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ABSTRACT 
 
Aims: To elucidate the anticoccidial potential of antimicrobial peptides from Xenorhabdus 
budapestensis on both causative pathogens (prokaryotic Clostridium perfringens and eukaryotic 
Eimeria tenella).  
Objectives: (1) To establish if the antimicrobial compounds of the cell-free culture media (CFCM) of 
the entomopathogenic symbiotic bacterium species, X. budapestensis DSM 16342 (EMA) and X. 
szentirmaii DSM 16338 (EMC) were active against 13 independent pathogenic isolates of 
Clostridium perfringens in vitro; (2) To create a sterile, autoclaved, bio-preparation called 
“XENOFOOD”, for future in vivo feeding studies, aimed at determining the efficacy, and side-effects, 
of EMA and EMC on C. perfringens in chickens. 
Study Design: Clostridium perfringens samples (LH-1-LH24) were collected from chickens and 
turkeys, and were deposited in the frozen stock collection of Department of Microbiology and 
Infectious Diseases, Faculty of Veterinary Science, Szent István University, Budapest, Hungary, 
where the in vitro assays were carried out on 13 of these isolates. 
Place and Duration of Study: Department of Microbiology and Infectious Diseases, Faculty of 
Veterinary Science, Szent István University, Budapest, Hungary between September 2013 and 
February 2014. 
Methodology: Adaptation of our previously published in vitro bioassays for aerobic tests for the 
anaerobic bacteria Clostridium perfringens. When preparing “XENOFOOD” we benefitted from our 
experimental data about the heat tolerance and endurance to proteolytic enzymatic digestion of the 
studied antimicrobial peptides. 
Results: The studied antimicrobial peptides were heat-stable, trypsin and pepsin resistant. All but 
one of 13 C. perfringens isolates was sensitive to EMA-CFCM. XENOFOOD (made here) is not 
toxic for chicken, (unpublished).  
Conclusion: Since these cell-free cultures killed E. tenella cells, but were toxic to permanent 
chicken liver (LMH) cells, we need to run in vivo feeding tests to determine the gastrointestinal 
(ileac), anti-Clostridium and anti-Eimeria biological effects of the these heat, - and proteolysis 
tolerant antimicrobial peptides. 
 

 

Keywords: Clostridium perfringens; Xenorhabdus antimicrobial peptides; in-vitro bioassay; 
XENOFOOD. 

 

1. INTRODUCTION  
 

Multi-drug resistance (MDR) has gradually been 
increasing in both Gram-positive [1] and Gram-
negative [2] pathogenic bacterium species. MDR 
has always been a phenotypic consequence of 
sequential accumulation of simultaneously 
appearing mutations, or the up-take of resistance 
plasmids harboring mobile genetic elements or 
genomic islands with resistance genes. These 
encode for either enzymes capable of destructing 
the antibiotics, or catalyzing biochemical 
reactions resulting in inhibition of either binding 
to, or permeation through, the cellular membrane 
(CM). The poultry gastro-intestinal (GI) flora is a 
seed-bed of MDR, as shown by the spectacular 
on-going evolution in Enterococcus [3,4,5], in 
Clostridium [6], as well as in Salmonella genera 
[7]. The explanation is that the poultry GI is an 

ideal “market place” for exchange and 
horizontally transferring resistance gene –
carrying plasmids, and mobile genetic elements, 
between coexisting bacteria. Enterococcus 
cecorum, for instance, once a simple commensal 
member of the intestinal microbiota, has become 
the causative pathogen of arthritis and 
osteomyelitis worldwide in chickens, such as in 
Hungary [8] and Poland [9]. Evidences of 
multidrug-resistant plasmid transfer from Gram 
positive [10] and Gram negative [11,12] chicken 
pathogens via consumed chicken meat to human 
pathogens, has been accumulating. Apart from 
the veterinary aspects, this horizontal gene 
transfer is of critical clinical importance. 
 
The anaerobic, Gram-positive, C. perfringens 
was first published as a globally threatening 
danger by Van Immerseel and his associates, 
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[13] as the causative pathogen of necrotic 
enteritis. Since then it has become alarming from 
both veterinary and human clinical aspects. The 
incidence of C. perfringens-associated necrotic 
enteritis in poultry has also increased in countries 
that stopped using antibiotic growth promoters. 
Both the disease and its subclinical forms are 
caused by C. perfringens type A strains, which 
produce either the alpha toxin, (to a lesser extent 
type C), or both alpha and beta toxins [14]. A few 
C. perfringens type A isolates produce an 
enterotoxin at sporulation as well, causing 
disease in humans, [14].  
 
As for the pathogenesis of necrotic enteritis in 
chickens [15], it is a result of a “joint venture” the 
eukaryotic Eimeria species and C. perfringens, 
[16,17]. The lesions and damages in the gut wall 
tissues (mainly in the lamina muscularis 
mucosae and in the lamina mucosa) provide 
anaerobic conditions needed for propagation of 
the toxin-producing Clostridium, especially in the 
ileum. The Eimeria (most frequently) tenella 
infection is usually preceded by previous 
unfavorable changes in the GI biota. The latter 
might be an indirect consequence of non-
appropriate diets which increases the viscosity of 
the intestinal contents and makes it predisposed 
to necrotic enteritis [15]. This important discovery 
provides an opportunity for nutrient scientists to 
help reduce Clostridium infections. In other 
words, the discovery that the gastrointestinal 
microbiota could significantly be restructured               
by nutritional factors, provides additional 
opportunities for nutrition scientists working on 
the problem of coccidiosis [18,19] or similar 
problems such as Campylobacter jejuni, [20].  
 
Clostridium perfringens type A cells release 
different toxins that causing diseases not only in 
chickens, but also in humans.  One of them, the 
necrotic enteritis B-like toxin (NetB), is a β-barrel 
pore-forming one, which used to be a candidate 
vaccine [21]. Another one, called perfringolysin O 
(PFO, also called θ toxin), is a pore-forming 
cholesterol-dependent cytolysin (CDC) [22].     
PFO is secreted as a water-soluble monomer 
that recognizes and binds membranes via 
cholesterol. Membrane-bound monomer 
molecules undergo chemical structural changes 
that culminate in the formation of an oligomerized 
pre-pore complex on the membrane surface [22]. 
The pre-pore then undergoes conversion into the 
bilayer-spanning pore, playing an important role 
in so-called gas gangrene progression and 
necro-hemorrhagic enteritis in some mammals 
[22].  

Clostridium perfringens strains which were 
isolated from epidemic outbreaks of necrotic 
enteritis, and were capable of secreting factors 
that inhibit growth of other (competitor) C. 
perfringens strains, including those isolated from 
the guts of healthy chickens [23]. This feature 
lends a selective virtue to respective NetB-toxin 
producing virulent strains, the causative factor of 
gut lesions. The factor providing this selective 
virtue to the virulent strains is a novel, 
chromosomally encoded, heat-labile, trypsin - 
and proteinase-K sensitive protein with 
bacteriocin activity called perfrin [23]. The gene, 
which can only be found in C. perfringens NetB 
strains and nowhere else, (despite the fact that 
the NetB is a plasmid encoded toxin), could be 
transferred to and expressed in E. coli. 
Theoretically, it may also happen in the chicken 
GI at any time, and the recombinant gene 
product is antibacterial active at a large pH range 
[23].   
 
Several data from the literature seem to support 
our opinion that although vaccination is an 
effective, but probably not an omnipotent, 
veterinary tool for controlling Gram-positive MDR 
pathogens such as Clostridia. The vaccination 
projects involving Enterococcus seem to be in a 
promising, but only very experimental stage [24]. 
(None of the seven respective publications have 
recently been available in PubMed include 
anything on poultry).   
 
As for Clostridia, the vaccination of chickens 
against the fatal human pathogen type C 
(causing botulism), have fortunately been 
successful [25]. The vaccination against C. 
perfringens however, although seeming to be not 
too far from realization, but maybe not in the near 
future. The immunization with NetB genetic, or 
formaldehyde toxoids, seemed to be the most 
plausible approach [26], but only the double 
vaccination (on 3 and 12 days, with crude 
supernatant), were effective. Immunization with a 
single toxin molecule did not give satisfactory 
protection to chickens against necrotic enteritis 
lesions, which probably is not a realistic option 
for practical application [27]. 
 
This observation led Professor Dr. Van 
Immersee (Universiteit Gent, Belgium) and his 
associates to the conclusion that “immunization 
with single proteins is not protective against 
severe challenge. Therefore combinations of 
different antigens are needed as alternative. In 
most published studies multiple dosage 
vaccination regimens were used. It is not a 
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relevant way for practical use in the broiler 
industry”, [28]. Some other less pessimistic 
reports, such as suggesting the use of C. 
perfringens recombinant proteins in combination 
with Montanide™ ISA 71 VG adjuvant as a 
vaccine [29] or anticoccidial live vaccine [30] 
have been noted. Nevertheless, we think that 
we’d better to accept the opinion of the Expert #1 
in that research field: the vaccination against 
avian C. perfringens type A strains in broiler 
chicken is not yet available [28].  
 

Consequently, there is a room for working on 
novel antimicrobials, especially on novel 
antimicrobial peptides which might be used to 
control C. perfringens A and also MDR 
pathogens in the GI system of broiler chickens. 
This approach needs a comprehensive strategy, 
based on Quantitative Structure – Activity 
Relation (QSAR) analysis and in silico modeling 
[31]. Chemical synthesis of modified analogs 
leading to new antimicrobial agents with novel 
modes of action should follow the molecular 
design to get new antimicrobial peptides, [31]. 
The structural design of AMP candidate 
molecules has aimed at improving endurance to 
proteolytic degradation, binding to, and the 
penetration through cellular membranes and 
other biological barriers [32]. This can be 
achieved by adding modules for passive or active 
transport [32]. Another approach is searching for 
efficient synergisms [33]. 
 

Another (ever-green) alternative research line is 
to search for new antimicrobials of completely 
novel modes of action in nature. Our research 
team has been searching for novel 
antimicrobials, which are not used in human 
medicine, are toxic only for chicken pathogens, 
but not toxic for the organisms to be protected. 
We expect to find the best candidates among     
the natural antimicrobial peptides (AMPs), 
synthesized by the obligate bacterial symbionts 
(EPB) of entomopathogenic nematodes (EPN) 
[34]. These EPB-released AMPs are evolutionary 
products developed under severe selective 
pressure, and comprise a powerful chemical 
arsenal against a large scale of prokaryotic and 
eukaryotic organisms. They provide monoxenic 
conditions for a given respective EPN / EPB 
symbiotic complex in polyxenic (insect gut, soil) 
conditions. Many EPN-EPB complexes exist, and 
many AMP profiles could be determined. 
Considering that all but one [35] of the known 
AMPs can be produced by the bacterium in vitro, 
the EPN/EPB complexes provide a gold mine for 
researchers interested in new antimicrobials. The 
majority of EPB-produced AMPs were identified 

in the last 15 years [36,37,38,39]. Each of these 
evolutionarily designed antibiotic arsenals has 
effectively overcome intruders representing a full 
scale of antibiotic resistance repertoire in their 
respective niche. Each EPB-AMP discovered              
so far is a non-ribosomal peptide (NRP), 
synthesized by multi-enzyme thiotemplate 
mechanisms, using non-ribosomal peptide 
synthetases (NRPS), fatty acid synthases (FAS), 
and / or related polyketide synthases  (PKS), or a 
hybrid biosynthesis thereof [40]. The biosynthetic 
enzymes are encoded by gene clusters [41], 
determining the biosynthetic pathways.  
 

Cabanilasin, from X. cabanillasii, exerts of a 
strong antifungal activity [42]. In our experiments, 
the cell-free culture media (CFCM) of X. 
cabanillasii was also extremely toxic to 
Staphylococcus aureus, Escherichia coli and 
Klebsiella pneumoniae, isolated from cows with 
mastitis syndromes [43]. In that experiment, the 
antibacterial activities of the CFCM of several 
Xenorhabdus species were compared.  
 

We found that and those of X. budapestensis   
DSM 16342 (EMA), and X. szentirmaii DSM 
16338 (EMC) [44] proved far the best. The 
CFCM of EMA and EMC were also effective 
against S. aureus MRSA, (Fodor, McGwire and 
Kulkarni, unpublished). Furthermore, the CFCM 
from EMA and EMC also was effective against 
plant pathogens, including both prokaryotic 
Erwinia amylovora, E. carotavora, Clavibacter 
michigenense and several Xanthomonas species 
[45,46,47] and all tested eukaryotic Oomycetes 
(Phytophthora) species [42] (Muvevi et al., 
unpublished). Gualtieri confirmed our data, 
declaring that X. szentirmaii DSM16338 (EMC) 
was really a source of antimicrobial compounds 
of great potential, and he sequenced this strain 
[48]. One of the products (szentiamide) has been 
chemically synthesized [49].  
 

We suppose that these antimicrobial peptides act 
in concert. The idea of a preparing a bio-product 
for oral administration to via chicken food, 
(“XENOFOOD”), is based on the intention to 
benefit from the joint action of cooperating AMP 
molecules produced by EMA and EMC cells, not 
only on a single molecule. We know that the 
strongest, predominant antibacterial peptide 
produced by both EMA and EMC species is 
fabclavine [50,51], but there are also others 
acting on eukaryotic pathogens as well, 
especially in EMC [48,49]. (This is the 
explanation why we did not use only EMA CFCM 
alone, but a mixture of EMA and EMC CFCM 
instead in this experiment reported here).  
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Many of our experiments with EMA were 
repeated in the laboratory of Professor Helge B 
Bode (Goethe-Universität, Frankfurt – am – 
Main, Germany). They confirmed that EMA 
CFCM exhibited broad-spectrum bioactivity 
against Bacillus subtilis, E. coli, Micrococcus 
luteus, Plasmodium falciparum, Saccharomyces 
cerevisiae, Trypanosoma brucei, and T. cruzi 
[51] as well. They subjected the CFCM from X. 
budapestensis to MALDI-MS analysis and found 
altogether 4 isomers of fabclavine, one of which 
was then purified, and its structure was 
determined. The details of biosynthesis were 
impressively reconstructed by the authors, but no 
data about the mode of action has been 
published so far [51]. Fabclavines are considered 
a novel class of biosynthesized hybrid peptide–
polyketide-polyamino natural compounds with 
extremely high antimicrobial potential in both 
prokaryotic and eukaryotic pathogen targets, but 
also with unwanted eukaryotic cell-toxicity. They 
are unambiguously the most effective 
antimicrobial Xenorhabdus peptide-products that 
have ever been discovered, and they are 
released by X. budapestensis and X. szentirmaii 
[44]. (This is a spectacular example of present-
day science, when on group of scientists are 
“sowing” while the other ones are “harvesting”).  
 

We tested CFCM of EMA and EMC were in 2009 
in the McGwire laboratory (Ohio State University, 
Columbus, OH, USA) against different targets, 
and found that, similarly to several other 
antimicrobial peptides [52,53] they exerted 
apoptotic effects on eukaryotic cells of 
Leichmania donovanii. They were also active 
against Candida sp., and Phytophthora infestans 
(A. Fodor et al., unpublished).  
 

Considering that not only prokaryotic, but 
eukaryotic pathogens also exist, we decided to 
continue the “EMA-EMC” project. Coccidiosis is 
the best example of when a prokaryotic and a 
eukaryotic pathogen act together. Dr. Petra 
Ganas tested both CFCMs on a permanent 
chicken liver cell line at the Vet Med            
University of Vienna, Austria, and found them 
toxic to the tissue cultures (Ganas, personal 
communication, for details, see Discussion), 
even if the toxic cell concentration was 1 order of 
magnitude higher than the bactericide 
concentration. These data, and the identification 
of the most active component (fabclavine), might 
seem discouraging for the continuation of the 
project.  
 

However, considering the presence of multidrug 
resistance, and even pan-resistance, problems in 

the GI system of broiler chicken, which may also 
threaten human health, and the limitation of 
vaccinations, we reconsidered it as a potential 
tool, on the prospects that orally applied 
compounds would not be absorbed into the meat 
of broiler chickens. Prior to in vivo feeding tests 
we carried out the in vitro bioassays presented 
here, and formulated a chicken food, Xenofood, 
to test in the in vivo tests. From this aspect, we 
believe that the results of this in vivo    
experiment are worthwhile, and our conclusions 
will be taken into consideration by coccidiosis 
specialists. 
 

2. MATERIALS AND METHODS  
 
2.1 Bacterium Strains 
  
Clostridium perfringens NCAIM 1417 strain was 
obtained from the National Collection of 
Agricultural and Industrial Microorganisms –
WIPO (of Hungary, Faculty of Food Sciences, 
Szent István University Somlói út 14-16 1118 
Budapest, Hungary). Clostridium perfringens  
LH1-LH8; LH11-LH16; LH19, and LH20 are of  
chicken origin, and LH24 came from a pig; each 
has been deposited in the (frozen) stock 
collection of Department of Microbiology and 
Infectious Diseases, University of Veterinary 
Medicine Budapest, Hungary. 
 
Xenorhabdus strains, X. budapestensis DSM 
16342 (EMA), X. szentirmaii DSM 16338 (EMC) 
[44] and X. bovienii NYH which had been 
isolated from the entomopathogenic nematodes 
Steinernema bicornutum [Tallósi] [54], S. rarum 
and S. feltiae HU1 [55], are originated from the 
Fodor laboratory, Eötvös University, Budapest, 
Hungary. EMA and EMC had also been 
deposited by us in the DSMZ, (Leinbniz Institute 
Deutsche Sammlung von Mikroorganismen und 
Zellkulturen, Braunchweig, Germany) as DSM 
16342 and DSM 16338, respectively. 
Xenorhabdus nematophila ATTC 19061, was 
from Forst Laboratory at the University of 
Wisconsin – Milwaukee, USA) and X. 
nematophila DSM 3370 DSMZ, Braunschweig, 
Germany). Steinernema cabanillasii BP was 
isolated by us from infective dauer juveniles from 
the EPN S. riobrave. 
 

2.2 Overlay Bioassays for Comparing the 
Antibacterial Potential of Different 
Xenorhabdus Strains 

 
Overlay bioassays for comparing the 
antibacterial potential of different Xenorhabdus 
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strains (each representing a species), were 
carried out as previously described [43]. To make 
sure that we use the proper bacterium, an           
earlier experiment was repeated in which                   
we compared the antibacterial activities of            
5 different Xenorhabdus strains on K. 
pneumoniae.    
 
To determine if the antimicrobial compounds 
from EMA were effective against C. perfringens, 
an overlay experiment was carried out [43]. To 
be sure that the intestinal proteolytic activities 
would not inactivate our compounds, samples         
of EMA CFCM were digested with pepsin, 
following the professional guidance of our 
coauthor Professor Ferenc Husvéth (University 
of Pannonia, Keszthely, Hungary), while          
another sample was digested with trypsin by 
István Venekei (Eötvös University, Budapest, 
Hungary).  
 

2.3 Agar-Diffusion Assay of EMA CFCM 
against Clostridium perfringens 
NCAIM 1417 Laboratory Strain  

 

Agar Diffusion Tests were similarly carried out, 
as described by [46], but we converted the 
method for the anaerobic specimen, C. 
perfringens. An agar diffusion test was 
conducted as follows: In a hole at the center of 
the agar plate, 100 ul of EMA CFCM              
were pipetted and overlaid with 3 ml of a                  
log phase C. perfringens suspension diluted to 
1:250 with soft (0.6 V/V%) agar. They were 
incubated for 24 h under anaerobic conditions at 
40°C. 
 

2.4 Comparison of the Sensitivities (MID 
Values) of 13 C. perfringens Strains, 
Isolated from Poultry, to Cell-Free 
Culture Media (CFCM) of X. 
budapestensis (EMA) in Liquid 
Cultures 

 
2.4.1 Determination of MID values  
 

To quantify the sensitivity of the strains, the 
maximum inhibiting dilution (MID) values 
[43,56,46,47] were determined as below. These 
studies were carried out in sterile 24-hole tissue 
culture plates, with 4 (A-D) rows and 6 (1-6) 
Columns, in 1 ml final volumes. Each Clostridium 
strain was used in a different tissue culture    
plate. Each hole contained 0.5 ml of 2XRCM 
Reinforced Clostridium Media [57] liquid medium, 
and 0.5 ml of sterile, diluted EMA CFCM, with the 

following distribution: 100, 80, 60, 40, 20 and 0 
volume / volume (V/V) % in column 1, 2, 3, 4, 5, 
and 6, respectively. There were 50, 40, 30, 20, 
10 and 0% V/V final concentration of EMA CFCM 
in columns 1, 2, 3, 4, 5, and 6. Each culture in 
rows A, B and C were inoculated with loopful of 
the respective bacteria obtained from three 
separate colonies grown on sheep blood                
agar plates. The holes in row D were not 
inoculated, and served as sterile (negative) 
controls. Columns 6 served did not contain              
EMA CFCM and served as positive controls. 
Each 1-ml culture was overlaid by 0.5 ml sterile 
(freshly autoclaved), paraffin oil to provide 
anaerobic conditions. Plates were then incubated 
at 37°C for 24 h and then scored visually. After 
24 h culturing, the growing and inhibited cultures 
could unambiguously be identified. We 
considered the concentration as MID where none 
of the 3 replicates contained visible growth. 

 
2.4.2  Enumeration of Clostridium perfringens 

colony forming units (CFU) 

 
Samples were taken from the first hole in which 
bacterial proliferation was not visually detected. 
0.5 ml of culture were sucked out cautiously from 
below the paraffin oil and serial dilutions were 
prepared up to 10

-5
, and 100 μl volumes were 

simultaneously spread onto the surface of sheep 
blood agar (by D. László Makrai, see Fig. 1) and 
Tryptose-Sulfite-Cycloserine (TSC) agar [58] 
plates. The latter was designed as a highly 
selective solid medium for growing and 
enumerating C. perfringens colony forming units. 
The TSC allows virtually complete recovery C. 
perfringens, while it inhibits practically all 
facultative anaerobes tested, and is known as 
being more selective than SFP Agar. Three 
replicates were used for each dilution. In 
preliminary experiments, carried out by András 
Fodor and Andor Molnár, both then at the 
Department of Animal Sciences and Animal 
Husbandry (Georgikon Faculty, University of 
Pannonia, Keszthely, Hungary), TSC plates were 
incubated under anaerobic conditions at 40°C, 
and found the best readability between 48 – 72 
h. The C. perfringens colonies were recognized 
by colony color and the black reduced sulfides 
granules around them, but the color of the            
agar also gave a kind of qualitative information 
(Fig. 1). The colonies used in these             
preliminary experiments were obtained from 
chicken ileal digests, and from the stock 
collection of Dr. L. Makrai, were reproducibly 
counted. 



Fig. 1. Shows the Clostridium colonies  to be counted  on a blood agar plate (Photo: Dr. László 
Makrai, (Department of Microbiology and Infectious Diseases, University of Veterinary Science, 

Szent István
 

2.5 Study of the Endurance of the 
Antimicrobial Compounds in the Cell
Free Culture Media (CFCM) of 
budapestensis and X. szentirmaii
Proteolytic Degradation  

 
2.5.1 Trypsin-digested samples  
 
Trypsin-digested samples were tested on Gram
positive (Staph. aureus) and Gram negative 
(E.coli) targets in agar diffusion assay, and 
compared with untreated CFCM samples. No 
differences were demonstrated. 
 
2.5.2 Pepsin resistance  
 
Pepsin resistance was studied as follows:
center of a Luria Broth plate, a Millipore filter of 
0.22 um pore size was laid and infiltrated with 
HCl and pepsin. Then EMA CFCM was pipetted 
onto it. The pepsin preparations were prepared 
by Professor Ferenc Husvéth. After that the plate 
was overlaid with a Pseudomonas aeruginosa
suspension diluted with soft agar as described 
[46,47]. After 24 h incubation at 40°
of the test bacterium lawn was checked. 
 
2.6 Preparation of XENOFOOD
 
XENOFOOD: XENOFOOD contained 5% soy
meal, which had been suspended with equal 
amount (w/w) of EMA, and another 5% 
suspended in equal amount (w/w) of EMC cells 
obtained from 5 days-old shaken (2000 rpm) 
liquid cultures, followed  by high-speed (Sorwall; 
for 30 minute) centrifugation. The liquid cultures 
were in 2XLB (DIFCO), supplemented with meat 
extract equivalent to the yeast extract. Five days 
was optimal for antibiotic production at 25
under these conditions [43,45]. It had previously 
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was studied as follows: In the 
center of a Luria Broth plate, a Millipore filter of 
0.22 um pore size was laid and infiltrated with 
HCl and pepsin. Then EMA CFCM was pipetted 
onto it. The pepsin preparations were prepared 
by Professor Ferenc Husvéth. After that the plate 

Pseudomonas aeruginosa 
suspension diluted with soft agar as described 

°C, the growth 
of the test bacterium lawn was checked.  

Preparation of XENOFOOD 

XENOFOOD contained 5% soy-
meal, which had been suspended with equal 
amount (w/w) of EMA, and another 5% 
suspended in equal amount (w/w) of EMC cells 

old shaken (2000 rpm) 
speed (Sorwall; 

e) centrifugation. The liquid cultures 
were in 2XLB (DIFCO), supplemented with meat 
extract equivalent to the yeast extract. Five days 
was optimal for antibiotic production at 25°C 

45]. It had previously 

been discovered that both EMA and EMC grow 
and produce antibiotics in autoclaved soy
containing some water and yeast extract, or in 
autoclaved 0.5% w/w yeast (Fodor, unpublished). 
Therefore the original chicken food 
as a semi-solid culture media for the 
Xenorhabdus cells. Both the separate EMA and 
EMC culturing semi-solid chicken food that we 
(Dr. László Pál) prepared daily were incubated 
under sterile conditions for another five days. 
Then the EMA and EMC culture media were 
combined, autoclaved (20 min, 121
dried by heat (70°C) overnight. The 
Xenorhabdus cells were killed in such a way, 
while the heat stabile [43] antimicro
compounds remained active. 
 
2.7 Statistical Analysis  
 
ANOVA procedures were used following the 
procedures of the SAS 9.4 Software, mostly due 
to the unbalanced data set. The significant 
differences (α = 0.05) between treatment means 
were assessed using the Least Significant 
Difference (LSD).  
 

3. RESULTS  
 

3.1 Results of Experiments, Aimed at 
Helping to Choose the Best 
Xenorhabdus Strains for This Study 

 
Results shown in Fig. 2, and a qualitative 
evaluation of the inactivation zones, indicated the 
appropriate bacteria to use. As expected, 
budapestensis (EMA) and X. szentirmaii
the best.  Results of the overlay bioassay 
experiment with different Xenorhabdus 
K. pneumoniae helped to make the 
when choosing antimicrobial producing strains. 
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Fig. 2. Comparison of the antimicrobial potential of different Xenorhabdus strains 
(representing species) in overlay bioassays [43]. (Photo: Andrea Máthé Fodor. The Ohio State 

University, Wooster, OH, USA) 
 

3.2 Endurance of the Antimicrobial 
Peptides of X. budapestensis to 
Pepsin, and Trypsin Digestion 

 
As demonstrated by Fig. 3, the overnight pepsin-
digested EMA CFCM remained active against 
Pseudomonas aeruginosa. The trypsin-digested 
samples also preserved their anti-Gram-positive 
(on S. aureus) and anti-Gram-negative (E. coli) 
activities, (not shown). 
 
3.3 Efficacy of EMA CFCM on C. 

perfringens Laboratory Strain NCAIM 
1471   

 

The cell-free EMA CFCM exerted strong 
antimicrobial activity on C. perfringens laboratory 
strain NCAIM 1471 in an agar diffusion test. The 
large inactivation zone of 3.7 cm diameter shows 
the anti – Clostridium activity (Fig. 3). The 
question arises as to whether the pathogenic 
poultry isolates were also sensitive. 

 
3.4 Results of the Comparison of the 

Sensitivities (MID Values) of 13 
Clostridium perfringens Strains 
isolated from Poultry to Cell-Free 
Culture Media (CFCM) of 
Xenorhabdus budapestensis (EMA) in 
Liquid Cultures 

 
Table 1 lists the MID values as a qualitative 
parameter of the sensitivity of each of the poultry 
isolates to the antibacterial compounds of X. 

budapestensis. A majority of the examined 
strains are sensitive but one of the 13 was 
resistant (LM24). No direct interrelation between 
the degree of EMA sensitivity and other behavior 
could be demonstrated. The results provide a 
good message: The majority of C. perfringens 
isolates are sensitive. However, they also 
provide a bad message: There are EMA-resistant 
resistant C. perfringens isolates, even if they are 
rare. 
 
None of the samples taken from cultures with no 
visible proliferation contained any CFU, 
indicating that the toxicity was complete. 
Whether the differences in the sensitivities could 
relate to the cellular phenotype was not revealed 
by this experiment, although the C. perfringens 
isolates were rather different concerning colony 
morphology and hemolytic behavior (Fig. 5). 
 
4. DISCUSSION 
 
The in vitro experiments demonstrated that 
antimicrobial peptides of X. budapestensis (EMA) 
were highly toxic for all but one (LM 24) C. 
perfringens isolates. Dr. Klaus Teichmann 
(Biomin, Tulln, Austria), as a courtesy, tested 
EMA and EMC CFCM preparations, obtained 
from us. He declared that the CFCM of EMA 
exerted an extremely strong anticoccidial activity 
on both Clostridium and Eimeria cells. He 
declared that he had not ever worked with such 
an efficient anticoccidial preparation before as 
EMA CFCM. Dr. Teichmann found a lower 
concentration range within which E. tenella cells 



died, while the cells of the chicken t
were not affected, (Klaus Teichmann, personal 
communication). These facts are arguments for 
 

Fig. 3. Experimental evidence that the antimicrobial compounds of 
media are resistant to the proteolytic activity of pepsin 

inactivation zone could be seen, 

 

  
Fig. 4. Anti- Clostridium activity of cell

Clostridium perfringens NCAIM 1417 strain in agar diffusion test [46
Pintér, University of Pannonia, Keszthely, Hungary)

 

 
LM1(from chicken) 

Fig. 5. Clostridium perfringens isolates LM1, LM2 and LM24 differing in colony morphology, 
sporulation, and hemolytic behavior.

and Infectious Diseases, University 
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died, while the cells of the chicken tissue culture 
were not affected, (Klaus Teichmann, personal 
communication). These facts are arguments for 

taking the potential use of EMA and EMC 
antimicrobial peptides, as potential anticoccidial 
agents administered per os, into consideration.

 
 

Experimental evidence that the antimicrobial compounds of X. budapestensis
media are resistant to the proteolytic activity of pepsin After 24 h incubation at 37

inactivation zone could be seen, demonstrating a significant antimicrobial activity of the 
pepsin-treated EMA CFCM 

 

activity of cell-free culture medium of Xenorhabdus budapestensis
NCAIM 1417 strain in agar diffusion test [46,47]. (Photo: Dr. Csaba 

Pintér, University of Pannonia, Keszthely, Hungary) 

 
LM2 (from turkey) LM24 (from pig)

 
isolates LM1, LM2 and LM24 differing in colony morphology, 

sporulation, and hemolytic behavior. (Photo: Dr. László Makrai, (Department of Microbiology 
and Infectious Diseases, University of Veterinary Science, Hungary)
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Table 1. MID values of Clostridium perfringens isolates from chicken differing in colony 
morphology and hemolytic behavior 

 

C. perfringens isolates 
from poultry (L. Makrai, 
unpublished) 

Minimum Inhibiting Dilutions (MID) Values 
(V/V%) of the cell-free culture medium 
(CFCM) of Xenorhabdus budapestensis 
(EMA) Inhibiting Bacterial Proliferation 

Conclusion 

LM 1 < 10 Extremely sensitive 
LM 2 < 30 Sensitive 
LM 3 < 10 Extremely sensitive 
LM 4 < 10 Extremely sensitive 
LM 5 < 10 Extremely sensitive 
LM 8 < 30 Sensitive 
LM 11 < 10 Extremely sensitive 
LM 14 < 10 Extremely sensitive 
LM 15 < 10 Extremely sensitive 
LM 16 < 10 Extremely sensitive 
LM19 < 10 Extremely sensitive 
LM20 < 30 Sensitive 
LM 24 > 50 Resistant 

 

But there are arguments against using 
XENOFOOD as well, and they are those data 
which showed in vitro cytotoxicity on the 
permanent chicken liver cell line LMH [60]. Dr. 
Ganas and her associates (Aziza Amin, Irina 
Profjeva, and Micheal Hess) tested the 
cytopathogenic effect of different dilutions of the 
same samples of sterile cell-free media (CFCM) 
of EMA and EMC on permanent chicken                    
liver LMH cells, as Dr. Teichmann. They 
demonstrated that EMA CFCM at a dose of < 5% 
V/V concentration was harmless, but at >5%V/V 
concentrations they seriously damaged the cell 
layer. Doses >10% V/V caused total destruction 
of the cell layer, while that of 5 – 10% V/V 
resulted in about a 50% damage within the first 
24 h, and this damage was not repaired in the 
next 72 hrs. As for EMC, only the dose of 32% 
resulted in complete cell layer destruction, but 
the lower doses of 1-20% V/V also resulted in ~ 
50% permanent  damage, calculated on the         
base of the score scale of Amin et al. [60]; (Petra 
Ganes et al., personal communication). 

 
Fabclavines are the predominant antimicrobial 
compound produced by both EMA and EMC and 
were isolated and purified [51], and was not 
suggested as a future drug because of its 
extremely large target size and toxicity to 
eukaryotic targets. This kind of “certification” is 
usually quite enough to place a candidate drug 
molecule into the wastebasket, despite its super 
strong antimicrobial effects. However, an 
exception with fabclavine may be considered 
because of the following arguments: 

First, there are not only prokaryotic, but 
eukaryotic pathogens also exist. Coccidiosis is 
the best example where a prokaryotic C. 
perfringens and a eukaryotic E. tenella cooperate 
in causing the disease, and both should be 
controlled. 
 

Second, there is practically no vaccination 
technique against C. perfringens [28]. So the 
introduction of new antimicrobial compounds 
should be taken into consideration. 
 

We are not the only team walking on this road. 
Recently, there have been several research 
directions attempting to solve the coccidiosis 
problem. A project includes a search for novel 
antibiotic-delivery systems, such as using 
ovotransferrin as a targeting molecule [61]. 
Another approach is to improve the usefulness of 
commonly used anticoccidials and antibiotics, 
which have recently been tested on a subclinical 
necrotic enteritis model [62]. Recently proline-
rich antimicrobial peptides are considered as 
potential therapeutics against antibiotic-resistant 
bacteria [63]. The designer proline-rich 
antibacterial peptide A3-APO prevents the    
Gram-positive Bacillus anthracis mortality by 
deactivating bacterial toxins [64]. Even more 
recently two (NZ2114 and MP1102) novel 
plectasin-derived peptides have been designed 
for targeting Gram-positive bacteria, and the 
tests on gas gangrene-associated C. perfringens 
provided encouraging results [65]. 
 

The hopes of applying probiotics have been also 
emerging [66,67,68]. The use of vegetative 
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Bacillus amyloliquefaciens cells did not justify the 
hopes: they did not confer protection against 
necrotic enteritis in broilers, despite the high 
antibacterial activity of its supernatant against           
C. perfringens in vitro [69].   
 

5. CONCLUSIONS 
 
There are two alternative approaches to control 
coccidiosis in broiler chicken: the vaccination and 
the “chemotherapy”, (that is, a search for gastro-
intestinally active, autoclaveable antimicrobial 
peptides active against both C. perfringens and 
E. tenella). 
 

Considering that there are publications about 
antibiotic resistant and multiresistant pathogen C. 
perfringens [70,71], and that the coccidiosis 
problem has not yet seem to be solved by using 
vaccination, the search for new efficient 
antimicrobials to control coccidiosis have 
probably been justified. 
 

On the basis of in vitro studies, fabclavine alone 
(and / or as a component of interacting 
antimicrobial active peptide complexes present in 
the CFCM of EMA and EMC) fulfil the criteria of a 
promising chemotherapeutic agent in vitro, that 
is, acting as strong antibacterial on C. 
perfringens and as strong apoptotic cytotoxic 
compounds on the unicellular eukaryotic 
pathogen, E. tenella.  
 
However, the cytotoxicity may pose a serious 
problem of practical use. Indeed, we found that 
the CFCM of both EMA and EMC were cytotoxic 
in vitro in permanent chicken liver cells. 
 
But the in vitro and the in vivo situation are 
completely different.  
 
If it happened that the orally administered 
fabclavine (and/or the whole AMP complex), due 
to their proteolytic endurance), might act in vivo 
as strong anti-Clostridia and anti-Eimeria agents 
in the GI, without causing any harm of the 
organism to be protected, it would have a chance 
to be register and use Xenofood as an 
anticoccidial bio-preparation. This option cannot 
be ruled out if the adsorption from the gut, were 
similarly low as that of the orally administred 
vancomycin [72]. 
 
We believe that an in vivo XENOFOOD feeding 
experiment would be necessary to learn whether 
the orally administrated antimicrobial peptides 
produced by X. budapestensis (EMA) and X. 

szentirmaii (EMC), in vitro against both the 
prokaryotic (C. perfringens) and the eukaryotic 
(E. tenella) pathogens causing coccidiosis in 
chicken, could be used in broiler cockerels. 
 

We are ready for in vivo bioassay and looking for 
cooperative partners. 
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