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Abstract 

 
Linear-width is a widely recognized and highly valued graph width parameter. The concepts of linear tangle 

and linear obstacle are dual concepts of linear-width. In this concise paper, we present an alternative proof of 

the equivalence between linear tangle and linear obstacle. 
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1 Introduction 
 

The examination of width parameters holds significant importance in the fields of graph theory and 

combinatorics, as evidenced by the numerous publications on this topic (e.g., [1-13,14,15]). Linear width, a 

parameter of graph theory, has been studied in several papers [16,17,13]. 
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Linear tangle, a concept initially introduced in reference [18], plays a critical role in determining whether a 

linear width is at most k (k is a natural number), where k+1 represents the order of the tangle (also see 

references [16,17,3]). 

 

Graph searching games are well-known in the fields of graph theory and game theory. A strategy in which the 

player always emerges victorious is termed a "winning strategy". This winning strategy is characterized by 

various width parameters and their dual concepts commonly employed in graph theory (e.g., [3,19,20,21]). For 

instance, the concept of (k, m)-obstacle on connectivity systems is proposed in reference [3]. 

 

In this succinct paper, we present a direct proof for the equivalence between linear tangles and (k, 1)-obstacle, 

which are referred to as linear obstacle in this paper.  

 

2 Definitions and Notations in this Paper 
 

In this section, we provide mathematical definitions for each concept. 

 

Symmetric Submodular Function: The definition of a symmetric submodular function is given below. 

 

Definition 1: Let X be a finite set. A function f: X →ℕ is called symmetric submodular if it satisfies the 

following conditions:  

 

 ∀A⊆X, f(A) = f(X\A).  

 ∀A, B⊆X,  f(A) + f(B) ≥ f(A∩B) + f(A∪B). 

 

In this short paper, a pair (X, f) of a finite set X and a symmetric submodular function f is called a connectivity 

system. In this paper, we use the notation f for a symmetric submodular function, a finite set X, and a natural 

number k, m. A set X is k-efficient if f(X)≤k. 

 

Linear tangle: The definition of a linear tangle is given below. 

  

Definition 2 [18]: Let X be a finite set and f be a symmetric submodular function. A linear tangle of order k+1 

on a connectivity system (X,f) is a family L of k-efficient subsets of X, satisfying the following axioms:  

 

(L1) ∅∈L,  

(L2) For each k-efficient subset A of X, exactly one of A or X\A in L,  

(L3) If A,B∈L, e∈X, and f({e})≤k, then A∪B∪{e}≠X holds. 

 

Linear obstacle: Deep relation to (k,m)-obstacle: The definition of (k,m)-obstacle is shown below. 

 

Definition 3 [4]: Let X be a finite set and f be a symmetric submodular function. In a connectivity system (X,f), 

the set family O ⊆2
X
 is called a (k,m)-obstacle if the following axioms hold true:   

 

(O1) A ∈ O, f(A) ≤ k,   

(O2) A ⊆ B ⊆ X, B ∈ O, f(A) ≤ k ⇒ A ∈ O,   

(O3) A, B, C ⊆ X, A ∪ B ∪ C = X, A ∩ B = ∅, f(A) ≤ k, f(B) ≤ k, |C| ≤ m ⇒ either A ∈ O or B ∈ O.  

 

This paper deals with (k,m)-obstacle for the case where m = 1. In this article, we call (k,1)-obstacle "Linear 

obstacle" of order k+1. Therefore, a linear obstacle is defined as follows: 
 

Definition 4: Let X be a finite set and f be a symmetric submodular function. In a connectivity system (X,f),  the 

set family O ⊆2
X
 is called a linear obstacle of order k + 1 if the following axioms hold true: 
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 (O1) A ∈ O, f(A) ≤ k, 

 (O2) A ⊆ B ⊆ X, B ∈ O, f(A) ≤ k ⇒ A ∈ O, 

 (O3) A, B, C ⊆ X, A ∪ B ∪ C = X, A ∩ B = ∅, f(A) ≤ k, f(B) ≤ k, |C| ≤ 1 ⇒ either A ∈ O or B ∈ O. 

 

3 Equivalence between Linear Tangle and Linear Obstacle 
 

The main result of this paper is below. 

 

Theorem 1. Let X be a finite set and f be a symmetric submodular function. Under the assumption that f({e})≤k 

for every e∈X, F is a linear tangle of order k+1 on (X,f) iff F is a linear obstacle of order k+1 on (X,f) . 

 

Proof of Theorem 1: 

 

Step 1: 

 

Assume F is a linear tangle of order k+1 on connectivity system (X,f). We need to show that F satisfies the 

axioms of a linear obstacle of order k+1. 

 

We show that axiom (O1) holds. From the definition of a linear tangle, F contains k-efficient subsets of X. By 

the assumption that f({e})≤k for every e∈X, any set A in F satisfies f(A)≤k, which is consistent with the 

requirement in (O1). 

 

Next, we show that axiom (O2) holds.  Let A⊆B⊆X such that B∈F and f(A)≤k. We know from the linear tangle 

definition that exactly one of B or X\B is in F. If A=B, then A∈F. If A≠B, then X\A⊆X\B. Since X\B∉F and 

f(X\A)=f(A)≤k, A∈F. Thus, axiom (O2) holds for F. 

 

Finally, we show that axiom (O3) holds. To demonstrate axiom (O3), we will use proof by contradiction. 

Assume that axiom (O3) does not hold, which means either A ∉ L and B ∉ L or A ∈ L and B ∈ L. We will 

consider both cases. 

 

Case 1: A ∉ L and B ∉ L 

 
Since f(B) ≤ k, by axiom (L2), B ∈ L. As A ∩ B = ∅ , we have A ⊆ B. Since f(A) ≤ k, by the previously 

demonstrated axiom (O2), A ∈ L, which leads to a contradiction. 

 
Case 2: A ∈ L and B ∈ L 

 
In this case, there is a contradiction with axiom (L3). 

 
Thus, in both cases, we arrive at contradictions, which means axiom (O3) must hold. 

 
Step 2: 

 
Assume F is a linear obstacle of order k+1 on (X,f). We need to show that F satisfies the axioms of a linear 

tangle of order k+1. 

 
We show that axiom (L1) holds. Since f(∅) = f(X) ≤ k, ∅ is k-efficient, and by axiom (O1), ∅∈F. 
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Next, we show that axiom (L2) holds. Let A be a k-efficient subset of X. Since f(A) ≤ k and f(X\A) = f(A) ≤ k, 

either A∈F or X\A∈F by axiom (O3) with B=A, C=∅. If both A and X\A were in F, it would contradict (O3) with 

B=X\A and C=∅. Hence, exactly one of A or X\A is in F. 

 
Finally, we show that axiom (L3) holds. Now, consider the three sets A, B, and C. We have: 

 

1. A ∪ B ∪ C = X, 

2. A ∩ B = ∅ (since A and B are both in F and F is a linear obstacle), 

3. f(A) ≤ k, f(B) ≤ k (as A, B ∈ F and F is a linear obstacle), 

4. |C| = 1. 

 
From the definition of a linear obstacle, either A ∈ F or B ∈ F must hold. Since A, B ∈ F by assumption, this 

does not contradict the definition. Therefore, A ∪  B ∪  {e} ≠ X, satisfying axiom (L3). 

 
We have now proven both directions of Theorem 1: F is a linear tangle of order k+1 on (X,f) if and only if F is a 

linear obstacle of order k+1 on (X,f). This proof is completed. 

 

4 Conclusion and Future Tasks 
 
In this succinct paper, we presented a direct proof for the equivalence between linear tangles and linear obstacle.  

 
In the world of logic, the concept of a weak ideal is known [22,23]. This is a concept where some of the axioms 

of an ideal are replaced with weaker ones.  

 
The definition below is based on the concept of an ideal on connectivity system (X, f) as defined in literature [1], 

and is an extension of the definition of weak ideal using the underlying set and power set, as defined in literature 

[18]. And an ideal on connectivity system (X, f) is dual concept of branch-width. 

 
Our future goal is to investigate the relationship between weak ideal and various graph parameters and linear 

tangle. We also plan to study the dual concept of weak ideal, which is the concept of a weak filter. 

 
Definition 5 : Let X be a finite set and f be a symmetric submodular function. In a connectivity system (X,f), the 

set family W ⊆2
X
 is called a weak ideal of order k+1 if the following axioms hold true: 

 
(IB) For every A ∈ W, f(A) ≤ k. 

(IH) If A, B ⊆ X, f(A) ≤ k, A is a proper subset of B and B belongs to W, then A belongs to W. 

(WIS) If A belongs to W, B belongs to W and f(A ∪  B) ≤ k, then A ∪  B ≠ X. 

(IW) X does not belong to W. 
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