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ABSTRACT 
 

There has been much debate about changes of oxidative capacity in aging skeletal and heart 
muscle, and endurance capacity. Physiological changes during aging are associated with a decline 
in muscle mass, strength and endurance capacity. These changes in muscle structure and function 
are leading to disability in the aging population. The purpose of the present review is to discuss 
about decrease of oxidative capacity in adult and aging striated muscle tissue, changes in 
interaction between mitochondria and myofibrils and loss in life quality;describe the effect of 
increased functional activity(endurance exercise) on the oxidative metabolism.Decrease of 
endurance capacity (ability to keeo moving for longer time) during aging is related with reduced 
oxidative capacity of skeletal muscle due to decrease of mitochondrial biogenesis.Striated muscle 
cells with high oxidative capacity during endurance exercise hypertrophy. Muscle fibres with lower 

Review Article  

 



 
 
 
 

Seene et al.; AJRIMPS, 1(3): 1-13, 2017; Article no.AJRIMPS.33584 
 
 

 
2 
 

and low oxidative capacity do not hypertrophy during endurance type of exercise. Skeletal muscle  
respond to endurance exercise training by increasing the fibre composition towards increase of 
fibres with higher oxidative capacity at the expense of proportion of  fibres with low oxidative 
capacity. Decease of oxidative capacity in muscle tissue lead to the  decrease of muscle quality, 
cause disability and loss in life quality of aging population.Endurance exercise training is the 
effective way to increase the oxidative and endurance capacity. 
 

 
Keywords: Striated muscle tissue; aging; endurance capacity; oxidative metabolism; effect of 

endurance exercise. 
 
1. INTRODUCTION 
 
In striated muscle tissue only cardiocytes have 
high oxidative capacity, type I and IIA fibres have 
higher oxidative capacity and type IIB/IIX low 
capacity [1-4] (Fig. 1). Type I muscle fibres with 
higher oxidative capacity are small in 
comparision fibres with low oxidative capacity, 
showing that there are relationship between 
fibrecross-sectional area (CSA)and VO2 max [5]. 
Turnover rate of cytochrome C, muscle 
contractile proteins and regeneration capacity of 
skeletal muscle is faster in these muscles where 
morefibres with higher oxidative capacity [2,6]. 
Functional changes during aging are  related 
with a decrise in skeletal muscle mass, strength 
andendurance(ability to be active for longer 
period of time) [7-9]. These changes in muscle 
structure and function are leading to disability in 
the aging population [10]. The decrease of 
skeletal muscle mass is the result of type II fibre 
atrophy and loss in the number of these muscle 
fibers. Large  variability in the muscle fibre size, 
accumulation of nongrouping, scattered and 
angulated fibres, and expansion of extracellular 
space are typical changes during striated muscle 
atrophy [11,12]. Decrease of  the number of 
skeletal  muscle fibres and  decreased level  of 
anabolic hormones testosterone and growth 
hormone, insulin-like growth factor 1 (IGF-1), and 
an increased catabolism  are the reasons of 
development of sarcopenia [13,14]. Decrease of 
endurance capacity during aging is related with 
reduced oxidative capacity of skeletal muscle 
due to decrease of mitochondrial biogenesis 
[15,16]. Reduction in AMP-actvated protein 
kinase (AMPK) activity may be the main factor in 
reduced mitochondrial function [17]. Endurance 
training(traing lasting for longer time with low or 
moderate intensity) is activated AMPK [18] and 
related with the adaptatinn of skeletal muscle to 
endurance exercise training. It is well known that  
the oxidative capacity of skeletal muscle 
decreases in the elderly, endurance training is 
the  effective measure in its restoration via 
stimulation mitochondrial biogeneses and 

improves  functional parameters of mitochondria 
[2,15,19,20]. In the present review, we will 
discuss about decrease of oxidative capacity 
(oxygen difusion distance in muscle tissue,  
mitochondrial density,  myoglobin concetration,  
oxidative enzime activity...) in adult and aging 
striated muscle tissue and related decrease of 
muscle quality which cause a disability and loss 
in life quality of aging population;describe the 
effect of endurance training on the interaction 
between mitochondria and contractile apparatus 
on dependence of increase in oxidative capacity, 
and focuses on the adenosine triphosphate 
consumption, mitochondrial biosynthesis in the 
light of increase in oxidative metabolism in aging 
muscle tissue. 
 

 
 
Fig. 1. Oxidative capacity of striated muscle 

cells 
 

2. AGING MUSCLE  
 
There exists a relationship between skeletal 
muscle mass and strength, decrease of mass is 
leading to the decrease of strength. Therefore 
changes in muscle strength does not solely 
depend on changes in muscle mass [21]. It has 
been shown that in elderly the decrease in 
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strength is more rapid than the loss of muscle 
mass [22,23] and this loss of mass during muscle 
disuse is related with loss of strength only about 
10% [24]. Therefore increase in muscle mass is 
not followed with increase in strength [22]. These 
experiments demonstrates that the loss of 
muscle strength is more deeply related with 
impairments of the neural activation of striated 
muscle tissue [25]. Aging accompanied decrease 
in several physical capacities is responsible for 
the progressive decline in physiological 
processes in the elderly [26]. It has been shown 
that in elderly skeletal muscle tissue protein 
synthesis rate is decreased in the translational 
level, but not in the transcriptional level [27]. 
Skeletal muscle fibres in elderly people have 
saved ability to regenerate [28] and regeneration 
capacity depends on the satellite cells. Muscle 
fibres with higher oxidative capacity have more 
satellite cells under the basal lamina and these 
fibres have also higher regeneration capacity 
[29].  
 
2.1 Decrease of Regeneration Capacity 
 
Regeneration capacity in old rats is relatively low 
in comparison with young animals [30], and this 
is related with a decrease in the number of 
satellite cells under the basal lamina of fast-
twitch (FT) muscle fibres [31]. Decrease in the 
satellite cell pool and the length of telomeres in 
sarcopenic skeletal muscle explain the higher 
prevalence of muscle injuries and slow 
regeneration capacity of this muscle tissue [26]. 
Satellite cells are functionally different and 
recruited for different tasks [32,33]. After serious 
damage old rodents skeletal muscle did not 
regenerate as fast as muscles in younger 
animals [34]. Slower regeneration capacity of 
skeletal muscles is a result of extrinsic causes, 
but it is likely a combination of both extrinsic and 
intrinsic factors are responsible to slow muscle 
regeneration [35,36]. In weight-bearing skeletal 
muscles of old rodents a contraction-induced 
muscle injury causes decrease in muscle mass 
and force [37]. At the same time in the aging 
muscle the degradation rate of contractile 
proteins increased about twice and muscle 
strength and motor activity decreased [30]. 
Sarcopenia is a result of decreased synthesis 
rate and increased degradation rate of contractile 
proteins. As a result the muscle proteins turnover 
is slower, particularly contractile proteins which in 
turn, causes the decrease in muscle strength 
(Fig. 2). It has shown that protein intake in 
combination with anabolic agents attenuates the 
muscle loss [38].  

Etiology of disability in elderly is wide and risk 
factors for loss in physical activity have 
significant importance [39]. The decrise of 
strength is a result of a combination of neurologic 
and muscular factors. The impairment of neural 
activation may due to a reduction in descending 
excitatory drive from supraspinal centers, 
suboptimal motor unit recruitment and 
neuromuscular transmission failure [40,41]. 
Muscle atrophy, changes in contractile quality as 
the result of changes in the contractile proteins, 
and infiltration of adipocytes into structure of 
muscle fibres are indicators of the decrease of 
muscle strength and motor activity [10,22]. 
 
2.2 Rearrangements in Contractile 

Apparatus 
 
Changes in strength and endurance capacity in 
elderly are related with slow synthesis rate and 
fast degradation rate of contractile proteins, 
which causes structural and functional damages 
in myofibrillar apparatus [42]. It has been shown 
that an  integral indicator of muscle  proteins 
metabolism, turnover rate, shows that in old 
rodents, myosin heavy chain (MyHC) renewal is 
about 35% and actin about 10% slower than in 
young animals [30,43].  Rearrangements in the 
myofibrillar compartment of old rats include a 
decrease in MyHCIIb isoform (fastest isoform) 
relative content in skeletal muscle [44]. Changes 
in MyHC isoforms’ composition in  muscle tissue 
are related with changes in adenosine 
triphosphate (ATP)consumption in old rats 
because of muscle mitochondrial dysfunction 
and decrease in  mitochondrial  ATP synthesis 
[45,46]. There are many reason like decrease in 
mitochondrial DNA copy numbers, decrease of 
mRNA in genes encoding muscle mitochondrial 
proteins [47], changes in oxidative enzymes 
activity and mitochondrial protein synthesis rate 
[48].  Chemical mediators play an essential role 
in signaling hypothalamus from the periphery .It 
is important to stimulate the center of 
sympathetic nerves which signaling the 
paraventricular nucleus of the hypothalamic 
center [49]. In striated muscle tissue protein 
synthesis decreases with age [50,51]. 
Particularly MyHC and mitochondrial proteins, at 
the same time sarcoplasmic proteins saved a 
relatively high synthesis rate [49]. It has been 
demonstrated that age-related decrease in 
muscle protein synthesis is not a global effect 
concerning all proteins, but selective for certain 
proteins [49]. It may be surprising but proteins 
that have a faster renewal contribute more to the 
striated muscle tissue protein synthesis rate



 
 
 
 

Seene et al.; AJRIMPS, 1(3): 1-13, 2017; Article no.AJRIMPS.33584 
 
 

 
4 
 

 
 

Fig. 2. Effect of aging on skeletal muscle 
 

despite their small amount. Proteins like myosin 
and actin which constitute a major part of muscle 
proteins, but have a slow renewal, have a 
smaller role in the synthesis rate of striated 
muscle tissue proteins [49]. 
 
3. INTERACTION BETWEEN MITOCHON-

DRIA AND SARCOMERES  
 
In striated muscle tissue with high oxidative 
capacity(heart muscle) intracellular 
phosphotransfer system constitute a major 
mechanism linking the mitochondria and 
ATPases within specific structures – intracellular 
energetic units [1,52]. Mitochondria are located 
between the myofilaments through the whole 
muscle due to the fixed juxta position of the 
mitochondria with sarcomeres [53]. The 
effectiveness of metabolic signalling depends on 
morpho-functional relationships of the interaction 
between mitochondria and sarcomeres [4]. 
Under conditions of hypoxia the connection 
between mitochondria and sarcomeres are 
disturbed as sarcomeric components disintegrate 
the muscle cell structure and cause cell injury 

and death [4]. Due to apoptosis protein 
degradation rate is increasing as well as loss of 
muscle nuclei and this is leading to the local 
atrophy of muscle [54]. So, the  disruption of 
desmin destrois links between mitochondria and 
Z-disc andin muscle tissue the mechanism of 
oxidative phosphorylation impired [55]. The 
AMPK is activated in skeletal muscle during 
exercise training [56]. AMPK’s role is to monitor 
the energy status of muscle fibres and maintain 
muscle energy homeostasis [57]. 
 
Prolonged endurance type of exercise cause the 
depletion of the muscle energy 
system,neuromuscular fatigue and muscle 
damage [58]. Children and elderly people have 
less muscle mass than adults and generate 
lower absolute power during high intensity 
exercise. Childres’s muscle are better equipped  
for oxidative than glycolytic pathwaysof ATP 
resynthesis during exercise (during increased 
physical activity) and this is the reason why they 
have lower ability to activate their fast-twitch 
muscle fibres [59]. Decrease of skeletal muscle 
oxidative capacity in elderly is accompanied with 
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the decrease of anaerobic capacity [19]. 
Endurance training increased oxidative capacity 
of skeletal muscle and an age associated decline 
in oxidative capacity is increasing. Increase in 
oxidative capacity is accompanied with increase 
in fitness [60]. Aerobic kind of endurance training 
increases capillary density, decreases oxygen 
diffusion distance and increase oxygen supply in 
muscle fibres with higher oxidative capacity(type 
I and IIA fibres) [3,42,61]. As oxidative capacity 
of muscle fibres with higher oxidative capacity 
decreases in the elderly,endurance training is 
effective  measure in its restoration.Endurance 
exercise training stimulates mitochondrial 
biogeneses and improves  functional parameters 
of mitochondria [15,20]. Skeletal muscle fibres 
with low oxidative capacity (type IIX and IIB 
fibres) exhibit increased adenosine diphosphate 
(ADP) concentrations in response to endurance 
exercise training. It shows that the respiratory 
control is different in skeletal muscle fibretypes I, 
IIA and IIX, IIB. 
 
4. EFFECT OF ENDURANCE EXERCISE 
 
In contrast to striated muscle cells with high 
oxidative capacity (cardiocytes), hypertrophy of 

skeletal muscle fibres with lower (type I and IIA) 
and low oxidative capacity (type IIB/X) is not 
happened during endurance exercise training. 
Skeletal muscles reaction to endurance  exercise 
is increasing the fibres with higher oxidative 
capacity at the expense of fibres with low 
oxidative capacity [3,42,62]. This change do not 
increase muscle size, as CSA of fibers with 
higher oxitative capacity is less than fibres with 
low oxidative capacity [5]. The proteasome-, 
lysosome- and Ca2+-mediated protein 
degradation occurs mainly in fibres with higher 
oxidative capacity(type I and IIA) [63]. These two  
mechanisms stimulating either oxidative capacity 
of fibres or hypertrophy obviously exclude each 
other [5]. Stimulation of  mitochondrial 
biogenesis via AMPK accompanied by 
suppression of the myofibrillar protein synthesis 
through pathways mediated by mitogen activated 
protein kinase (MAPK) and nuclear factor kappa 
B [5]. Endurance type of exercise, though 
increasing oxidative metabolism, decrease 
muscle fibre growth in myostatin knock-out mice 
[64]. It seems that  muscle fibres followed certain 
mechanisms of regulation of the balance 
between oxidative potential and hypertrophy in 
response to endurance training (Fig. 3). 

 

 
 

Fig. 3. Effect of endurance training on aging skeletal muscle 
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4.1 Effect of Endurance Exercise on the 
ATP Consumption 

 
Adaptation of different fibre types to endurance 
exercise reflect differences on the level of ATP 
consumption. In muscles with high oxidative 
capacity (heart muscle) endurance exercise 
increased myosin ATPase activity and muscle 
fibre contractility [65]. This change based on the 
myosin isoenzyme shift towards increased fast 
V1 (α) isoform [66,67] and alterations in 
regulation of myosin ATPase. Endurance 
exercise training results in increased myofilament 
sensitivity to Ca2+ [68], and increase of atrial 
myosin light chain-1 isoform expression [69] that 
increases ATP consumption by myofibrils. 
Endurance exercise training also stimulatesthe 
expression of sarcoplasmatic reticulum 
(SR)Ca2+ATPase (SERCA2) and increased Ca2+ 
transport into SR [70]. Ca2+ removal through 
transsarcolemmal route is due to activation of 
Ca2+-ATPase in sarcolemma [65]. Endurance 
exercise training increases the capacity of ATP 
consumption in muscle cells with high oxidative 
capacity, but not in muscles with higher and low 
oxidative capacity. Fibres with low oxidative 
capacity respond to endurance exercise training 
by increase the fibre profile towards oxidative 
fibres(type I) with lower ATPase activity [71, 72]. 
This change increases the economy of ATP 
consumption [73]. Endurance exercise training 
increasing Na+-K+-ATPase activity in 
musclefibres with low oxidative capacity [74] but 
not in high capacity [65]. 
 

4.2 Effect on the Mitochondrial 
Biosynthesis 

 
Endurance exercise training stimulates 
mitochondrial biogenesis (Fig. 4) and increases 
the mitochondrial capacity to produce ATP in 
muscles with higher and low oxidative capacity 

[16,75,76]. Increase in mitochondrial biogenesis 
reflects in mitochondrial content per gram of 
tissue [77], mitochondrial volume relative to 
muscle fibre area [78], and muscle tissue 
mitochondrial enzyme activity [79]. Abowe 
described changes occur in muscle fibres with 
low and higher oxidative capacity(type I and IIA 
fibres) [77,80]. Increased energy metabolism 
during endurance training is related with 
transition from carbohydrate utilization to fat 
utilization and this is the basement of increase of 
the endurance capacity [81]. 
 

Responses of mitochondria to endurance training 
in muscle cells with high oxidative capacity is 
ambiguous. Endurance exercise training 
increased mitochondrial enzymes activity in 
muscle tissue, and enhanced oxidative capacity 
in heart muscle [82,83]. Endurance exercise 
training do not cause changes in mitochondrial 
enzymes and their yield in muscle tissue with 
high oxidative capacity [84]. Endurance exercise 
training decreased the oxidation rate of 
palmitoylcarnitine/malate without changes in 
pyruvate, 2-oxoglutarate and succinate oxidation 
[85], increased or no changes in mitochondria-to-
myofibril ratio [86,87]. Endurance training caused  
hypertrophy and increased oxidative capacity of 
heart muscle, but did not increase the volume 
density of mitochondria [88], mitochondrial 
volume, but increased weight and size of the 
heart [89]. The reason of conflicting data on 
mitochondrial biogenesis anclear. The reasons 
like training intensity,training volume, time for 
recovery,gender and age differences may lead to 
contraversial results [90]. Changes in oxidative 
capacity and CSA of striated muscle fibres during 
endurance training exclude each other via the 
balance between the biosynthesis of myofibrillar 
proteins and mitochondria [5]. The mechanisms 
of muscle fibre hypertrophy and mitochondrial 
biogenesis are different.  

 

 
 

Fig. 4. Effect of endurance training on aging muscle mitochondrial biogenesis 
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4.3 Regulation of Oxidative Metabolism 
 
Peroxisome proliferator-activated receptor 
gamma coacivator-1alpha (PGC-1α) is a 
regulator of oxidative metabolism and 
mitochondrial content in muscle fibres. PGC-1α 
binds to DNA-binding transcription factors 
(nuclear respiratory factors NRF-1 and NFR-2), 
and trans-activates genes which control the 
electron transport chain, mitochondrial protein 
import, and transcription factors Tfam, TFB1M, 
and TFB2M [91]. Endurance training increases 
the activity and expression of PGC-1α in muscle 
cells through multiple mechanisms. 
Glucocorticoids activate PGC-1α through 
genomic and non-genomic effects [92]. 
Endurance training activates the p38 MAPK [93] 
which phosphorylates the PGC-1α repressor 
protein p160MBP that relieves the inhibitory effect 
of repressor on PGC-1α, thereby permitting 
PGC-1α to interact with target proteins [94]. p38 
MAPK also increases the transcriptional activity 
of PGC-1α through phosphorylation [95]. AMP 
produced in exercising muscle cells stimulates 
AMPK that in turn upregulates the expression of 
PGC-1α [96,97]. PGC-1α activated by reversible 
deacetylation carried out by class III histone 
deacylasesirtuin-1 (SIRT1) [98].SIRT1upregulate 
the expression of PGC-1α through formation of 
the SIRT1-MyoD-PGC-1α complex on PGC-1α 
promoter [99].Endurance training upregulation of 
SIRT1 occurs rapidly, as its mRNA level 
increases together with mRNAs for PGC-1α, 
cytochrome C, and citrate synthase in muscle 
tissue after intensive cycling [100]. AMPK 
stimulate SIRT2 which activates the liver kinase 
B1, a serine-threonine kinase that impels AMPK 
[101]. In heart and skeletal muscle SIRT3 is 
localizedwithin mitochondria and the muscle 
SIRT3 protein content increases with elevations 
of citrate synthase activity and PGC-1α content 
in different muscle fibre types [102,103]. 
Electrical stimulation increases SIRT3 protein 
and PGC-1α proteins in AMPK-independent 
manner [102]. Endurance exercise increases 
SIRT3 and mitochondrial content in skeletal 
muscle [104]. SIRT3 activates  mitochondrial 
enzymes succinate dehydrogenase, isocitrate 
dehydrogenase, glutamate dehydrogenase, 
NADH dehydrogenase (ubiquinome) 1 alpha 
subcomplex subunit 9 (NDUFA9) subunit of 
complex I of the respiratory chain, and acetyl-
coenzyme A synthase, the targeted activation of 
SIRT3 may provide a means for shifting 
metabolism towards use of fatty acids thereby 
protecting failing heart [101]. 
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Endurance exercise training activate via cyclic-
nucleotide regulatory binding protein (CREB) and 
also PGC-1α with upregulation of mitochondrial 
proteins in striated muscle tissue [105]. The 
CREB related mechanism is targeted by 
catecholamines. The tumour suppressor protein 
p53, is participate in mitochondrial biogenesis. 
p53 is increasing synthesis rate of cytochrome C 
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oxidase 2 (SCO2), an protein for assembling the 
cytochrome C oxidase complex and controlling 
the rate of mitochondrial respiration [106]. p53 
translocate into mitochondria and activates the 
mitochondrial DNA polymerase γ [107]. p53 
interacts with Tfam [108] and participate in 
regulation of mitochondrial biogenesis [109]. In 
skeletal muscle endurance training improves 
capillary blood supply, stimulates mitochondrial 
biogenesis, increases oxidative capacity in 
muscle fibres, faster renewal of sarcoplasmic 
proteins and qualitative remodelling in fibers with 
higher oxidative capacity [110].  
 
5. CONCLUSION 
 
In striated muscle tissue cardiocytes have high 
oxidative capacity, type I and IIA skeletal muscle 
fibres have higher oxidative capacity  and type 
IIB/X low capacity. Skeletal muscle fibres which 
have higher oxidative capacity have  smaller 
CSA compared to fibres with low oxidative 
capacity. Physiological changes during aging are 
associated with a decrease in muscle mass, 
strength and endurance.These changes in 
muscle structure and function leading to 
disability. Decrease of endurance capacity during 
aging is related with reduced oxidative capacity 
of skeletal muscle due to decrease of 
mitochondrial biogenesis. Endurance training 
causes hypertrophy of cardiocytes but not of 
muscle fibres with lower (type I and IIA) and low 
oxidative capacity (type IIB/X). Skeletal muscles 
respond to endurance training by increasing the 
fiber composition towards increase of fibres with 
higher oxidative capacity (type I and IIA) at the 
expense of proportion of fibers with low oxidative 
capacity(type IIB/X). Research suggests that in 
elderly striated muscle tissue oxidative capacity 
decrease. Decease of oxidative capacity in 
muscle tissue lead to the decrease of muscle 
quality, cause disability and loss in life quality of 
aging population.Endurance exercise training is 
the effective way to increase this capacity. Future 
studies should focus on regulation of ageing  
muscle oxidative metabolism, effect of exercise 
duration and intensity on the oxidative capacity in 
aging muscle tissue. The question of whether or 
not the mechanisms of regulation of muscle 
oxidative metabolism are the same inyoung and 
elderly is also open for debate. 
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