16)

if mk ≥ 2, for k ∈ Z[1,kx]. If k̃ = 0, there exists no solution of (15).
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Remark 1.1. Equation (15) is often called Euler’s differential equation, which is reduced to a
differential equation with constant coefficients, that is

∏kx
k=1( d

dx
−αk)mky(x) = 0, by the change of

variable from t to x = loge t.

When we discuss a differential equation of order lx, we adopt the following condition.

Condition 1.2. We consider such a differential equation of order lx, that is not regarded as a
differential equation of u′(t), so that

∑∞
m=0 |alx,m| 6= 0 and

∑∞
m=0 |a0,m| 6= 0.

When only one nonzero block of classified terms exists in Equation (9), the following proposition
follows from Theorem 1.1.

Proposition 1.1. Let Al(α) for l ∈ Z<3 be given by (13), and α = α1 be a root of Al(α) = 0. Then
u(t) = tα1 is a solution of Dl

tu(t) = 0. If there exists another root α2, we have another solution
u(t) = tα2 . If not, but if l = 1 and a2,1 6= 0, or l = 0 and a2,2 6= 0, we have another solution given
by u(t) = tα1 loge t.

We now consider Equation (9) for the case in which there exist two or more nonzero blocks of
classified terms and Condition 1.2 is satisfied. Let the first two nonzero blocks be Dl

tu(t) and
Dl−mn
t u(t), and the last nonzero block be Dl−mx

t u(t), so that l ∈ Z<3 and mn,mx ∈ Z>0 satisfy
mn ≤ mx. Then (9) is expressed as

(Dl
t +

mx∑
m=mn

Dl−m
t )u(t) = 0. (17)

Remark 1.2. By (10) for lx = 2, we see that Equation (17) for l = −1,−2, . . . are equivalent to
the one for l = 0, and the differential equation for l = 1 is equivalent to the one for l = 0 when
a0,0 = 0. We note that the differential equation for l = 2 is equivalent to a special one for l = 0.
Hence we study only the differential equation for l = 0 in Section 2.2.

In Section 2, we seek those solutions of (17), that take the form of (4). In Section 2.1, we consider

Dl
tu(t) +Dl−1

t u(t) = 0, (18)

which is (17) for mn = mx = 1, where the solutions in the form of (4) are given by the generalized
hypergeometric function. In Section 2.2 and the following sections, discussion is restricted to the
case of lx = 2. In Section 2.2, we consider Equation (18) for lx = 2 and l = 0. There are six types
of differential equation, whose solutions are expressed by

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
k!(c)k

zk, 2F0(a, b; ; z) =

∞∑
k=0

(a)k(b)k
k!

zk, (19)

1F1(a; c; z) =

∞∑
k=0

(a)k
k!(c)k

zk, 0F1(; c; z) =

∞∑
k=0

1

k!(c)k
zk. (20)

The first series in (19) and (20) are the hypergeometric and the confluent hypergeometric series,
respectively.

In Section 3, we consider

Dl
tu(t) +Dl−m

t u(t) = 0, m ∈ Z>1, (21)

which is Equations (17) formn = mx = m > 1. There every differential equation under consideration
is shown to be reduced to a differential equation of the form of (18) by a change of variable.

In Section 3.1, remarks are given on the parabolic cylinder function.
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In some exceptional cases, the solution involving a logarithmic function appears. Comments are
given on a method of obtaining a solution for such a case, in Section 4.

In Morita and Sato [3, 4], a part of results given in Section 2.2 are obtained by applying the
AC-Laplace transform. In Section 5, an argument is given to show how the remaining results are
obtained by the adopted method Morita and Sato [3, 4], where some preliminary formulas of the
AC-Laplace transform are presented in Section 5.1 before the argument.

2 Basic Method of Solving Equation (17)

In this section, we seek the solution u(t) of Equation (17), assuming that the solution is expressed
by (4). In Section 4, remarks are given on solutions involving a logarithmic function.

When u(t) is given by (4), we have

Dl
tu(t) = tα−l

∞∑
k=0

Al(α+ k)pkt
k, (22)

by using (11).

Substituting (4) in (17) and using (22), we obtain

Al(α+ k)pk = 0, k ∈ Z[0,mn−1],

Al(α+ k)pk +

mx∑
m=mn

Al−m(α+ k −m)pk−m = 0, k = Z>mn−1, (23)

where we put pk = 0 for k ∈ Z<0.

Definition 2.1. Let α satisfy Al(α) = 0, p0 6= 0, pk for k ∈ Z>mn−1 satisfy (23), and pk = 0 for
k ∈ Z[1,mn−1], if mn ∈ Z>1. Then we denote u(t) given by (4), by φα(t).

We note that since p0 6= 0, Al(α) = 0 is required, and hence adopt the following condition.

Condition 2.1. There exists α satisfying Al(α) = 0.

Lemma 2.1. If Al(α) is a polynomial of α of degree 0 or 1, we have no or one solution, accordingly,
of the form (4). When lx = 2, if l = 1, a2,1 = 0 and a1,0 6= 0, or l = 0, a2,2 = 0 and a1,1 6= 0,
then we have only one solution φ0(t), the point t = 0 is called an irregular point of the differential
equation, in Section 10.3 of Whittaker and Watson [5].

Lemma 2.2. When lx = 2, if l = 2, or l = 1 and a2,1 6= 0, or l = 0 and a2,2 6= 0, the point t = 0
is called a regular point of the differential equation, in Section 10.3 of Whittaker and Watson [5].
Then we have two solutions of (17), among which those in the form (4) are as follows:

1. If Al(α) = 0 has two distinct roots, we call them α∗1 and α∗2, so that Re α∗1 ≥ Re α∗2. Then
one of the solutions is φα∗

1
(t). If α∗1 − α∗2 /∈ Z, the second one is φα∗

2
(t).

2. If Al(α) = 0 has only one root, which we call α1. Then we have a solution φα1(t).

Remark 2.1. Lemmas 2.1 and 2.2 show that α in the solutions of the form (4) are determined by
the first nonzero block of classified terms in (6) or (9). In many studies and in the following part
of the present paper, solutions are given for Equation (9) with two nonzero blocks. When we solve
a differential equation with more than two nonzero blocks in (9), knowledge of the solutions of the
differential equation which consists of the first two of the nonzero blocks is helpful.

When Equation (9) consists of two nonzero blocks of classified terms, and hence it is expressed as
(17) with mn = mx, the recursion formula (23) is simple. Many differential equations which appear
in mathematical physics are of this type.

5
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2.1 Solution of equation (18)

We now study the solutions of Equation (18), which is (17) for mn = mx = 1.

We assume that Dl
t and Dl−1

t in (18) are differential operators of order q + 1 ∈ Z>0 and p ∈ Z>−1,
respectively, and hence Al(α) and Al−1(α) defined by (11) are polynomials of degree q + 1 and p,
respectively. We express these as

Al(α) =µ

q+1∏
n=1

(α− αn),

Al−1(α) = ν

p∏
n=1

(α− βn), p ∈ Z>0, (24)

and Al−1(α) = ν if p = 0, where µ ∈ R, ν ∈ R, αn ∈ C for n ∈ Z[1,q+1], are constants, and βn ∈ C
for n ∈ Z[1,p] are constants if p ∈ Z>0.

We show that one or more of the solutions are expressed by the generalized hypergeometric series
given by

pFq(a1, · · · , ap; c1, · · · , cq; z) =

∞∑
k=0

∏p
m=1(am)k

k!
∏q
m=1(cm)k

zk, if p ∈ Z>0 and q ∈ Z>0, (25)

0Fq(; c1, · · · , cq; z) =

∞∑
k=0

1

k!
∏q
m=1(cm)k

zk, if p = 0 and q ∈ Z>0, (26)

pF0(a1, · · · , ap; ; z) =

∞∑
k=0

∏p
m=1(am)k

k!
zk, if p ∈ Z>0 and q = 0. (27)

Theorem 2.1. Let Dl
t and Dl−1

t in (18) be differential operators of order q+1 ∈ Z>0 and p ∈ Z>−1,
respectively, and Al(α) and Al−1(α) defined by (11) be expressed as (24). If n ∈ Z[1,q+1] is such
that there exists no m ∈ Z[1,q+1] for which αm − αn ∈ Z>0, then a solution of (18) is given by

φαn(t) =
{ tαnpFq(a1, · · · , ap; c1, · · · , cq;− ν

µ
t), if p ∈ Z>0 and q ∈ Z>0,

tαn0Fq(; c1, · · · , cq;− ν
µ
t), if p = 0 and q ∈ Z>0,

tαnpF0(a1, · · · , ap; ;− ν
µ
t), if p ∈ Z>0 and q = 0,

(28)

where am = αn − βm for m ∈ Z[1,p], and cm for m ∈ Z[1,q] are given by cm = αm −αn + 1 if m < n
and cm = αm+1 − αn + 1 if m ≥ n.

Proof. Substituting (4) in (18) and using (22), we obtain Al(α) = 0, and

Al(α+ k)pk +Al−1(α+ k − 1)pk−1 = 0, (29)

for k = Z>0, in place of (23). We then obtain the solution (28) of (18), by choosing α = αn and
determining pk by (29).

Corollary 2.1. If αn for n ∈ Z[1,q+1] are distinct with each other, and satisfy αn − αm /∈ Z for
every pair n,m ∈ Z[1,q+1], then we have q + 1 solutions of (18), which are given by (28).

2.2 Solution of equation (18) for lx = 2 and l = 0

From now on, we restrict the discussion to the case of lx = 2.

We introduce notation nD̃
l
t which represents Dl

t when the coefficient of tn is nonzero and those

6
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of tm for m > n are all zero. The differential equations belonging to Equation (18) for l = 0 are
classified into

2D̃
0
tu(t) + nD̃

−1
t u(t) = 0, n = 3, 2, 1, (30)

1D̃
0
tu(t) + 3D̃

−1
t u(t) = 0. (31)

We call Equation (30) for n = 3, 2 and 1 as (30-3), (30-2) and (30-1), respectively.

We use a, b and c, which satisfy a1,1 = a2,2(1 + a + b) and a0,0 = a2,2 · ab when a2,2 6= 0, and
a0,0 = a1,1 · c when a2,2 = 0 and a1,1 6= 0. Using these in (10), we obtain

2D̃
0
t =a2,2[t2 · d

2

dt2
+ (1 + a+ b)t · d

dt
+ ab], 1D̃

0
t = a1,1(t · d

dt
+ c). (32)

When a0,0 = 0, we put b = 0 and c = 0 in (32). We use ã, b̃ and c̃, which satisfy a1,2 = a2,3(1+ ã+ b̃)
and a0,1 = a2,3 · ãb̃ when a2,3 6= 0, and a0,1 = a1,2 · c̃ when a2,3 = 0 and a1,2 6= 0. Using these in
(10), we obtain

3D̃
−1
t =a2,3 · t[t2 ·

d2

dt2
+ (1 + ã+ b̃)t · d

dt
+ ãb̃], 2D̃

−1
t = a1,2 · t(t ·

d

dt
+ c̃),

1D̃
−1
t =a0,1 · t. (33)

When a0,1 = 0, we put b̃ = 0 and c̃ = 0 in the first two equations of (33). We do not consider
the case when a0,1 = 0 for the third equation in it, since we consider only the differential equation
satisfying Conditions 1.2 and 2.1.

We note that the point t = 0 is a regular point of Equation (30), and it is an irregular point of
Equation (31); see Section 10.3 in Whittaker and Watson [5].

Equation (30-3) for a0,0 = 0 is the hypergeometric differential equation, whose solutions are the
hypergeometric functions. Equation (30-2) for a0,0 = 0 is Kummer’s differential equation, whose
solutions are the confluent hypergeometric functions. Laguerre’s differential equation is a special one
of Kummer’s differential equation; see Chapter VI in Magnus and Oberhettinger [6], and Chapter
13 in Abramowitz and Stegun [7].

We write the relations corresponding to (11) for nD̃
l
t as follows:

nD̃
l
tt
α = An,l(α)tα−l. (34)

Then with the aid of (13), we obtain

A2,0(α) =a2,2(α+ a)(α+ b), A1,0(α) = a1,1(α+ c), (35)

A3,−1(α) =a2,3(α+ ã)(α+ b̃), A2,−1(α) = a1,2(α+ c̃), A1,−1(α) = a0,1. (36)

We give the solutions of the differential equations given in (30)∼(31) by applying Theorem 2.1 and
Corollary 2.1. The parameters which are used in the solution, are listed in Table 1. They are
obtained by comparing (35) and (36) with (24).

Theorem 2.2. We have the following solutions of Equations (30)∼(31).

(i). If a0,0 6= 0, a0,1 6= 0 and a− b /∈ Z, we have the pairs of solutions of (30-3), (30-2) and (30-1),
respectively, given by

φα(t) = tα · 2F1(ã+ α, b̃+ α; 1 + a+ b+ 2α;−a2,3

a2,2
t), α = −a,−b, (37)

φα(t) = tα · 1F1(c̃+ α; 1 + a+ b+ 2α;−a1,2

a2,2
t), α = −a,−b, (38)

φα(t) = tα · 0F1(; 1 + a+ b+ 2α;−a0,1

a2,2
t), α = −a,−b. (39)

7
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Table 1. The parameters, which determine the solutions in the form of (28), for
Equations (30)∼(31). × indicates that no equation is considered for a0,1 = 0 for (30-1).

a0,0 = 0 a0,0 6= 0 a0,1 = 0 a0,1 6= 0

differential equation µ q α1 α2 α1 α2 ν p β1 β2 β1 β2

(30-3) a2,2 1 0 −a −a −b a2,3 2 0 −ã −ã −b̃
(30-2) a2,2 1 0 −a −a −b a1,2 1 0 −c̃
(30-1) a2,2 1 0 −a −a −b a0,1 0 × ×
(31) a1,1 0 0 −c a2,3 2 0 −ã −ã −b̃

(ii). If a0,0 6= 0 and a0,1 6= 0, we have only one solution of (31) given by

φ−c(t) = t−c · 2F0(ã− c, b̃− c; ;−a2,3

a1,1
t). (40)

This function is a polynomial when ã− c ∈ Z<1 or b̃− c ∈ Z<1. If such is not the case, the
solution is an infinite series which has zero radius of convergence.

(iii). If a0,0 = 0, a0,1 6= 0 and −a /∈ Z, we have the pairs of solutions of (30-3), (30-2) and (30-1),
respectively, given by

φ0(t) = 2F1(ã, b̃; 1 + a;−a2,3

a2,2
t), φ−a(t) = t−a · 2F1(ã− a, b̃− a; 1− a;−a2,3

a2,2
t); (41)

φ0(t) = 1F1(c̃; 1 + a;−a1,2

a2,2
t), φ−a(t) = t−a · 1F1(c̃− a; 1− a;−a1,2

a2,2
t); (42)

φ0(t) = 0F1(; 1 + a;−a1,1

a2,2
t), φ−a(t) = t−a · 0F1(; 1− a;−a0,1

a2,2
t), (43)

which are (37)∼(39) for b = 0.

(iv). When a0,0 = 0 and a0,1 6= 0, we have only one solution of (31) given by

φ0(t) = 2F0(ã, b̃; ;−a2,3

a1,1
t), (44)

which is (40) for c = 0.

(v). If a0,0 6= 0, a0,1 = 0 and a − b /∈ Z, we have the pairs of solutions of (30-3) and (30-2),
respectively, given by (37) for b̃ = 0, and by (38) for c̃ = 0.

(vi). If a0,0 6= 0 and a0,1 = 0, we have only one solution of (31) given by (40) for b̃ = 0.

For Equation (30), α1 and α2 are given in Table 1. Remarks are given on the cases of α1 −α2 ∈ Z,
in Section 4.

2.3 Remarks on the solutions of equations (30)∼(31)
Remark 2.2. Equation (31) is equal to Equation (30-3) for a2,2 = 0. Accepting that b in (37) and
a in (41) denote

a1,1
a2,2

, we note that (i) the solution φ−a(t) given in (37) and (41), of (30-3), tend

to φ−ã(t) in (40), and to φ0(t) in (44), respectively, as a2,2 → 0, and (ii) the second factor on the
righthand side of the equation for φ−b(t) in (37) and the righthand side of the equation for φ0(t) in
(41) diverge, as a2,2 → 0.

Remark 2.3. Equation (30-2) is equal to Equation (30-3) for a2,3 = 0 and a1,2 6= 0. Accepting
that b̃ denotes

a1,2
a2,3

, we note that ã approaches c̃, and the solutions given in (37) and (41) of (30-3)

tend to the corresponding ones in (38) and (42), respectively, as a2,3 → 0.

8
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Remark 2.4. Equation (30-1) is equal to Equation (30-2) for a1,2 = 0. Considering that c̃ denotes
a0,1
a1,2

, we note that the solutions given in (38) and (42) of (30-2) tend to the corresponding ones in

(39) and (43), respectively, as a1,2 → 0.

3 Reduction of Equation (21) for lx = 2 and m > 1 to
Differential Equation of the Form of (18)

In Section 2.2, the differential equations belonging to Equation (18) for l = 0, which is Equation
(17) for l = 0 and mn = mx = 1, are classified as in Equations (30)∼(31), and the solutions in the
form of (4) are given for these equations. In the present section, we study the differential equations
belonging to Equation (21) for l = 0 and m ∈ Z>1, which are classified as in

2D̃
0
tu(t) + tm−1 · nD̃−1

t u(t) = 0, n = 3, 2, 1, (45)

1D̃
0
tu(t) + tm−1 · 3D̃−1

t u(t) = 0. (46)

Examples of (45) for m = 2 are Legendre’s, Chebyshev’s, Hermite’s and Bessel’s differential
equations for n = 3, n = 3, n = 2 and n = 1, respectively; see Chapters IV and V in Magnus
and Oberhettinger [6], p. 80 in Magnus and Oberhettinger [6] and Watson [8] respectively.

An example of (45) for m = 3 and n = 1 is Airy’s differential equation; see Section 10.4 in
Abramowitz and Stegun [7].

We show that the following lemmas hold valid.

Lemma 3.1. Equations (45)∼(46) for m = Z>1 are reduced to the corresponding equations in

2D̃
0
xy(x) + nD̃

−1
x y(x) = 0, n = 3, 2, 1, (47)

1D̃
0
xy(x) + 3D̃

−1
x y(x) = 0, (48)

by the change of variable from t to x = tm, when we put u(t) = y(x).

Lemma 3.2. Let 2D̃
0
t and 3D̃

−1
t in (45) and (46) be expressed as D0

t and D−1
t , respectively, in

(10), and ã2,2, ã1,1, ã2,3 and ã1,2 denote

ã2,2 =m2 · a2,2, ã1,1 = m(m− 1) · a2,2 +m · a1,1,

ã2,3 =m2 · a2,3, ã1,2 = m(m− 1) · a2,3 +m · a1,2. (49)

Then 2D̃
0
x in (47) is expressed by D0

t in (10) with a2,2, a1,1 and t replaced by ã2,2, ã1,1 and x,
respectively, and 1D̃

0
x in (48) is given by this 2D̃

0
x for a2,2 = 0. 3D̃

−1
x in (47) and (48) is expressed

as D−1
t in (10) with a2,3, a1,2 and t replaced by ã2,3, ã1,2 and x, respectively, and 2D̃

−1
x and 1D̃

−1
x are

given by this 3D̃
−1
x for a2,3 = 0, and for a2,3 = 0 and a1,2 = 0, respectively. In these replacements,

a0,0 and a1,1 are not changed.

Proof. We change the variable t to x = tm for m ∈ Z>1, and put u(t) = y(x). Then

d

dt
u(t) =mtm−1 · d

dx
y(x),

d2

dt2
u(t) = m(m− 1)tm−2 · d

dx
y(x) +m2t2m−2 · d

2

dx2
y(x). (50)

Theorem 3.1. Let ã2,2, ã1,1, ã2,3 and ã1,2 be given as in (49). The solutions of (47) and (48) are
obtained from the corresponding solutions φα(t) given in Theorem 2.2 of (30) and (31), by replacing
a2,2, a1,1, a2,3, a1,2 and t, by ã2,2, ã1,1, ã2,3, ã1,2 and x, respectively. We then obtain the solutions
of (45) and (46) by putting u(t) = φα(tm).

Lemmas 3.1 and 3.2 are applied to Hermite’s and Bessel’s differential equation, respectively, in
Morita and Sato [4].
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3.1 Parabolic cylinder function

The parabolic cylinder functions are the solutions of the following differential equation:

d2

dt2
u(t)∓ 1

4
t2u(t)− au(t) = 0, (51)

see Chapter VI, Section 4 in [6] and Chapter 19 in [7]. This takes the form:

(0D̃
2
t + 0D̃

0
t + 2D̃

−2
t )u(t) = 0. (52)

If we put t2 = x and u(t) = y(x), then by using (50), we obtain the equation for y(x) as follows:

4xy′′ + 2y′ ∓ 1

4
xy − ay = 0, (53)

which takes the form

(1D̃
1
x + 0D̃

0
x + 1D̃

−1
x )y(x) = 0. (54)

When the upper sign is adopted in (51), we introduce z(x) by y(x) = e±xz(x). We then see that
the function z(x) satisfies

4xz′′ + 2z′ ∓ 2xz′ ∓ 1

2
z − az = 0, (55)

which takes the form of (47).

4 Analytic Continuation of Solution

We now consider the problem of solving Bessel’s differential equation, whose complementary solutions
are the Bessel function Jn(t) and the Bessel function of the second kind Yn(t) for n ∈ Z>−1. Jn(t)
takes the form (4), and Yn(t) does not take the form (4). The argument adopted in obtaining Yn(t)
in Section 3.581 of Watson [8], is as follows.

We assume that we do not know the solution ψ0(t) of a differential equation with coefficients {cj},
but we know the solution ψδ(t) for the differential equation with coefficients {cj + δdj} for δ ∈ C. If
the solution is an analytic function of δ, and if the limit ψ0(t) = limδ→0 ψδ(t) exists, it is a solution.
In the present section, we consider Equation (18). We assume the following condition.

Condition 4.1. One of the following three conditions: (i) l = 2, (ii) l = 1 and a2,1 6= 0, and (iii)
l = 0 and a2,2 6= 0, is satisfied.

This is the condition that Al(α) given by (13) is a quadratic function of α.

Definition 4.1. Let Al(α) be a quadratic function of α. If Al(α) = 0 has two distinct roots, we
call them α∗1 and α∗2, so that Re α∗1 ≥ Re α∗2. If it has only one root, we denote it α∗1 as well as α∗2.

Proposition 4.1. Let Equation (18) satisfy Condition 4.1, and Definition 4.1 be adopted. Then
we have two solutions of the equation, one of which is φα∗

1
(t). The second one is given as follows.

(i). If Al(α) = 0 has two distinct roots, and α∗1 − α∗2 /∈ Z>−1, then the second one is φα∗
2
(t).

(ii). If Al(α) = 0 has two distinct roots, and α∗1 − α∗2 = n ∈ Z>−1, then the second one is φα∗
2
(t),

or takes of the form

φα∗
1
(t) log t+ φ∗α∗

2
(t), (56)

according to as φα∗
2
(t) is expressed as tα

∗
2 multiplied by a polynomial of degree less than n,

or not.

10
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(iii). If Al(α) = 0 has only one root, then the second solution is of the form (56).

φ∗α∗
2
(t) in (56) takes the form (4) with α = α∗2.

This proposition is a consequence of Theorem 2.1, excluding the cases when the solution in the form
(56) appears.

Remark 4.1. Solutions of the form (56) are found for the confluent hypergeometric function and
the hypergeometric function, in Sections 13.1.6 and 15.5.16∼21, respectively, of Abramowitz and
Stegun [7].

5 Solution of Equation (18) for lx = 2 by Means of the
AC-Laplace Transform

5.1 Preliminary formulas of the AC-Laplace transform

Definition 5.1. Let f(a, t) be such a function of t ∈ R>0 and a ∈ D0 ⊂ C, that

(i). f(a, t) is analytic as a function of a in the domain D0 for fixed t ∈ R>0,

(ii). the Laplace transform f̂(a, s) defined by

f̂(a, s) := L[f(a, t)] =

∫ ∞
0

f(a, t)e−stdt, (57)

exists if a ∈ D1 ⊂ D0 and is analytic as a function of a in the domain D1,

(iii). f̂(a, s) defined by (57) is analytic as a function of a in the domain D0.

Then we call the analytic continuation as a function of a of f̂(a, s) to the domain D0, the AC-Laplace
transform of f(a, t) and denote it as f̂(a, s) = LH [f(a, t] for a ∈ D0.

In Section 5.2, we study Equation (30) by using the AC-Laplace transform of u(t) expressed by

(3). We first note that the Laplace transform of gν(t) = tν−1

Γ(ν)
is given by L[gν(t)] = s−ν for

ν ∈ C satisfying Re ν > 0. We call the analytic continuation of this L[gν(t)] as a function of ν to
ν ∈ C\Z<1 the AC-Laplace transform, that is given by ĝν(s) := LH [gν(t)] = s−ν for ν ∈ C\Z<1.

As in [3, 4], we assume that u(t) satisfies Condition 1.1 and is expressed as (3). Then its AC-Laplace
transform û(s) is expressed as

û(s) =
∑
ν∈S

uν−1s
−ν . (58)

The derivative of gν(t) of order l ∈ Z>0 is calculated by

dl

dtl
gν(t) =

{
gν−l(t), ν − l ∈ C\Z<1,
0, ν − l ∈ Z<1.

(59)

The AC-Laplace transform of dl

dtl
gν(t) is given by

LH [
dl

dtl
gν(t)] = sl−ν − 〈sl−ν〉0, (60)

where

〈sl−ν〉0 =

{
sk, k = l − ν ∈ Z>−1,
0, l − ν /∈ Z>−1.

(61)
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We note here the formulas:

t · gν(t) = t · t
ν−1

Γ(ν)
= ν · tν

Γ(ν + 1)
= νgν+1(t), (62)

− d

ds
s−ν = νs−ν−1 = νLH [gν+1(t)]. (63)

By using these, we confirm that

LH [tmgν(t)] = (−1)m
dm

dsm
s−ν . (64)

By applying these formulas, we obtain

Lemma 5.1. Let m ∈ Z>0, l ∈ Z>0, u(t) be expressed by (3) and û(s) := LH [u(t)]. Then

LH [tmu(t)] = (−1)m
dm

dsm
û(s), (65)

LH [
dl

dtl
u(t)] = slû(s)− 〈slû(s)〉0, (66)

LH [tm
dl

dtl
u(t)] = (−1)m

dm

dsm
[slû(s)]− (−1)m

dm

dsm
〈slû(s)〉0, (67)

where

〈slû(s)〉0 =

l−1∑
k=0

ul−k−1s
k. (68)

In particular,

〈sû(s)〉0 = u0, 〈s2û(s)〉0 = u0s+ u1, 〈s3û(s)〉0 = u0s
2 + u1s+ u2. (69)

5.2 Solutions of equation (30) for a0,0 = 0

Equation (30-2) for a0,0 = 0 is given by Equation (5) in Morita and Sato [4], with c, a and b replaced
by 1 + a, c̃ and −a1,2

a2,2
, respectively. In [4], the AC-Laplace transform of Equation (5) in [4] is given

by (50) in [4]. The corresponding AC-Laplace transform of (30-2) for a0,0 = 0, is given by

− d

ds
[(s2 +

a1,2

a2,2
s)û(s)] + [(1 + a)s+ c̃

a1,2

a2,2
]û(s) = −au0. (70)

The differential equation is of the first order, and its complementary solution is φ̂−a(s) which is
the AC-Laplace transform of φ−a(t) given in (42). By applying the inverse AC-Laplace transform
to the obtained φ̂−a(s), we obtain the solution φ−a(t) of (30-2). In Morita and Sato [3] the other
solution is given by obtaining a particular solution of the differential equation for û(s), φ̂0(s), which
is the Laplace transform of φ0(t) given in (42). In Morita and Sato [4] after obtaining φ−a(t), φ0(t)
is obtained by using the forthcoming Lemma 5.4 for (30-2).

Equation (30-3) for a0,0 = 0 is given by Equation (10) in Morita and Sato [4], if c, a and b, t and
d
dt

are replaced by 1 + a, ã, b̃, β3t and 1
β3

d
dt

, respectively, where β3 = −a2,3
a2,2

. Corresponding to

Equation (60) in [4], the AC-Laplace transform of (30-3) for a0,0 = 0 is given by

β3
d2

ds2
[s2û(s)]− d

ds
[(s2 + β3(ã+ b̃+ 1)s)û(s)] + [(1 + a)s+ β3ãb̃]û(s) = −au0. (71)

Corresponding to Equations (11) and (12), we have (41).
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Remark 5.1. In obtaining the complementary solution of (71) by the method given in Morita and
Sato [4], we use Equation (64) in [4], where λ(λ− 1) should be replaced by λ(λ+ 1).

Equation (30-1) for a0,0 = 0 is given by putting a1,2 = 0 and a1,2 · c̃ = a0,1 in (30-2) for a0,0 = 0,
and hence the AC-Laplace transform of (30-1) for a0,0 = 0 is obtained from (70) as

− d

ds
[s2û(s)] + [(1 + a)s+

a0,1

a2,2
]û(s) = −au0. (72)

The complementary solution of this equation is

û(s) = Cs1+aeβ1s
−1

= Cs1+a
∞∑
k=0

βk1
k!
s−k, (73)

where β1 = −a0,1
a2,1

. By the inverse AC-Laplace transform, we obtain φ−a(t) given in (43), by choosing

C = Γ(1 − a). After obtaining φ−a(t), φ0(t) is obtained by using the forthcoming Lemma 5.4, for
(30-1).

5.3 Solutions of equations (30)∼(31) for a0,0 6= 0

In Morita and Sato [3, 4], we obtain the solutions (41) and (42) of the differential equation (30-3)
and (30-2) for a0,0 = 0 by the method of AC-Laplace transform. The solution (43) of the differential
equation (30-1) for a0,0 = 0 is shown to be obtained by that method at the end of last section. We
now present a method by which the solutions (37)∼ (39) for a0,0 6= 0 are obtained with the aid of
solutions (41)∼ (43) for a0,0 = 0.

In Section 2.2, we gave the solutions of Equations (30)∼(31). We now study related equations,
which are

2D̂
0
t y(t) + nD̂

−1
t y(t) = 0, n = 3, 2, 1, (74)

1D̂
0
t y(t) + 3D̂

−1
t y(t) = 0, (75)

where

2D̂
0
t = a2,2[t2 · d

2

dt2
+ (1 + 2α+ a+ b)t · d

dt
+ (α+ a)(α+ b)], 1D̂

0
t = a1,1(t · d

dt
+ α+ c),

(76)

3D̂
−1
t =a2,3t[t

2 · d
2

dt2
+ (1 + 2α+ ã+ b̃)t · d

dt
+ (α+ ã)(α+ b̃)], 2D̂

−1
t = a1,2t(t ·

d

dt
+ α+ c̃),

1D̂
−1
t =a0,1t. (77)

We call Equation (74) for n = 3, 2 and 1 as (74-3), (74-2) and (74-1), respectively.

nD̂
0
t and nD̂

−1
t given in (76) and (77) are so constructed from nD̃

0
t and nD̃

−1
t given in (32) and

(33) that the following equations hold:

nD̃
0
t [t

αy(t)] = tα · nD̂0
t y(t), nD̃

−1
t [tαy(t)] = tα · nD̂−1

t y(t). (78)

Let u(t) be the solution of (30-3) for a0,0 6= 0, and u(t) = t−ay(t). Then y(t) satisfies (74-3) for
α = −a, and then this equation is Equation (30-3) for b = 0, with ã, b̃, a and u(t) replaced by ã−a,
b̃− a, b− a and y(t), respectively. Then y(t) is given by (41) with the same replacement. Thus we
obtain the solution of (30-3) for a0,0 6= 0 by using the solution (41) for a0,0 = 0.

The following two lemmas are consequences of this type of arguments.
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Lemma 5.2. Let u3(ã, b̃, a;−a2,3
a2,2

t), u2(c̃, a;−a1,2
a2,2

t) and u1(a;−a0,1
a2,2

t) be solutions of (30-3), (30-

2) and (30-1), respectively, for the case of a0,0 = 0 and a0,1 6= 0. Then if α = −a or α = −b,
tαu3(α+ ã, α+ b̃, 2α+ a+ b;−a2,3

a2,2
t), tαu2(c̃+ α, 2α+ a+ b;−a1,2

a2,2
t) and tαu1(2α+ a+ b;−a0,1

a2,2
t),

respectively, are solutions of (30-3), (30-2) and (30-1) for a0,0 6= 0 and a0,1 6= 0.

Lemma 5.3. Let the solution of (31) for a0,0 = 0 and a0,1 6= 0 be given by u0(ã, b̃,−a2,3
a0,1

t). Then

the solution of (31) for a0,0 6= 0 and a0,1 6= 0 is given by t−cu0(ã− c, b̃− c,−a2,3
a0,1

t).

Remark 5.2. After (37) is obtained, (40) is obtained from it by Remark 2.2, and (44) is obtained
by putting ã = 0 in (40), or from (41) by Remark 2.2. When (44) is known before (40), the latter
is obtained from the former with the aid of Lemma 5.3.

By putting b = 0 and α = −a in Lemma 5.2, we obtain the following lemma.

Lemma 5.4. Let the condition in Lemma 5.2 be satisfied. Then t−au3(ã − a, b̃ − a,−a;−a2,3
a2,2

t),

t−au2(ã − a,−a;−a1,2
a2,2

t) and t−au1(−a;−a0,1
a2,2

t) are also solutions of the respective differential

equation for a0,0 = 0 and a0,1 6= 0.

In Morita and Sato [4], after obtaining φ−a(t) given in (42), φ0(t) in (42) is obtained by using this
lemma for Equation (30-2) for a0,0 = 0.

6 Conclusion

In the present paper, we express the linear differential equation with polynomial coefficients in
terms of blocks of classified terms, which are defined by (7), and by using (10) for the equations of
the second order. The equation with only one block is Euler’s differential equation, whose solution
is given in Theorem 1.1. Equation (18) expresses the equations with two adjacent blocks. Except
for special values of the coefficients, the solutions of these equations are obtained in the form of the
generalized hypergeometric series as stated in Theorem 2.1. For Equation (18) of the second order,
detailed study is presented in Section 2.2. In Section 3, for the differential equation of the second
order, with two blocks which are not adjacent with each other, the solution is shown to be obtained
from the solution of an equation with two adjacent blocks by a change of variable. In Section 4,
comments are given on the solutions involving log t.

Acknowledgement

The authors are grateful to the reviewers of this paper. Following their suggestions and advices,
the authors improved the descriptions, and added Definition 5.1 and the section of Conclusion.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Morita T, Sato K. Remarks on the solution of Laplace’s differential equation and fractional
differential equation of that type. Applied Math. 2013;4(11A):13-21.

14



Morita and Sato; JAMCS, 28(3): 1-15, 2018; Article no.JAMCS.43000

[2] Morita T, Sato K. Solution of Laplace’s differential equation and fractional differential equation
of that type. Applied Math. 2013;4(11A):26-36.

[3] Morita T, Sato K. Solution of differential equations with the aid of an analytic continuation of
Laplace transform. Applied Math. 2014;5:1209-1219.

[4] Morita T, Sato K. Solution of differential equations with polynomial coefficients with the aid of
an analytic continuation of Laplace transform. Mathematics. 2016;4(19):1-18.

[5] Whittaker ET, Watson GN. A course of modern analysis. Cambridge U.P. Cambridge; 1935.

[6] Magnus M, Oberhettinger F. Formulas and theorems for the functions of mathematical physics.
Chelsea Publ. Co., New York; 1949.

[7] Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs and
mathematical tables. Dover Publ. Inc. New York; 1972. Chapter 13.

[8] Watson GN. A treatise on the theory of Bessel functions. Cambridge U.P.,Cambridge; 1922.
——————————————————————————————————————————————–
c© 2018 Morita and Sato; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sciencedomain.org/review-history/22872

15

http://creativecommons.org/licenses/by/4.0

	Introduction
	Basic Method of Solving Equation (17)
	Solution of equation (18) 
	Solution of equation (18) for lx=2 and l=0
	Remarks on the solutions of equations (30)(31) 

	Reduction of Equation (21) for lx=2 and m>1 to Differential Equation of the Form of (18) 
	Parabolic cylinder function

	Analytic Continuation of Solution
	Solution of Equation (18) for lx=2 by Means of the AC-Laplace Transform
	 Preliminary formulas of the AC-Laplace transform
	Solutions of equation (30) for a0,0= 0
	Solutions of equations (30)(31) for a0,0=0

	 Conclusion

