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Abstract
The a:k:m-Fibonacci sequence is defined recursively by
s =kf, .. +amf,ema, @k, mn=1 . .
Fa:k:mn{fa'k'm’wrz fa'k'm’nJr_l fa'k'ri’n . We introduce the generalized a:k:m-
’ fa:k:m,l - 1'fa:k:m,2 =k

Fibonacci sequence Ha:k:m,n{ha:k:m,n+2 = khgjmn+1 + aMhgpma,n =1, with arbitrary integers
hakma and Rg.p.m 2, and study some important properties relating to the Pascal type triangle generated
from this sequence. The results are extended to negative values of k and m, an important concept which
brings on board Lehmer type sequences. Most importantly, generalized a:k:m-Fibonacci sequences
provide a means to unify ideas that are otherwise treated independently. The theory of a:k:m-Fibonacci
numbers is therefore a unification theory.

Keywords:  a:k:m-Fibonacci numbers, a:k:m-Lucas numbers; Jacobsthal numbers,; k-Fibonacci numbers;
k-Lucas numbers, k-Jacobsthal numbers; k-Pell numbers,; Lehmer type sequences.

1 Introduction

Number Theory must be understood as a branch of geometry, this perhaps was passively argued by Euclid
when he treated this important subject alongside “traditional” geometry in his famous work The Elements [1].
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Many ancient practising geometers, most of whom are known as philosophers elsewhere, including most
notably Pythagoras, allowed number to take first place in their studies and to greatly influence their systems
of belief and by extension their lives. This may sound a bit ridiculous but Pythagoras is quoted as saying in
one place, “All is number”. Livio [2] notes, “Pythagoras (ca. 572 — 497 BC) may have been the first person
who was both an influential natural philosopher and a charismatic spiritual philosopher — a scientist and a
religious thinker. In fact, he is credited with introducing the words “philosophy”, meaning love of wisdom,
and “mathematics” — the learned disciplines.”

Many numeric systems have been discovered and/or invented since times ancient. In modern mathematics
various numeric systems are being studied, including the Lucas numbers, Pell numbers, Jacobsthal numbers,
etc. see [3 — 26]. There is, however, one numeric system which seems to claim an unfair media coverage.
This system is the so-called Fibonacci sequence, the historical background of which is perhaps discussed in
an unusual context by Singh [24] stating, “What are generally referred to as the Fibonacci numbers and the
method for their formation were given by Virahanka (between A.D. 600 and 800), Gopala (prior to A.D.
1135), and Hemacandra (c. A.D. 1150), all prior to L. Fibonacci (c. A.D. 1202).” The Fibonacci numbers
are

E,=112358, .. (1.1)
generated by the recurrence relation

fae=fonnthh=fL=1n21 (1.2)

The k-Fibonacci numbers introduced by Falcon and Plaza [9] and seriously studied by other researchers [10-
23] are defined by

fensz = Kfinsr + fim nk21
&“{ fir=1Lfi,=k (1.3)

In solving quadratic equations, four types of sequences arise:

Type I

The a:k:m-Fibonacci numbers defined by

F {fa:k:m,n+2 = kfa:k:m,n+1 + amfa:k:m,n' akmnz1 (1.4)
akmn fa:k:m,l = 1' fa:k:m,Z =k ’
are introduced in [ 19] based on the solutions of the quadratic equation
ax?’—kx—m=0 (1.5)
The two parameters that we obtain are:
2
O'gf:m — k+\/k2+4am (1.6)
and
- 2
Tg:m — k—Vk“+4am (1.7)

2

k-Fibonacci numbers arise when a = m = 1 and k-Jacobsthal numbers arise when, in the notation of
equation (1.4), k = 1,am = 1. Again, in the notation of equation (1.4), k-Pell sequence is obtained when
k=2,am>=1.



Mamombe; ARJOM, 10(3): 1-12, 2018; Article no.ARJOM.42751

In this manuscript, we study the basic properties and the Pascal type triangle of the generalized a:k:m-
Fibonacci sequence defined by

Ha:k:m,n{ha:k:m,n+2 = kha:k:m,n+1 + amha:k:m,n'n =1 (1.8)

with arbitrary integers hg.j.m1 and hg.p.m . For interest’s sake the reader may extend the results to the
following types of sequences:

Type I

Ha:—k:m,n{ha:—k:m,n+2 = _kha:—k:m,n+1 + amha:—k:m,n'n =1 (1.9)
Parameters: g, <™ = w’ T = m
Type 11

Ha:k:—m.n{ha:k:—m,n+2 = kha:k:—m,n+1 - amha:k:—m,n'n 21 (1.10)
Parameters: g™ = @, Ty = Bkt

2 2

Here, Lehmer type sequences are studied e.g.
Fpgio1n = 1,1,—1,-3,-1,5,7,-3, .. (1.11)
Type IV

Ha:—k:—m,n{ha:—k:—m,n+2 = _kha:—k:—m,n+1 - amha:—k:—m,nﬂn =1 (1.12)

2 > a 2

m _ —k+Vk?-4am r-km —k—Vk%-4am

Parameters: g%~

Remark 1.1

The parameters c¥t™ and 1™ gre obtained from multiplying the solutions of the corresponding

quadratic equation by the variable a. One can work directly with the solutions as demonstrated in [19] but
the given parameters are handier.

2 Basic Properties of H .4,

In [19] these two identities are proved:

a_la-c’l(:m - a_lfa:k:m,nTg:m = mfa:k:m,n—l!n =1 (2.1)
farmn+1 = fa:k:m,nazi{:m + (Tg:m)n' nzl 2.2)

Lemma 2.1: Binet’s formula for F . ;..,, ,

k:m n_ kem\ ™
fukmn = TGl n > 1 @3
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Proof

Notice that

fa:k:m,n — fa:k:m,n+1_imfa:k:m,n—1 (24)

From equations (2.1) and (2.2), equation (2.4) becomes

] on AT .
— Uz’z"mfa:k:m,n‘*'(fg'm) _(Utllc'm) +0'(}1('mfa;k;m,n
fa:k:m,n - k

1t follows that

fa:k:m,n(k - zag:m) = (Tg:m)n - (Gg:m)n

-ma\ T Tt SR () Tt
o Y™ (o™ (k)
** Ja:kkmn k—z::f{”" o'zlzcm_lei:m

Theorem 2.1: Binet’s formula for H ;...

a(ok™)"—p(ckm)"

ha:k:m,n = Skm_km n=1 (2.5)
a a
where
h k:m
_ akm2-hg.p.m17a
- gkm (2'6)
a
h k:m
_ akm,2—hg.p.m10a
p = i akmath @.7)
a
Derivation

Having proved equation (2.3), assume there exist two constants a, such that equation (2.5) holds. It
follows that

| 1 o 2 o\ 2
b alek™) g™ _ alak™ ~p(ck™)
akm,1 — U{I;:m_,[g:m yakm,2 — Jg:m_.[g:m

Solving for a, B equations (2.6) and (2.7) are obtained.

Equation (2.5) becomes a powerful tool in proving Theorems 2.2 through 2.5.

Theorem 2.2: d’Ocagne’s Identity for H, ;..

ha:k:m,rha:k:m,n+1 - ha:k:m,nha:k:m,r+1 = (_am)naﬁfa:k:m,r—n'n =1 (2~8)
Proof

ha:k:m,rha:k:m,n+1 - ha:k:m,nha:k:m,r+1 =

<a(aéc:m)r _ [))(Tg:m)r> <a(0§:m)n+1 _ ﬁ(.[lllc:m)rwl

O'é(:m — Tg:m

a-cllc:m — Téc:m

B <a(0§:m)n _ ﬁ(rg:m)n> <a(ag:m)r+1 _ ﬁ(.[g:m)r+1>

a-cllc:m — Téc:m a-cllc:m — Tg:m
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3 aﬁ((aéc:m)r(_[g:m)n+1(_l + Uéc:m(_[g:m)—l) _ (Uéc:m)n+1(.[g:m)r(l _ (Uéc:m)—l.[g:m))
- (gkm — gkm)2

_ aB((@™) @™ (oa™ = 6™ = (a8™)" e ™) (04™ = w6™)

(O-éc:m — Tg.:m)z

(a.ollc:m)r—n _ (Tg:m r-n

— (O.k:mrk:m)naﬂ ‘ ‘
a a o—&c.m — Tg.m

= (—am)" aB fo.pemr—n
Theorem 2.3: Catalan’s Identity for H.;..,
hasemn = Rakmnirhaxmn—r = (=am)" T @B fdm - n = 1 2.9)
Proof

2 —
ha:k:m,n - ha:k:m,n+rha:k:m,n—r -

Gé{:m — Tét:m o—é{:m — Tg:m o—éc:m — -L—Ac:m

<a(o.ollc:m)n _ ‘B(Téc:m)n>z B <a(o.cllc:m)n+r _ ‘B(Téc:m)n+r> <a(o.éc:m)n—r _ ‘B(Tg:m)n—r>

3 aﬁ((o.cllczm)n+r(.rg:m)n—r + (o.cllczm)n—r(.rg:m)n+r _ Z(O.éc:m)n(.[g:m)n)

(O-éc:m _ Tg.:m)z

:m)Zr _ z(ag:m)r(_[g:m)r + (Tg:m)Zr

k
:mrgzm)n—raﬁ ((O‘a
(O-Cllc.m — Tg.m)z

= (ok

= (_am)n_raﬁfaz:k:m,r

The new identities proved in theorems 2.4 and 2.5 transform Hg.p.pmp t0 Fopmpn. This means the self-
referential character of F.j., , under the transformation.

Theorem 2.4

amhz- - +h2- . —hak: O(h km2n+2+aMhgkm 2 )
akmnthakmn+1—ha a?;r a:k:m,2n L = fakmanspt = 1 (2.10)

Proof

2 2
amha:k:m,n + ha:k:m,n+1 - ha:k:m,o (ha:k:m,2n+2 + amhu:k:m,Zn) _

ap
1 [ <a(o.éc:m)n _ ﬂ(_[g:m)n>2 <a(aéc:m)n+1 _ ﬂ(‘rg:m)n+1>2
—lam +

aB a-éc:m — Tg:m

O'Jf:m — Tg:m

a(o'c’f:m)o _ ﬁ(rg:m)O) ((a(ag:m)2n+2 _ B(Tg:m)2n+2>

( O-t;.c:m — Ttllc:m O'é(:m — Tg:m

kmy2n __ k:my2n
+am<“("“ )*" — BEE™) ))]

U&{:m — Tg:m
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B _Zam(aéc:m)n(_[g:m)n _ z(ag:m)n+1(.[g:m)n+1 + (Ug:m)2n+2 + (ngm)2n+2 + am(ag:m)Zn + am(Ttlzc:m)Zn

- (O-Lllc:m _ Téc:m)z

3 _Z(G&c:m)n(.[g:m)n(am + O.éc:m.[g:m) + (Gg:m)2n+1(o.éc:m + am(o.éc:m)—l) + (Tg:m)2n+1(.[l‘;:m + am(rg:m)—l)

- (O.(;(:m _.[.g:m)2

(Jg:m)2n+1(0§:m _ Tg:m) _ (Tg:m)sz'l(Uéf:m _ Tg:m)

- (O-Cllc:m _ Tg:m)z

(ngm)2n+1 _ (Tg:m)2n+1

a-éc:m _ Tac:m
= fa:k:m,2n+1
Theorem 2.5

2
2amhg.e:mnhakemn+1+khgemne1—akmo(Rakm 2n+3tamhakm,an+1

ap

= fa:k:m,2n+2'n =1 (2.11)
Proof
2an’lh'a:k:m,nha:k:m,n+1 + khz:k:m,n+1 - ha:k:m,o(ha:k:m,2n+3 + amha:k:m,2n+1 _

ap
1 a(aéczm)n _ ﬁ(.[g:m)n a(aéc:m)n+1 _ ﬁ(.[g:m)n+1 a(aéc:m)n+1 _ ﬁ(.[g:m)n+1 2
o I il )

acll(:m — T&c:m Ucllc:m — Téc:m acll(:m — Tg:m

O'é(:m _ Tg:m o-éc:m _ Tg:m

km\2n+1 _ k:my2n+1
Cam (a(aa ) BGE™) >)]

~ <a(o.cllc:m)0 _ ﬁ(Tg:m)o> ((a(agf:m)z"” _ﬁ(.[g:m)zma)

a-cllczm — Tg:m

3 _Zkam(o.éc:m)n(.[g:m)n _ Zk(o.éc:m)n+1(.[g:m)n+1 + (Gg:m)2n+3 + (Tg:m)2n+3 + am(ag:m)2n+1 + am(.[g:m)ZnH

- (U&“m _.[.gzm)2

3 —Zk(aé“m)n(rf{’m)"(am + o.é'c:m.[g:m) + (Ug:m)2n+2(o.llzc:m + am(o.éc:m)—l) + (ngm)2n+2(rg:m + am(.[g:m)—l)

(Gg:m _ .L.g:m)z

B (Jg:m)2n+2 (O.g:m — Tg:m) — (Tg:m)2n+2(o.§:m — Tg:m)

- (U&“m _.[.gzm)2

(Gg:m)2n+2 _ (Tg:m)2n+2

Uz’z(:m _ ‘L'g:m
= fa:k:m,2n+2

3 Pascal Type Triangles for H ;..,,

Pascal’s numerical triangle has been widely studied and has influenced a lot of research and related work,
see e.g [27-32]. Belbachir and Szalay [30] present an important literature review on the Pascal triangle. In
this section, we state the construction rules and analyse the H,.;..,, , —Pascal triangle. We are interested in
the summations of row and diagonal entries. Wells [31] gives proofs for the row and diagonal entries for the
Pascal triangle.
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3.1 Construction

Row 1: hy
Rown = 2:

n elements are in row n. Let these elements be denoted pi,p,, 3, ... Pn. Let elements in row n — 1 be

denoted q4, 42, q3, - Gn—1-

p1 = k" %hy, p, = (am)"'hy
Let2<j<n-1

pj = amq;_; + kq;

Table 3.1 gives the first four rows of the triangle so constructed.

Table 3.1 H,.;..,, , —Pascal Triangle

hy
h, amhy
kh, amh, + kamh, (am)?hy
k?h, 2kamh, + k*amh, 2k(am)?h, + (am)?h, (am)?h,

3.2 Analysis
Theorem 3.1
Let t,, be the sum of entries in the n'™ row of the Hy.j.m n —Pascal Triangle.

t, = (amh; + hy)(k + am)*24,n =2 (3.1
Proof
From the construction, it is deduced that

= Y k2 (am) ™ + by 5023 (" - ) k2 (am),n 2 2 (3.2)

We provide proof by induction.

Base case: n = 2,
hy (8) am + h, (8) = hyam + h,

which is true.

Inductive Hypothesis: Since formula holds for n = 1, assume it holds for arbitrary n = i = 1, that is,

ha iz (1 2) R am) o+ hy T (U 2) KT R am)” = (amhy + h) (K + am) R i 2 2

(3.3)

Inductive Conclusion: Formula must be shown to hold for n = i + 1, that is,

hy 3ih (! - DY kt=r=1(amyr+1 + b, b (* N D kir=1(am)r = (amhy + h)(k + am)1iz2  (3.4)
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We have that

(amhy + hy)(k + am)*=t = (amh, + h,)(k + am) =2 (k + am)

-2 i-2
Z kl r— 1(am)r+1 +h Z kl T— 1(am)r +h12( rz) ki—r—Z(am)r+2
prsr r=0
i-2
i—2 i-r-2 r+1
+h22( - )k (am)
r=0
i-1 .
— h1Z(l )kl ™1(gm)™* + h, z kl ™1(gm)"
r=0

Proofis completed.
Theorem 3.2
Let d,, be the sum of entries in the n™ rising diagonal of the Hg.je.mn —Pascal Triangle.
dy,=h,n=>1 (3.5
Proof
Forn = 1,2 it is straightforward that d,, = h,,.

From the construction, it is deduced that

n-3 e n-3 o
dy=h 3%, (" 7T ) kn-2r=2(amyr 1 + by 5,7 (" r 2) kn=2r=2(am)", odd n > 3 (3.6)
n-4 I n-2 o
dn=h Y%, (n : 3) k23 (am)™ 1 + hy B2 (n : 2) k" 2""2(am)",evenn > 4 (3.7

Scenario I: odd n
We proceed by induction.

Base case: n = 3,
ds = h (8) am + h, (é)k = amh, + khy = hy

Inductive Hypothesis: Since formula holds for n = 1, assume it holds for arbitrary n = i = 1, that is,

i-3
2

-3
2

hy = h, Z (‘- - 3) k=273 (am)™+ + b, Z (‘- - 2) Ki=2=2(am)", 0dd i = 3,
=0

=0
= i1
2 2
hiwy = Ry Z (‘7o 2) Kim272(@m)™1 + b, Z (77" 1) ki=2"~1(gm)",0dd i > 3

=0 =0
Inductive Conclusion: Formula must be shown to hold forn = i + 1, that is,
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i-1 i-1
2 2

hivy = hy Z (‘- - 1) Kim27=1(am)™ + b, Z (* N ") k2 (am)T,0dd i 2 3
=0 =0

Notice that hi, = kh;,, + amh;

w

i- i-1

2
=h, (l _7;_ 2) ki=2m=1(am)™+1 + h, Z (l _7;_ 1) ki=2" (am)”
=0

l"‘l

r=0 i X
+hy Z (l - 7;_ 3) k=23 (am)™? + h, Z (l - 7;_ 2) ki=27=2 (gm)7+1
r=0 r=0
[ =
2 .
=h, (l - rr_ 1) k2" Y(am) ™ + h, Z k‘ 2T (am)”

r

1]
o

Formula is true.

Scenario Il: even n

We proceed by induction.

Base case: n = 4,
d, = h ((1)) kam + h, ((2)) k% + hy (1) am = kamh, + k*hy + amh, = khs + amh, = h,

Inductive Hypothesis: Since formula holds for n = 1, assume it holds for arbitrary n = i = 1, that is,

i-4 i—

N

M~|

h; =h, (i - )kL r=3(am)™*! + h, ( - 7;_ 2) ki=2m2(am)", even i = 4,

0

ﬂ
Il
(=]
=
]

i— i—

N
N
N

Riyy = hlz (i - ; )kL r=2(am)™*! + h, ( _7;_ 1) k=" Y(am)",eveni > 4

r=0 r=0

Inductive Conclusion: Formula must be shown to hold for n = i + 1, that is,

i-2 i
2

hiyp = hlz (i _; 1) k=2 Y (am)™ + h, Z k’ (am)", eveni = 4

r=0
We have that h;, = kh;,1 + amh;

i—

_2
=h, (i - :_ 2) kim2r=1(qm)"*! + h, Z kl. 2 (qm)"

[N
N

Il
o

T

]

i-4 i-
2

+hy Z (i - 7;— 3) Ki=273 (am)T+2 + h (i - 77:— 2) ki=2r=2 (gm)T+1

r=0 T

Nl

Il
(=]
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N|
NI

Y (a3 ()

Proofis completed.

Corollary 3.1

Let the sum of entries in n" falling diagonal be denoted d,. The formula d,,,, = amd,,, + kd,,n = 2,
holds.

4 Conclusion

It is interesting and especially important that the concept of this manuscript provides a means to treat the
widely and independently studied sequences e.g. k-Fibonacci, k-Jacobsthal, and k-Pell, in a unified
theoretical framework. For instance, Theorem 2.2 gives d’Ocagne’s identity valid for k-Fibonacci, k-
Jacobsthal, k-Pell, etc. sequences. The theory of a:k:m-Fibonacci sequences is, therefore, a unification
theory. We particularly find Theorems 2.4 and 2.5 on the transformation of Hgpmn 0 Fapann
demonstrating the self-referential character of the latter under the transformation, and the construction and
analysis of the Pascal type triangles in Section 3, adding new knowledge to the field in the long term.
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