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Abstract 
 

The objectives of this paper is to investigate the Cauchy problem of the type 

( ℒx)(t)				x(t)	– p(t)x(t) =	̇ f(t).				x(a) = α, tϵ[a, b]  and to  establishes  the necessary and sufficient 
conditions for it solvability if  the  nxn	matrix ρ are sum able. Thus the above equations can be re written 

as				x(t) = X(t) ∫ X���

�
(s)f(s)ds+ X(t)α . Where X is a fundamental matrix such that X(a) is the identity 

matrix,  also  can be represented as the general solution of the equation of the type ℒx = f.  So the 
studying equations can be written as a boundary value problem of linear functional differential equations 
of the form  ℒx = f, IX= 	α . The Green Operators was used to established the conditions that guarantee 
uniquely solvable bounded value problem of the type defined above. The paper also considered the case 
where the boundary value problems continuous dependence of parameters, to established conditions that 
guarantee uniquely solvability of the equations of the form ℒ�x = f, ℒ�x = α and  ℒ�x = f, ℒ�x = α.		 
With the establishment of these two arguments, the objectives of this paper was established.  
 

 
Keywords: Uniquely; solvability; cauchy problem; dependence of  parameters  and functional  equation. 
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1 Introduction 
 
The problem of Solvability of Cauchy problems of Linear Functional Differential Equations of Various 
order has been the subject of many investigations. Many Research papers and books have been devoted to 
the study of Cauchy problems of Functional Differential Equations of various degree.  Among others see the 
literature: (1) gives the Introduction to the Theory of Functional Differential Equations. It is interesting to 
note that the boundary value problem plays the same role in the theory of Functional Differential Equations 
as the Cauchy problem does in the theory of ordinary Differential Equations (2) Was on the conditions for 
optimal and unique solvability of the Cauchy problem for the first order linear Functional Differential 
Equations. (3,4 5), considered and established conditions for solvability of Cauchy problems of higher order, 
and periodic boundary value problems for Functional Differential Equations. On the other hand (6), 
Considered conditions that guarantee the stable and the unstable State of a certain Class of Delay 
Differential Equations. (7) Considered Stability of periodic solutions of non- linear Delay Differential 
Equations and established the conditions that guarantee it globally asymptotically properties. (8) gives 
sufficient conditions that guarantee unique solvability of the Dirichlet problem of second – order Functional 
Differential Equations. (9,10) , was on two – dimensional systems, and gives the sufficient conditions for 
their solvability for Linear Functional Differential Equations. 
 
In this paper, we study and established the sufficient and necessary conditions that guarantee the Unique 
Solvability of the Cauchy problem of the type algebraic form, with the matrix IX which is not equal to zero. 
Also the case when the boundary value problems are continuous dependences on parameters to established it 
Unique and bounded Solvability. My approach in this study improved on the literature as in the authors, to 
the case where more than two arguments of the studying equations were established, as in the case of one 
argument in the authors in (2,3).  
 

2  Preliminaries 
 
In this paper we  investigate  the Cauchy problem of the type 
 

(ℒ�)(�)				�(�)	– �(�)�(�) =	̇ �(�).				�(�) = �, ��[�, �]																																																																								(1.1) 
 
Which is uniquely solvable for any  � ∈ 	ℝ� and sum able f,  if   the  elements of the ���	matrix � are sum 
able. Thus, the representation of the solution of equations (1.1) is given as  
 

  �(�) = �(�) ∫ ����

�
(�)�(�)�� + �(�)�                                                                                      (1.2) 

 
Where X is a fundamental matrix such that �(�) is the identity matrix, also (1.2)  can be represented as the 
general solution of the equation of the type: 
 

ℒ� = �.                                                                                                                                        (1.2b). 
 
Therefore the boundary value problem plays the same role in the theory of functional differentials equations 
as the Cauchy problem does in the theory of ordinary differential equations. Equation (1.1) can be re written 
as a boundary value problem of the form 
 

ℒ� = �, �� = 	�                                                                                                                            (1.3) 
 
We  be  considered without the assumption that the number � of boundary conditions equal �. Denote 
� = ����	��. In the case � > 0, we may assume without loss of generality that the determinant of the rank � 
composed from the element in the left top of the matrix ��  does not become zero. We  now  choose  the 
fundamental vector as follows. In the case that � > 0, the elements �����,	�� are selected in such a way that 

1�	�� = ���, �, �, − − −, �	(���  is the kronecker symbol). If 0 ≤ � < �,  the homogeneous problem ℒ� =
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0, �� = 0	ℎ��	� − �  linearly independent solutions ������,����.  Everywhere below will be taken as a 

fundamental vector, the vector � = (��,����,��)  if � = 0,  the vector � = (��,���,��,			��,�������	)  if 

� < � < �, and the vector  � = ���,���,���		��	� = �. 
 
The question about solvability of equation (1.3), is the question about solvability of a linear algebraic system 
with the matrix ��. 
 
Let consider the case if � = � < �, the problem is solvable (but not uniquely solvable) for any ���, � =
{��, − − −, ��}	�ℝ�	. To obtain the representation of the solution in this case, we can supplement the 
functional  ��	,��,�� by additional functional ����, − − ��  such that 
 

det(����, ��)�, ���� 		≠ 0                                                                                                               (1.4) 
 
The determinant of the problem 
 

ℒ� = �,			��� = ��,−−, ��� = ��                                                                                                 (1.5) 
 
does not become zero, and therefore equation (1.3) is uniquely solvable. Using the Green operator G for 
equation (1.3), we can represent the solutions for equation (1.3) in the form of 
 

 � = �� + ∑ ���
��� �� + ∑ ��	�����

���                                                                                                (1.6) 
 
Where ��,���,���� are arbitrary constants. In all the other cases, equation (1.3) is not everywhere solvable. 
The conditions of it solvability can be obtained using the Green operators of any uniquely solvable bounded 
value problem for the equation of the form ℒ� = �. If equation (1.3) has a unique solution for each �	 ∈
�, �	 ∈ ℝ� if and only if m= n, and the det ��	 ≠ 0. And this is said to be the determinant of equation (1.3), 
which be represented as follows: 
 

�
� �
Φ Ψ

		�	�
��
��

� = 	 �
�
�
�                                                                                                                  (1.7) 

 
The operator 
 

		�
�∗ Φ∗

�∗ Ψ∗� ∶ �∗	�	(ℝ�) ∗	⟶	�∗	�		(��) ∗                                                                                  (1.8) 

 
The ad joint to equation (1.7) taking into account the isomorphism between the spaces  �∗		�			(ℝ�) ∗,  is 
given as follows: 
 

�
�∗ Φ∗

A∗ Ψ∗�	�
�
Υ
� =		     �

ℊ
��                                            (1.9) 

 
Corollary 2.1: The equation (1.7) is solvable if and only if the right –hand side {�, �} is orthogonal to all the 
solutions {�, �} of the homogeneous  ad joint  equation. 
 

�∗� + Φ∗Υ = 		0 
			�∗� + �∗ = 			0                                                                                                                      (1.10) 

 
The condition of being orthogonal has the form 
 

{�, �} + {�, �} = 0                                                                                                                       (1.11) 
 
Theorem 2.0: Let ℒ:� ⟶ �  be a Noether  operator with independent ℒ = �.  Then the  dimension of the  
kernel ℒ	 ≥ �  and also dim ker ℒ = �  if  (1.2a) is a solvable for each �	 ∈ �.    
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Theorem 2.1: The following assertions are equivalent. 
 

(a) ℝ(ℒ) = �     
(b) dim ker ℒ = �.    
(c) There exist a vector function � ∶ �	 ⇢ ℝ�  such that equations (1.3, and 1.7) are uniquely solvable 

for each �	 ∈ �, �	ℝ�.    
 
Theorem 2.2:   A linear bounded  operator  � ∶ �	 ⇢ � is a Green operator of a boundary value problem of 
(1.3) if and only if the following conditions are fulfilled. 
 

(a) G is a Noether operator, ind G = - n 
(b) Ker G = {0}     

 
Theorem 2.3: Let n be odd , let the function �	(�, �) do not decrease with respect to the second       argument, 
and let at least one of the inequalities 
 

  ∫ [�(�, �) − �(�, �)]
�

�
��	 <

(���)!

(���)���,                                                                                         (1.12)  

 

   ���	 sup[	�(�, �) − �	(�, �)] <
�!

(���)�
   �	 ∈ (�, �)                                                                    (1.13) 

 
            Hold 

  Then (ℒ�)(�)   def  �(�)	(�) + ∫ �(�)��	�(�, �) = �(�)
�

�
                                                          (1.14) 

                              Possesses  P – property. 
 
Theorem 2.4: Let �	���	�� be Green operators of the problems  
 

ℒ� = �,					�� = � 
ℒ� = �,			��� = �                                                                                                                          (1.15) 

 
Let further, X be the fundamental vector of ℒ� = 0.   
 

Then � = �� − �(��)��	���                                                                                                        (1.16) 
 
Theorem 2.5: Assume that a boundary value problem of (1.3) is uniquely solvable. 
 
 Let � ∶ � ⟶ �   be a linear bounded operator with bounded inverse ���  . The Green operator of this 
problem has the representation  
 

� = ��(� + �)                                                                                                                            (1.17) 
 
Where � ∶ � ⟶ � is compact operator iff the principal part ℚ	��ℒ may be represented in the form ℚ =
��� + �,�ℎ���	�: � ⟶ � is a compact operator.      
 

3 Proof  of the Theorems  
 
Poof of Theorem 2.1    
 
The equivalence of the assertions (a) and (b) was established in the prove of Theorem 2.0. 
 
Let dim ker ℒ = �	���	� = [I�, −−, I�) , let this system be bi orthogonal to the bases ��	, −−, ��   of the 
kernel of  ℒ:	���� = 	���, �, � = 1,−−, �,  where ��� is the kronecker symbol.  
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Then the equation (1.3) with such an I has the unique solution 
 

� = �(� − ��) + �                                                                                                                       (3.1) 

 

Where  � = (��,���,		��) and v is any solution of ℒ� = �. This is seen by taking into account that  �� = �. 
Conversely, if (1.3) is uniquely solvable for each �	���	�, one can take the solutions of the problems 

 

,ℒ� = 0, �� = 	��, �� ∈ 	ℝ�, � = 1,−−, �.                                                                                   (3.2) 

 

As the bases ��, − −, �� if the matrix (��, −−, ��) is invertible . Thus the equivalence of the assertions (b) 
and (c) is proved. This complete the proof. 

 

Proof of Theorem 2.2 

 

 Let {	�, �}:	�	�	ℝ� ⟶ �  be one –to-one mapping if G is the Green operator of equation (1.3), let G  be 
such that (a) and (b) are fulfilled. Then dim ker �∗ = �. ��	��, −−, ��  constitute a basis of ker �∗   and 
� = [��, −−, ��],      then �(�) = ker �. G is the Green operator of equation (1.3), 

 

 Where  ℒ� = 	���(� − ���) + ���,                                                                                           (3.3) 

 

��� is the inverse to � ∶ �	 ⟶ ���ℓ; 		� = ���,��	���, ��	 ∈ �, is a vector such that 

 

 �� = �; ���	� = ���,��,	��	�, ��	 ∈ � is an arbitrary vector. This complete the proof. 

 

Proof of Theorem 2.3 

 

Let �	 ∈ (�, �)	 be fixed. Consider the equation 

 

 (ℒ�(�)(�) def  �(�)(�) + ∫ �(�)��
�

�
��(�, �) = �(�), � ∈ [�, �]                                                    (3.4) 

 

The operator ℒ� is defined on the space of the functions �: [�, �] ⟶ ℝ. The boundary value problem 

 

 (ℒ��)(�) = �(�), �(�)(�) = 0, � = 0 − −, � − 1, � ∈ [�, �]                                                         (3.5) 

 

Is equivalent to the equation  � = ��� + �, where the operator ��: �[�, �] ⟶ �[�, �] is defined by  

 

 (���)(�) = 	−∫
(���)���

(���)!

�

�
{∫ �(�)��	�(�, �)}��			��[�, �], �(�) = ∫

(���)

(���)!

����

�

�

�
�(�)��              (3.6) 

 

Condition (1.12) guarantees the estimate �(��) < 1. This implies, by equation (3.5) is uniquely solvable for 
each � ∈ (�, �),	and, besides, the Green operator �� of the problem is ant isotonic. The same assertion holds 
for equation (1.13). Consequently ,any solution x of the equation  ℒ� = �, is the extension on (�, �) of a 
solution  �� of the equation  ℒ�� = �.  It follows, in particular that the conditions of Theorem 2.3 guarantee 
that the Wronskian of the fundamental system ��,��,		�� of the solutions of ℒ� = 0 has no zeros solutions. 
This implies that the solution y of the problem. 
 

ℒ� = �, �(�)(�) = �, � = 0,−−, � − 1                                                                                           (3.7) 
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Satisfies the inequality			�

��(�) − − ��(�) 0

��
(���)(�) −	− ��

(���)(�) 0

��
(�)(�) −	− ��

(�)(�) �(�)(�)

�                                              (3.8) 

= 	−�(���)(�)��	�(�, �) + �(�)

�

�

 

 
Thus, if �(�) ≥ 0		��	(�, �),  any solution x of the equation ℒ� = �  satisfies the inequality (��)(�) ≥
�(�) ≥ 0. Thus the operator P is isotonic.  This complete  the proof. 
 
Proof of Theorem 2.5 
 

Let � = �(ℚ − �)��,			ℚ = ��� + �. ������		�� = � − �. 
Then (ℚ − �)�� = 	 (��� + 	��)

�� = (1 + ���)
��� = (1 + ��)

� = � + �                              (3.9) 
 
Where H: B ⟶ � and ��: � ⟶ �	are compact operators. 
 
Conversely, if (ℚ − �)��	� + �,   then 
 

ℚ = � + (� + �)�� = � + (� + ����)����� 	= 
� + (� + ��)�

�� = 	��� + �                                                                                                       (3.10) 
 
Where  � ∶ � ⟶ �	���	��: � ⟶ � are compact operators. This complete the proof. 
 

4 Proof of the Main Results  
 
Consider the boundary value problem of the form 
 

ℒ̅	�	 = �,				ℓ̅	� = 		�                                                                                                                      (4.1) 
 
In the space ��. Since dim ker ℒ̅ = � + �, equation (4.1) may be uniquely and everywhere solvable only if 
� = � − �. But if � > � − �, it is necessary to add to � boundary conditions some more � + � − � = 0 
and equation (4.1) becomes 
 

ℒ̅	� = �,			ı̃	� = �, ı��	� = �                                                                                                            (4.2) 
 
If � + � − � > 0 are called extended boundary value  problems.  Hence ı�	� :	�� 	⟶ ℝ�����    is a linear 
bounded vector functional. 
 
Theorem 4.1 Let � = �, and let equation (1.3) be uniquely solvable, and let �� = � ⨁��. For any linear 
extensions ℒ̅ ∶ �� ⟶ �, ı ̃ ∶ 		 �� ⟶ ℝ�	��	ℒ	 ∶ � ⟶ �, ���	ℓ ∶ � ⟶ ℝ�,  there exists a vector functional  
ı�� ∶ 		�� ⟶ ℝ� such that equation (4.2) is uniquely solvable. 
 
Proof.  For any linear extension ı ̃ of vector functional ℓ, we have ��� = ��. Therefore 
 
 det ���	 ≠ 0. Let choose  ��, −−, ��		in such a way that ı ̃�� = 		0, I  = 1,−−, �. Letting  
 

�� = ��� − ∑ �����
���                                                                                                                       (4.3) 

 
For a fundamental system ��, − −,			��,			���	, −−, ��� of the solutions of the equation  ℒ̅� = 0, will introduce 

constants  ��, −−, ��,	 equation  (4.3) becomes 
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���ℓ��
�

���

�� = 	 ℓ�� ���,							� = 1, − − −, �																																																																																																				(4.4) 

 

With a determinant that is not equal to zero. Consider a system of functional  ℓ����	∶ �� ⟶ ℝı, � = 	1, −−, �, 

such that  ∆	= det	(ℓ���		���)�	�, � = 1	 ≠ 0   (4.5) 
 

Hence the determinant of equation (4.2) with ℓ�� = �ℓ����,− − −, ℓ�����  is equal to ∆.	 

	����� ≠ 0 . This complete the proof. 
 
Theorem 4.2 .  Let �� = �	⨁�� . If  equation  (1.3) has a uniquely solvable extended problem, then 
� ≥ � − � . 
 

Proof. Let  � < � − �	. ��	� = �, then � < � − �. Therefore only the case � < �  needs the proof .  Let 

ℒ	� 				���		��  be any linear extension on the space ��   of ℒ		���	ℓ  , respectively. If � = � − �,  then the 
determinant of equation (4.1), which is order m, is equal to zero because it has nonzero elements only at the 
columns corresponding to ��	, −−, ��, ��, −−, ��, ��		�	 > 0 or ��, − − −, ��.		��	� = 0, the number of such 

columns is equal to � + 	�	 < �.		���	� > � − �,	 then the determinant of equation (4.2) is equal to zero. 
Really, the cofactors of the minors of the  (� + � − �)�ℎ order composed from the elements of the rows 
corresponding to the vector functional ��� are determinants of the ��� order. These determinants are equal to 
zero. This complete the proof. 
 

5 Continuous  Dependence on Parameters 
 
Consider the sequences {ℒ�}, �ℓ���  of bounded linear operators  ℒ�:	�� − ��, ���	ℒ� = �,  and bounded 
linear vector functionals ℒ�:	�� − |��� with linearly independent components                   � = 0,1, …, we will 
assume that ℒ� −ℒ� and that  ℒ��� − ℒ���		��	�� −		��.                                        
 
Let consider the boundary value problem  
 

ℒ�� = �, ℒ�� = �																																																																																																																																										(5.1) 
 
be uniquely solvable. Consider the question about conditions which provide the unique solvability of the 
problems 
 

ℒ�� = �, ℒ�� = �																																																																																																																																										(5.2) 
 

for all � large enough and also the convergence ��

�
→��  for any sequences {��} and {��},     ��

−��, �� − ��. Here �� is the solution of the problem 
 
  ℒ�� = ��, ℒ�� = ��																																																																																																																																		(5.3).  
 
And  �� is the solution of the problem.  ℒ�� = ��, ℒ�� = ��																																																												(5.4). 

               

5.1 Preliminaries                 
 
Definition 5.1.1:  A system � = (��), � = 1, 2, …,	of linear bounded operators  ��:	�� → ��  is said to be 
connecting for �� and ��, � = 1,2, … , �� lim�→∞‖���‖�� = ‖�‖��		���	���	�	�	��. 
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Definition 5.1.2: The sequence {��}, ��	�	��, is said to be � −convergent to �	�	��, which is denoted by  

��

�
→��, if lim�→∞‖�� − ����‖�� = 0   

 
Definition 5.1.3: The sequence {��}, ��	�	��, is said to be � −compact if any of its subsequences includes 
a � −convergent sebsequence.  
 
Definition 5.1.4: The sequence {��},		is said to be �� −Convergent to ��, which is denoted by �� −��, if 
the sequence {����} is � −Convergent to ���� for any sequence {��}, �� ∈ �� , that is, � −Convergent to 
�����. 
 

5.2 Prove of the main results 
 
The following Lemma we help us to prove the main result. 
 
Lemma 5.1: ��� − ℒ�� for any ���� if and only if and only if and only if ℒ� −	ℒ�  
 
Proof. Let ℒ� −ℒ�. Since ��� −� and ����‖ℋ	�

��‖ < ∞, we have 
 

��� − ℒ�� = ℋ�
��(ℒ���� − ℋ�ℒ��) = 0																																																																																								(5.5) 

 
Conversely, let ��� − ℒ�� for any ���� and   �� −��. We have ℒ��� − ℋ�ℒ�� = ℋ����	�

���� − ℋ�ℒ�� 
= ℋ�{��(�	�

���� − ��) + (���� − ℒ���)} = 0																																																																																															(5.6) 
 
Since �	�

���� − ��, ���� − ℒ���, ����‖ℋ�‖ < ∞,			����‖��‖ < ∞.  
 
This complete the proof. 
 
Lemma 5.2: The operators Φ�  and ��  are continuously invertible (or not) simultaneously;                          

Φ	�
�� − Φ	�

�� if and only if F	�
��� − F	�

��� for  any  � ∈ �� × ℝ�.  
 
Where Φ� = [ℒ�, ℒ��

��] ∶ �� − �� × ℝ� 
           �� = [ℋ�

��ℒ���, ℒ] ∶ �� − �� × ℝ�			(Φ� = ��)																																																																																					(5.7) 
 
Proof: Simultaneous inevitability follows from the representation Φ� = Φ�����

��                 
 
Let ��

��� − ��
��� for any � ∈ �� × ℝ�	���	�� −��, ���	�� × ℝ�. We have     

 

 Φ	�
���� − ��Φ	�

���� = ����
��Φ	�

��(�� − ����) + ��(��
���� − ��

����)																																										(5.8) 
 

From here, it follows  that Φ	�
�� − Φ	�

��. Conversely, let Φ	�
�� − Φ	�

��. we have                                     

 ��
��� − ��

��� = ��
���Φ	�

��Φ�� − ��Φ	�
����. Which imply, ��

�� − ��
���. The end of the proof 

 
Theorem 5.1: Let equation (5.1) be uniquely solvable. Then equation (5.2) are uniquely solvable for all 
sufficiently large �; and for any sequences{��}, {��}, �� −��, �� − ��, the solutions �� of equations (5.3) are 
� − ���������� to the solution �� of equation (5.4) if and only if there exists a vector functional �: �� −
ℝ� such that the equation 
 

ℋ�
��ℒ���� = �, 1� = �																																																																																																																						(5.9) 

 
 Are uniquely solvable for � = 0 and all sufficiently large � for any right-hand side      {�, �}	�	�� × ℝ�  and 
also the convergence �� → �� of the solution  ����� of equations    (5.9) holds. 
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The Proof of the Main Results Theorem 5.1 
 
Let us represent the operator 
 

 [ℒ�, ��] in the form [ℒ�, ��] = [ℒ�, ���
��] + [0, �� − ���

��]																																																														(5.10)     
 
Since ℒ� −ℒ� 	���	���

��	�� − ��� if �� −��, we have 
 

 Φ� = [ℒ�, ���
��] −[ℒ�, �] = Φ�																																																																																																														(5.11) 

.  
 By virtue of lemma 5.2, there exist, for all sufficiently large �, continuous inverses 
 

 Φ�
�� = [ℒ�, ���

��]�� ∶ 	�� × ℝ� − ��																																																																																																	(5.12). 
 

And Φ�
�� --  Φ�

��. Thus, taking into account, if �� −	��	, them  ����	 	 ∥ 	�� ∥		< 			∞	. 
 
If a sequence {��} of the elements of a Banach  space  converges to �� by the norm, we will denote this fact 
henceforth by �� 	−			��	.  Condition (1) is fulfilled for the sequence {Φ�} . 
 
 Let consider the sequence of the operators  �� = [0, �� − ���

��] ∶ 
 

�� − �� × ℝ�, � = 1,2…																																																																																																																							 (5.13)  
 
 Let ��	 	− 			��  then ��			�� 	− ����   due to the assumption ( c ) of the theorem and                                                     
|��

��		�� −			��|	 =  0  since  ��
��		�� 				− 		��.		Therefore   

 
��	 	− 			��  = [ 0, �� − 	�	].                                                                                                             (5.14) 

 
If the sequence { ��	},  belong to �� ,  is bounded, from the estimate 
 

 | (	�� − 			l��
��) �� |  ≤		∥ 	�� − 	l��

�� 	 ∥	∥ 		�� 		 ∥ 	 ��	                                                                (5.15) 
 
And the boundedness in common of the norms 	∥ 	�� −  	l��

�� 	 ∥ , there follow boundedness in ℝ�  and,  
consequently , compactness of the sequence { 	�� − 	l��

�� }��  . So , the sequence  {��	�� } is Q – Compact. 
Let  consider  the case, when taken   �� as the vector functional �. In other words, the operators 
 

		��	 = �	ℋ�
��		��		��,��	�:	�� → �� × ℝ�                                                                                     (5.16) 

 

Have, for all sufficiently large k , continuous inverses 	��
��  and  ��

��		�		 −		��
��		�  for any �	 ∈ 	�� ×

ℝ�.   By virtue of lemma 5.2, it is sufficient to verify that for all sufficiently large k, the operators 
 

 	�� = 		 [	 �, ��		��
��	] ∶	 �� − �� × ℝ�                                                                                        (5.17) 

 
Have continuous inverses with  	��

�� 	−		��
��	.  We  have 

 
�� = [		 �, 	��] + [	0, ��		��

�� −		 	��	]                                                                                            (5.18) 
 
Under the condition 
 

 �� = [		 �, 	��] 				− 	 [	 �, 	��		] = 		��	                                                                                              (5.19) 
 

For � = 0 and all sufficiently large k , there exist continuous inverse  ��
�� and also 
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 	��
�� 	−	��

��	.  Further we have   
 

��	 = 		 [0, ��		��
�� −		 	��	] −		[0, 0] = 		 ��		                                                                                 (5.20) 

 

Really, if   ��	 		
�	
→ 			�� ,  then 

 

[  ��		��
�� −		 	�� ]	��	 	=  ��		��

��(��	 −	��	��	) – (	��		�� − ����		) 	= 		0                                (5.21) 
 
�� = [		ℒ�, 	��	��

��		] 			= 		�� + 		��		are  Fredholm operators and     ker 	 Φ�		 = {0}.  Thus there exist, for all 
sufficiently large k, continuous  inverse 	Φ�

��  with 	Φ�
�� 		−		Φ�

��	. 
 
This complete the proof.    
 

6 Conclusion 
 
In this paper, we established the sufficient and necessary conditions that guarantee the Unique Solvability 
and continuous dependences of parameters of Cauchy problem for a certain class of Linear Functional 
Differential Equations. Obviously, the authors in  [1,2,3,4,5,6,7,8,9 and 10 ] considered the Solvability of 
Cauchy problem of Linear Functional Differential Equations of various order. My approach and results of 
this paper improved on authors  [2,3] to  the case where more than two arguments of the studying equations 
were established. Hence , the results obtained in [1,2,3,4,5,6,7,8,9 and 10] are not the same in this paper, 
which implies that the results of this study are essentially new.  
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