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Abstract

Let X be a uniformly convex and uniformly smooth real Banach space with dual space X∗.
Let F : X → X∗ and K : X∗ → X be bounded maximal monotone mappings. Suppose the
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1 Introduction

Let H be a real Hilbert space. A map A : H → 2H is called monotone if for each x, y ∈ H, the
following inequality holds:

〈ξ − τ, x− y〉 ≥ 0 ∀ ξ ∈ Ax, τ ∈ Ay. (1.1)

In a case where A is single-valued, A is said to be angle-bounded with angle β > 0 if

〈Ax−Ay, z − y〉 ≤ β〈Ax−Ay, x− y〉 (1.2)

for any triple elements x, y, z ∈ H. For y = z inequality (1.2) implies the monotonicity of A. A
monotone linear operator A : H → H is said to be angle bounded with angle α > 0 if

|〈Ax, y〉 − 〈Ay, x〉| ≤ 2α〈Ax, x〉
1
2 〈Ay, y〉

1
2 (1.3)

for all x, y ∈ H.

Let E be a real normed space, E∗ its topological dual space. A map J : E → 2E
∗

defined by

Jx :=
{
x∗ ∈ E∗ :

〈
x, x∗

〉
= ‖x‖.‖x∗‖, ‖x‖ = ‖x∗‖

}
is called the normalized duality map on E.

A map A : E → 2E is called accretive if for each x, y ∈ E, there exists j(x − y) ∈ J(x − y)
such that

〈ξ − τ, j(x− y)〉 ≥ 0, ∀ ξ ∈ Ax, τ ∈ Ay. (1.4)

A map A : E → 2E
∗

is called monotone if for all x, y ∈ D(A)

〈ξ − ζ, x− y〉 ≥ 0 ∀ξ ∈ Ax, ∀ζ ∈ Ay. (1.5)

A mapping A : E → 2E
∗

is said to be maximal monotone if it is monotone and for (x, u) ∈ E ×E∗
the inequalities 〈u − v, x − y〉 ≥ 0, for all (y, v) ∈ G(A), imply (x, u) ∈ G(A) where G(A) is the
graph of A.

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces,
monotonicity and accretivity coincide.

Monotone mappings were studied in Hilbert spaces by Zarantonello [1], Minty [2], Kačurovskii
[3] and a host of other authors. Interest in such mappings stems mainly from their usefulness in
numerous applications.

Example 1.1. Consider the following: Let f : H → R ∪ {∞} be a proper convex function. The
subdifferential of f at u ∈ H is defined by

∂f(u) =
{
u∗ ∈ H : f(y)− f(u) ≥

〈
y − u, u∗

〉
∀ y ∈ H

}
.

It is easy to see that ∂f : H → 2H is a monotone operator on H, and that 0 ∈ ∂f(u) if and only if
u is a minimizer of f . Setting ∂f ≡ A, it follows that solving the inclusion 0 ∈ Au, in this case, is
solving for a minimizer of f .

In fact, we state the following remark made by Pascali and Sburian in [4].

. . .The monotone maps constitute the most manageable class, because of the very
simple structure of the monotonicity condition. The monotone mappings appear in a
rather wide variety of contexts, since they can be found in many functional equations.
Many of them appear also in calculus of variations, as subdifferential of convex funtions
(Pascali and Sburian [4], p. 101).
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Let Ω ⊂ Rn be bounded. Let k : Ω×Ω→ R and f : Ω×R→ R be measurable real-valued functions.
An integral equation (generally nonlinear) of Hammerstein-type has the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x), (1.6)

where the unknown function u and inhomogeneous function w lie in a Banach space E of measurable
real-valued function. If we define F : F(Ω,R)→ F(Ω,R) and K : F(Ω,R)→ F(Ω,R) by

Fu(y) = f(y, u(y)), x ∈ Ω,

and

Kv(x) =

∫
Ω

k(x, y)v(y)dy, x ∈ Ω,

respectively, where F(Ω,R) is a space of measurable real-valued functions defined from Ω to R, then
equation (1.6) can be put in an abstract form

u+KFu = w. (1.7)

Without loss of generality we may assume that w ≡ 0 so that (1.7) becomes

u+KFu = 0. (1.8)

Interest in (1.6) stems mainly from the fact that several problems that arise in differential equations,
for instance, elliptic boundary value problems whose linear part posses Green’s function can, as a
rule be transformed into the form (1.6) (see e.g., Pascali and Sburian [4], chapter IV, p. 164. see
also Chidume and Djitte [5, 6], Chidume and Yekini [7]).

Equations of Hammerstein-type also play a crucial role in the theory of optimal control systems
and in automation and network theory (see e.g., Dolezale [8]).

Several existence results have been proved for equations of Hammerstein-type (see e.g., Brézis and
Browder [9, 10, 11], Browder [12], Browder, De Figueiredo and Gupta [13]).

In general, equations of Hammerstein-type are nonlinear and there is no known method to find
close form solutions for them. Consequently, methods of approximating solutions of such equations,
where solutions are known to exist, are of interest. In the special case where one of the operators
in equation 1.7 is angle-bounded, and the other is bounded, Brézis and Browder [9, 11] proved the
strong convergence of a suitably defined Galerkin approximation to a solution of equation (1.7). In
fact, they prove the following theorem.

Theorem 1.2 (Brézis and Browder [11]). Let H be a seprable Hilbert space and C be a closed
subspace of H. Let K : H → C be a bounded continuous monotone operator and F : C → H be
angle-bounded and weakly compact mapping. For a given f ∈ C, consider the Hammerstein equation

(I +KF )u = f (1.9)

and its nth Galerking approximation given by

(I +KnFn)un = P ∗f, (1.10)

where Kn = P ∗nKPn : H → Cn and Fn = PnFP
∗
n : Cn → H, where the symbols have their usual

meanings (see [4]). Then, for each n ∈ N, the Galerkin approximation (1.10) admits a unique
solution un in Cn and {un} converges strongly in H to the unique solution u ∈ C of the equation
(1.9).
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Remark 1.1. Theorem 1.2 is a special case of the actual theorem of Brézis and Browder in which
the Banach space is a separable real Hilbert space. The main theorem of Brézis and Browder is
proved in an arbitrary separable real Banach space.

We observe that the Galerkin method of Brézis and Browder is not iterative. Consequently, if an
iterative algorithm can be developed for the approximation of solutions of equation of Hammerstein-
type (1.7), this will certainly be a welcome complement to the Galerkin approximation method.
Attempts had been made to approximate solutions of equations of Hammerstein-type using Mann-
type (see e.g., Mann [14]) iteration scheme. However, the results obtained were not satisfactory
(see [15]). The recurrence formulas used in these attempts, even in real Hilbert spaces, involved
K−1 which is required to be strongly monotone when K is, and this, apart from limiting the class
of mappings to which such iterative schemes are applicable, is also not convenient in any possible
applications.

Part of the difficulty in establishing iterative algorithms for approximating solutions of Hammerstein
equations seems to be that the composition of two monotone maps need not be monotone.

The first satisfactory results on iterative methods for approximating solutions of Hammerstein
equations, as far as we know, were obtained by Chidume and Zegeye [16, 17, 18].

Let X be a real Banach space and F,K : X → X be accretive-type mappings. Let E := X × X.
Then, Chidume and Zegeye (see [16, 17]) defined T : E → E by

T [u, v] = [Fu− v,Kv + u] for [u, v] ∈ E.

We note that T [u, v] = 0 if and only if u solves (1.8) and v = Fu. The authors obtained strong
convergence theorems for solutions of Hammerstein equations under various continuity conditions
in the cartesian product space E.

The method of proof used by Chidume and Zegeye provided the clue to the establishement of the
following coupled explicit algorithm for computing a solution of the equation u + KFu = 0 in
the original space X. With initial vectors u0, v0 ∈ X, sequences {un} and {vn} in X are defined
iteratively as follows:

un+1 = un − αn(Fun − vn), n ≥ 0, (1.11)

vn+1 = vn − αn(Kvn + un), n ≥ 0, (1.12)

where αn is a sequence in (0, 1) satisfying appropriate conditions. The recursion formulas (1.11) and
(1.12) have been used successfully to approximate solutions of Hammerstein equations involving
nonlinear accretive-type mappings. Following this, several authors have studied the recursion
formulas (1.11), (1.12) (see e.g., Chidume and Djitte [5, 6], Chidume and Yekini [7]) and proved
several strong convergence theorems.

Remark 1.2. Even though the class of monotone-type operators have a wider variety of applications
than the class of accretive-type operators in Banach spaces, virtually all the results on the approxima-
tion of solutions of Hammerstein equations are either proved in Hilbert spaces or in a Banach space
in the case where the operators K and F are accretive-type mappings (see [19], [20] and [7]). As
far as we know, there are very few results on the approximation of solutions of Hammerstein-type
equations in Banach spaces (in the case where the operators K and F are monotone-type operators).

Remark 1.3. It seems that, part of the difficulty is that since the operator F maps E to E∗ and
K maps E∗ to E the recursion formulas used for accretive-type mappings may no longer make
sense under these settings. Moreover, most of the inequalities used in proving convergence when
the operators are accetive-type involve the normalized duality mappings which also appears in the
definition of accretive operators. However, the definition of monotone mappings does not involve the
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normalized duality mappings. This creates computational difficulties in attempting to use standard
Banach space inequalities in proving convergence results for monotone-type mappings.

Recently, the following important theorem was proved by Chidume and Ofoedu.

Theorem 1.3. [Chidume and Ofoedu, [19]]Let E be a 2−uniformly smooth real Banach space. Let
F,K : E → E be bounded and accretive mappings. Let {un}∞n=1 and {vn}∞n=1 be sequences in E
defined iteratively from arbitrary points u1, v1 ∈ E by

un+1 = un − λnαn(Fun − vn)− λnθn(un − u1), n ≥ 1, (1.13)

vn+1 = vn − λnαn(Kvn + un)− λnθn(vn − v1), n ≥ 1, (1.14)

where {λn}∞n=1, {αn}∞n=1 and {θn}∞n=1 are real sequences in (0, 1) such that λn = o(θn), αn =
o(θn), and

∑∞
n=1 λnθn = ∞. Suppose that u + KFu = 0 has a solution u∗ ∈ E. Then, there

exist real constants ε0, ε1 > 0 and a set Ω ⊂ W = E × E such that if λn ≤ ε0θn and αn ≤ ε1θn,
∀ n ≥ n0 , for some n0 ∈ N and w∗ := (u∗, v∗) ∈ Ω (where v∗ = Fu∗), the sequence {un}∞n=1

converges strongly to u∗.

It is our purpose in this paper to construct an iteration sequence and prove its strong convergence
to a solution of u + KFu = 0 in uniformly convex and uniformly smooth real Banach spaces.
Furthermore, our result complements Theorem 1.3 to provide iterative methods for the approximation
of solutions of the Hammerstein equation u+KFu = 0 in more general spaces when the operators
K and F are bounded maximal monotone-type operators. Our method of proof is different and of
independent interest.

2 Preliminaries

Let E be a normed space with dimE ≥ 2. The modulus of convexity of E is the function δE :
(0, 2]→ [0, 1], defined by

δE(ε) := inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖
}
.

The space E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2].

It is also well known (see e.g., Chidume [21] p. 34, also Lindenstrauss and Tzafriri [22]) that δE
is nondecreasing. If there exist a constant c > 0 and a real number p > 1 such that δE(ε) ≥ cεp,
then E is said to be p-uniformly convex. Typical examples of such spaces are the Lp, `p and Wm

p

spaces for 1 < p <∞ where,

Lp (or lp) or W
m
p is

{
p− uniformly convex if 2 ≤ p <∞;
2− uniformly convex if 1 < p < 2.

A Banach space E is said to be strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y =⇒
∥∥∥x+ y

2

∥∥∥ < 1.

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E ,
ρE : [0,∞)→ [0,∞), is defined by:

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ, τ > 0

}
.
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A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

The norm of E is said to be Fréchet differentiable if for each x ∈ S := {u ∈ E : ‖u‖ = 1},

lim
t→0

‖x+ ty‖ − ‖x‖
t

,

exists and is attained uniformly for y ∈ E.

Let E be a smooth real Banach space with dual E∗. The function φ : E × E → R, is defined by,

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for x, y ∈ E, (2.1)

where J is the normalized duality mapping from E into 2E
∗
. It was introduced by Alber and has

been studied by Alber [23], Alber and Guerre-Delabriere [24], Kamimura and Takahashi [25], Reich
[26] and a host of other authors. If E = H, a real Hilbert space, then equation (2.1) reduces to
φ(x, y) = ‖x− y‖2 for x, y ∈ H. It is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for x, y ∈ E. (2.2)

Define a map V : X ×X∗ → R by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2. (2.3)

Then, it follows that

V (x, x∗) = φ(x, J−1(x∗)) ∀ x ∈ X, x∗ ∈ X∗. (2.4)

Lemma 2.1. ([Alber, [23]]) Let X be a reflexive striclty convex and smooth Banach space with X∗

as its dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) (2.5)

for all x ∈ X and x∗, y∗ ∈ X∗.

Lemma 2.2 (Kamimura and Takahashi, [25]). Let X be a real smooth and uniformly convex Banach
space, and let {xn} and {yn} be two sequences of X. If either {xn} or {yn} is bounded and
φ(xn, yn)→ 0 as n→∞, then ‖xn − yn‖ → 0 as n→∞.

Lemma 2.3. (Xu [27]) Let ρn be a sequence of non-negative real numbers satisfying the relation:

ρn+1 ≤ (1− βn)ρn + βnζn + γn, n ≥ 0, (2.6)

where,
(i) βn ⊂ [0, 1],

∑
βn =∞; (ii) lim sup ζn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),

∑
γn <∞. Then, ρn → 0

as n→∞.

Remark 2.1. Let E∗ be a strictly convex dual Banach space with a Fréchet differentiable norm and
A : E → 2E

∗
, be a maximal monotone map with no monotone extension. Let z ∈ E∗ be fixed.

Then for every λ > 0, there exists a unique xλ ∈ E such that z ∈ Jxλ + λAxλ (see Reich [28], p.
342). Setting Jλz = xλ, we have the resolvent Jλ := (J + λA)−1 : E∗ → E of A, for every λ > 0. A
celebrated result of Reich follows.
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Lemma 2.4. (Reich, [28]). Let E∗ be a strictly convex dual Banach space with a Fréchet differentiable
norm and let A : E → E∗ be maximal monotone such that A−10 6= ∅. Let z ∈ E∗ be an arbitrary but
fixed vector. For each λ > 0, there exists a unique xλ ∈ E such that z ∈ Jxλ +λAxλ. Furthermore,
xλ converges strongly to a unique v ∈ A−10.

Lemma 2.5 (Alber, [29]). Let X be a uniformly convex Banach space. Then for any R > 0 and
any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R the following inequality holds:

〈Jx− Jy, x− y〉 ≥ (2L)−1δX(c−1
2 ‖x− y‖), (2.7)

where c2 = 2 max{1, R}, 1 < L < 1.7.

Define

K := 4RLsup{‖Jx− Jy‖ : ‖x‖ ≤ R, ‖y‖ ≤ R}+ 1 (2.8)

Lemma 2.6 (Alber, [29]). Let X be a uniformly smooth and strictly convex Banach space. Then
for any R > 0 and any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R the following inequality holds:

〈Jx− Jy, x− y〉 ≥ (2L)−1δX∗(c−1
2 ‖Jx− Jy‖), (2.9)

where c2 = 2 max{1, R}, 1 < L < 1.7.

Lemma 2.7 (Alber, [29]). Let X be a reflexive strictly convex and smooth Banach space with dual
X∗. Let W : X ×X → R be defined by W (x, y) = 1

2
φ(y, x). Then,

φ(y, x)− φ(y, z) ≥ 2〈Jx− Jz, z − y〉, (2.10)

and

W (x, y) ≤ 〈Jx− Jy, x− y〉, (2.11)

for all x, y, z ∈ X

Lemma 2.8 (Chidume et al., [30]). From Lemma 2.4, setting λn := 1
θn

where θn → 0 as n→∞,(
θn−1−θn

θn
K
)
≤ 1, z = Jv for some v ∈ E, and yn :=

(
J + 1

θn
A
)−1

z, we obtain that:

Ayn = θn(Jv − Jyn), (2.12)

yn → y∗ ∈ A−10,

where K is as in lemma 2.5 and A : E → E∗ is maximal monotone. We observe that equation
(2.12) yields

Jyn−1 − Jyn +
1

θn

(
Ayn−1 −Ayn

)
=
θn−1 − θn

θn

(
Ju− Jyn−1

)
.

Taking the duality pairing of this with yn−1 − yn and using monotonicity of A, we obtain that

〈Jyn−1 − Jyn, yn−1 − yn〉 ≤
θn−1 − θn

θn

∥∥∥Ju− Jyn−1

∥∥∥‖yn−1 − yn‖.

We observe that if E is uniformly convex and uniformly smooth, using lemma 2.5 we obtain,

(2L)−1δE(c−1
2 ‖yn−1 − yn‖) ≤

θn−1 − θn
θn

∥∥∥Ju− Jyn−1

∥∥∥‖yn−1 − yn‖,
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which gives

‖yn−1 − yn‖ ≤ c2δ−1
E

(
θn−1 − θn

θn
K

)
, for some K > 0. (2.13)

Similarly, using equation 2.9 of lemma 2.6, we obtain that,

‖Jyn−1 − Jyn‖ ≤ c2δ−1
E∗

(
θn−1 − θn

θn
K

)
, for some K > 0. (2.14)

The following important results are known.

Lemma 2.9. Let E be a smooth real Banach space with dual E∗ and the function
φ : E × E → R defined by,

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for x, y ∈ E,

where J is the normalized duality mapping from E into 2E
∗
. Then,

φ(y, x) = φ(x, y) + 2〈x, Jy〉 − 2〈y, Jx〉. (2.15)

Lemma 2.10. Let X, X∗ be uniformly convex and uniformly smooth real Banach spaces. Let

E = X ×X∗ with the norm ‖z‖E = (‖u‖X + ‖v‖X∗)
1
2 , for any z = [u, v] ∈ E. Let E∗ = X∗ ×X

denote the dual space of E. For arbitrary x = [x1, x2] ∈ E, define the map JE : E → E∗ by

JE(x) = JE [x1, x2] := [JX(x1), JX∗(x2)],

so that for arbitrary z1 = [u1, v1], z2 = [u2, v2] in E, the duality pairing 〈·, ·〉 is given by

〈z1, JE〉 := 〈u1, JX(u2)〉+ 〈v1, JX∗(v2)〉.

Then, E is uniformly smooth and uniformly convex.

Lemma 2.11. Let E be a uniformly convex and uniformly smooth real Banach and F : E → E∗,
K : E∗ → E be maximal monotone. Define A : E × E∗ → E∗ × E by

A[u, v] = [Fu− v,Kv + u] ∀ [u, v] ∈ E × E∗.

Then, A is maximal monotone.

Remark 2.2. From Lemma 2.4, setting λn := αn
θn

where θn
αn
→ 0 as n → ∞, z = [z1, z2] =

JE×E∗ [u, v] for some [u, v] ∈ E × E∗, and [yn, y
∗
n] :=

(
JE×E∗ + αn

θn
A
)−1

[z1, z2], we obtain that:

Jyn +
αn
θn

(Fyn − y∗n) = z1, ∀n ≥ 0, and (2.16)

J∗y
∗
n +

αn
θn

(Ky∗n + yn) = z2 ∀n ≥ 0; (2.17)

Remark 2.3. Let yn → y and y∗n → y∗. From lemma 2.4 we have that [yn, y
∗
n] converges to a point

in A−10. This implies that [y, y∗] ∈ A−10. Consequently, A[y, y∗] = 0, that is, Fy − y∗ = 0 and
Ky∗ + y = 0. Hence, y∗ = Fy and y +KFy = 0.

8
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3 Main Results

In theorems 3.1 and 3.2 below, the sequences {αn}∞n=1, {λn}∞n=1 and {θn}∞n=1 are in (0, 1) and are
assumed to satisfy the following conditions:

(i) αn, λn, θn → 0 as n→∞, (
θn−1−θn

θn
K) ≤ 1, θn

αn
→ 0 as n→∞,

∑∞
n=1 λnθn =∞;

(ii) λn ≤ γ0θn, [δ−1
E (λnM

∗
1 ) + δ−1

E∗(λnM
∗
2 )] ≤ γ0θn;

(iii)
∑∞
n=1 δ

−1
E (λnM

∗
1 ) <∞,

∑∞
n=1 δ

−1
E∗(λnM

∗
2 ) <∞;

(iv)
δ−1
E

(
θn−1−θn

θn
K

)
λnθn

→ 0,
δ−1
E∗

(
θn−1−θn

θn
K

)
λnθn

→ 0 as n→∞,

for some constants M∗1 > 0, M∗2 > 0, K > 0 and γ0 > 0; where δE is the modulus of convexity of
E and δE∗ is the modulus of convexity of E∗.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex real Banach space and
F : E → E∗, K : E∗ → E be maximal monotone and bounded maps. For u1 ∈ E, , v1 ∈ E∗,
define the sequences {un}∞n=1 and {vn}∞n=1 in E and E∗, respectively by

un+1 = J−1(Jun − λnαn(Fun − vn)− λnθn(Jun − Ju1)), n ≥ 1,

vn+1 = J−1
∗ (J∗vn − λnαn(Kvn + un)− λnθn(J∗vn − J∗v1)), n ≥ 1,

Assume that the equation u+KFu = 0 has a solution. Then, the sequences {un}∞n=1 and {vn}∞n=1

are bounded.

Proof. For (un, vn), (u∗, v∗) ∈ E × E∗ where u∗ is a solution of (1.8) with v∗ = Fu∗, set wn =
(un, vn) and w∗ = (u∗, v∗). Define Λ : (E × E∗)× (E × E∗)→ R by

Λ(w1, w2) = φ(u1, u2) + φ(v1, v2), (3.1)

where w1 = (u1, v1) and w2 = (u2, v2). Let E × E∗ be endowed with the norm ‖(u, v)‖ = (‖u‖2E +

‖v‖2E∗)
1
2 . We show that Λ(w∗, wn) ≤ r, for all n ≥ 1 and for some r > 0.

Using the fact that F and K are bounded, define

M1 := sup{||α(Fu− v) + θ(Ju− Ju1)|| : (u, v) ∈ BE×E∗ , α, θ ∈ (0, 1)}+ 1;

M2 := sup{||α(Kv + u) + θ(J∗v − J∗v1)|| : (u, v) ∈ BE×E∗ , α, θ ∈ (0, 1)}+ 1;

M3 := sup{||(Ju− Ju1|| : ||u|| ≤ r0}+ 1, for some r0 > 0;

M4 := sup{||J−1(Ju− λα(Fu− v)− λθ(Ju− Ju1))− u|| : (u, v) ∈ BE×E∗ , λ, α, θ ∈ (0, 1)}+ 1;

M5 := sup{||Jv − Jv1|| : ||v|| ≤ r∗0}+ 1, for some r∗0 > 0;

M6 := sup{||J−1
∗ (J∗v − λα(Kv + u)− λθ(J∗v − J∗v1))− v|| : (u, v) ∈ BE×E∗ , λ, α, θ ∈ (0, 1)}+ 1;

M∗1 = 2LM1M4

M∗2 = 2LM2M6

M∗ := max{2c2M1, 2c2M2, 2c2M3, 2c2M5, 2M1M4 + 2M2M6}

where c2 and L are constants appearing in Lemma 2.5 and BE×E∗ = {w ∈ E×E∗ : Λ(w∗, w) ≤ r}.
Let r > 0 be such that

r

5
≥ Λ(w∗, w1).

9
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Define

γ0 := min
{

1,
r

5M∗
,

1

M∗1
,

1

M∗2

}
.

Claim: Λ(w∗, wn) ≤ r, ∀ n ≥ 1.
The proof of this claim is by induction. By construction, we have Λ(w∗, w1) ≤ r.
Assume that Λ(w∗, wn) ≤ r for some n ≥ 1. This implies that

φ(u∗, un) + φ(v∗, vn) ≤ r, for some n ≥ 1.

We prove that Λ(w∗, wn+1) ≤ r. Suppose, for contradiction, that this is not the case, then
Λ(w∗, wn+1) > r. From lemma (2.5), we have that

δE(c−1
2 ||un+1 − un||) ≤ 2L||Jun+1 − Jun||||un+1 − un||

≤ λn2LM1M4.

This yields
||un+1 − un|| ≤ c2δ−1

E (λnM
∗
1 ). (3.2)

Also, using lemma 2.6, we obtain

||vn+1 − vn|| ≤ c2δ−1
E∗(λnM

∗
2 ). (3.3)

Using the definition of un+1, equation (2.4) and inequality (2.5) with

y∗ = λnαn(Fun − vn) + λnθn(Jun − Ju1),

we obtain:

φ(u∗, un+1) = φ(u∗, J−1(Jun − λnαn(Fun − vn)− λnθn(Jun − Ju1))

≤ V (u∗, Jun)− 2
〈
un+1 − u∗, λnαn(Fun − vn) + λnθn(Jun − Ju1)

〉
= φ(u∗, un)− 2

〈
un+1 − un, λn

(
αn(Fun − vn) + θn(Jun − Ju1)

)〉
−2
〈
un+1 − u∗, λn

(
αn(Fun − vn) + θn(Jun − Ju1)

)〉
≤ φ(u∗, un) + 2‖un+1 − un‖

∣∣∣∣∣∣λn(αn(Fun − vn) + θn(Jun − Ju1

)∣∣∣∣∣∣
−2λn

〈
un − u∗, αn(Fun − vn) + θn(Jun − Ju1)

〉

Which implies that

φ(u∗, un+1) ≤ φ(u∗, un) + 2‖un+1 − un‖λnM1 (3.4)

−2λn
〈
un − u∗, αn(Fun − vn) + θn(Jun − Ju1)

〉
.

Observe that using the monotonicity of F and J , we have:

−2λn
〈
un − u∗, αn(Fun − vn) + θn(Jun − Ju1)

〉
≤ −2λnαn〈un − u∗, (Fu∗ − vn)〉 − 2λnθn〈un − un+1, Jun − Jun+1〉
−2λnθn〈un − un+1, Jun+1 − Ju1〉 − 2λnθn〈un+1 − u∗, Jun − Jun+1〉
−2λnθn〈un+1 − u∗, Jun+1 − Ju1〉

≤ −2λnαn〈un − u∗, (Fu∗ − vn)〉+ 2λnθn||un − un+1||||Jun+1 − Ju1||
+2λnθn||un+1 − u∗||||Jun − Jun+1|| − 2λnθn〈un+1 − u∗, Jun+1 − Ju1〉.

10
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Substituting into inequality (3.4), we obtain

φ(u∗, un+1) ≤ φ(u∗, un) + 2‖un+1 − un‖λnM1 − 2λnαn〈un − u∗, (Fu∗ − vn)〉
+2λnθn||un − un+1||||Jun+1 − Ju1||+ 2λnθn||un+1 − u∗||||Jun − Jun+1||
−2λnθn〈un+1 − u∗, Jun+1 − Ju1〉.

Now, using inequality (2.10) of lemma 2.7 and inequality (3.2), we have that

φ(u∗, un+1) ≤ φ(u∗, un)− λnθnφ(u∗, un+1) + λnθnφ(u∗, u1) (3.5)

+λnδ
−1
E (λnM

∗
1 )(2c2M1) + 2λnθn(λnM1)M4

+λnθn[δ−1
E (λnM

∗
1 )(2c2M3)]− 2λnαn〈un − u∗, (Fu∗ − vn)〉.

Similarly, using the fact that K and J∗ are monotone, inequality (2.10) of lemma 2.7 and inequality
(3.3), we have

φ(v∗, vn+1) ≤ φ(v∗, vn)− λnθnφ(v∗, vn+1) + λnθnφ(v∗, v1) (3.6)

+λnδ
−1
E∗(λnM

∗
2 )(2c2M2) + 2λnθn(λnM2)M6

+λnθn[δ−1
E∗(λnM

∗
2 )(2c2M5)]− 2λnαn〈vn − v∗, (Kv∗ + un)〉.

Observe that since u∗ + KFu∗ = 0, setting Fu∗ = v∗, we obtain that Kv∗ = −u∗, and these
equations yield

2λnαn〈un − u∗, (vn − Fu∗)〉+ 2λnαn〈vn − v∗,−(Kv∗ + un)〉 = 0.

Adding (3.5) and (3.6), we obtain

r < Λ(w∗, wn+1)

≤ Λ(w∗, wn)− λnθnΛ(w∗, wn+1) + λnθnΛ(w∗, w1) + λn[δ−1
E (λnM

∗
1 ) + δ−1

E∗(λnM
∗
2 )]M∗

+λnθn[δ−1
E (λnM

∗
1 ) + δ−1

E∗(λnM
∗
2 )]M∗ + λnθn(λnM

∗).

So that

r < Λ(w∗, wn+1) ≤ Λ(w∗, wn)− λnθnΛ(w∗, wn+1) + λnθnΛ(w∗, w1)

+λnθn(γ0θn)M∗ + λn(θnγ0)M∗ + λnθnγ0M
∗

≤ r − λnθnr + λnθn
r

5
+ λnθn

r

5
+ λnθn

r

5
+ λnθn

r

5
< r.

This is a contradiction, hence, Λ(w∗, wn+1) ≤ r and so Λ(w∗, wn) ≤ r for all n ≥ 1. As a result,
we have φ(u∗, un) ≤ r and φ(v∗, vn) ≤ r for all n ≥ 1. Thus from inequality (2.2), we have that
{un}n≥1 and {vn}n≥1 are bounded.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth real Banach space and
F : E → E∗, K : E∗ → E be maximal monotone and bounded maps. For u1 ∈ E, v1 ∈ E∗, define
the sequences {un}∞n=1 and {vn}∞n=1 in E and E∗, respectively by

un+1 = J−1(Jun − λnαn(Fun − vn)− λnθn(Jun − Ju1)), n ≥ 1,

vn+1 = J−1
∗ (J∗vn − λnαn(Kvn + un)− λnθn(J∗vn − J∗v1)), n ≥ 1,

Assume that the equation u+KFu = 0 has a solution. Then, the sequences {un}∞n=1 and {vn}∞n=1

converge strongly to u∗ and v∗, respectively, where u∗ is the solution of u+KFu = 0 with v∗ = Fu∗.

11
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Proof. Using equation (2.4), lemmas 2.9 and 2.1, with y∗ = λnαn(Fun − vn) + λnθn(Jun − Ju1),
we have

φ(yn, un+1) = φ(yn, J
−1(Jun − λnαn(Fun − vn)− λnθn(Jun − Ju1)))

≤ V (yn, Jun)− 2〈un+1 − yn, λnαn(Fun − vn) + λnθn(Jun − Ju1)〉
= φ(un, yn) + 2〈un, Jyn〉 − 2〈yn, Jun〉 − 2λn〈un+1 − yn, αn(Fun − vn) + θn(Jun − Ju1)〉
= V (un, Jyn) + 2〈un, Jyn〉 − 2〈yn, Jun〉 − 2λn〈un+1 − yn, αn(Fun − vn) + θn(Jun − Ju1)〉
≤ V (un, Jyn−1)− 2〈yn − un, Jyn−1 − Jyn〉+ 2〈un, Jyn)〉 − 2〈yn, Jun)〉
−2λn〈un+1 − yn, αn(Fun − vn) + θn(Jun − Ju1)〉

= φ(yn−1, un) + 2〈yn−1, Jun〉 − 2〈un, Jyn−1〉 − 2〈yn − un, Jyn−1 − Jyn〉
+2〈un, Jyn〉 − 2〈yn, Jun〉 − 2λn〈un+1 − yn, αn(Fun − vn) + θn(Jun − Ju1)〉

= φ(yn−1, un) + 2〈yn−1 − yn, Jun〉+ 2〈yn, Jyn − Jyn−1〉
−2λn〈un+1 − yn, αn(Fun − vn) + θn(Jun − Ju1)〉.

Appying monotonicity of F and using equations (2.16), (2.11), (3.2), (2.13) and (2.14), we have

φ(yn, un+1) ≤ φ(yn−1, un) + ||yn − yn−1||C1 + ||Jyn − Jyn−1||C2 + 2λn||un+1 − un||M1

−2λn〈un − yn, αn(Fun − vn) + θn(Jun − Ju1)〉
= φ(yn−1, un) + ||yn − yn−1||C1 + ||Jyn − Jyn−1||C2 + 2λn||un+1 − un||M1

−2λn〈un − yn, αn(Fun − vn) + θn(Jun − Jyn −
αn
θn

(Fyn − y∗n))〉

≤ φ(yn−1, un) + ||yn − yn−1||C1 + ||Jyn − Jyn−1||C2 + 2λn||un+1 − un||M1

−2λnαn〈un − yn, y∗n − vn〉 − 2λnθn〈un − yn−1, Jun − Jyn−1〉
−2λnθn〈un − yn−1, Jyn−1 − Jyn〉 − 2λnθn〈yn−1 − yn, Jun − Jyn〉

≤ φ(yn−1, un) + ||yn − yn−1||C1 + ||Jyn − Jyn−1||C2 + 2λn||un+1 − un||M1

−λnθnφ(yn−1, un) + ||Jyn − Jyn−1||C3 + ||yn − yn−1||C4 − 2λnαn〈un − yn, y∗n − vn〉

≤ φ(yn−1, un)− λnθnφ(yn−1, un) + δ−1
E

(θn−1 − θn
θn

K
)
C5 (3.7)

+δ−1
E∗

(θn−1 − θn
θn

K
)
C6 + 2c2λnδ

−1
E (λnM

∗
1 )M1 − 2λnαn〈un − yn, y∗n − vn〉,

where C1, C2, C3, C4 are positive constants and C5 = c2C1 + c2C4, C6 = c2C2 + c2C3.

Similarly, applying monotonicity of K and using equations (2.17), (2.11), (3.3), (2.13) and (2.14),
we have

φ(y∗n, vn+1) ≤ φ(y∗n−1, vn)− λnθnφ(y∗n−1, vn) + δ−1
E

(θn−1 − θn
θn

K
)
C∗5 (3.8)

+δ−1
E∗

(θn−1 − θn
θn

K
)
C∗6 + 2c2λnδ

−1
E∗(λnM

∗
2 )M2 − 2λnαn〈vn − y∗n, un − yn〉.

where C∗5 and C∗6 are positive constants.

Hence, adding eqautions (3.7) and (3.8) we have

Λ(pn, wn+1) ≤ Λ(pn−1, wn)− λnθn
(
φ(yn−1, un) + φ(y∗n−1, vn)

)
+ 2c2λnδ

−1
E (λnM

∗
1 )M1

+2c2λnδ
−1
E∗(λnM

∗
2 )M2 + δ−1

E

(θn−1 − θn
θn

K
)
C5 + δ−1

E

(θn−1 − θn
θn

K
)
C∗5

+δ−1
E∗

(θn−1 − θn
θn

K
)
C6 + δ−1

E∗

(θn−1 − θn
θn

K
)
C∗6 .

12
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where pn = [yn, y
∗
n] is as in remark 2.2. Letting M∗ = max{C5 + C∗5 , C6 + C∗6 , 2c2M1, 2c2M2}, we

have

Λ(pn, wn+1) ≤ Λ(pn−1, wn)− λnθnΛ(pn−1, wn) + λnδ
−1
E (λnM

∗
1 )M∗ + λnδ

−1
E∗(λnM

∗
2 )M∗

+δ−1
E

(θn−1 − θn
θn

K
)
M∗ + δ−1

E∗

(θn−1 − θn
θn

K
)
M∗

≤ Λ(pn−1, wn)− λnθnΛ(pn−1, wn) + δ−1
E (λnM

∗
1 )M∗ + δ−1

E∗(λnM
∗
2 )M∗

+δ−1
E

(θn−1 − θn
θn

K
)
M∗ + δ−1

E∗

(θn−1 − θn
θn

K
)
M∗.

Setting

ρn := Λ(pn−1, wn); βn := λnθn; ζn :=

(
δ−1
E

(
θn−1−θn

θn
K

)
M∗

λnθn
+

δ−1
E∗

(
θn−1−θn

θn
K

)
M∗

λnθn

)
;

γn := δ−1
E (λnM

∗
1 )M∗ + δ−1

E∗(λnM
∗
2 )M∗;

we have
ρn+1 ≤ (1− βn)ρn + βnζn + γn, n ≥ 1.

It now follows from Lemma (2.4) that ρn → 0 as n→ ∞, i.e.,Λ(pn−1, wn) → 0 as n→ ∞.
Consequently, by lemma (2.3), we obtain that lim||un − yn−1|| = 0. Hence using remark 2.3, we
have that the sequence {un}∞n=1 converges strongly to a solution of (1.8).

Remark 3.1. We have (see e.g., Alber [29]) for p > 1, q > 1, X = Lp, X∗ = Lq, that

δX∗(ε) = 1−
(

1−
( ε

2

)q) 1
q
,

and thus obtain also that
δ−1
X∗(ε) = 2[1− (1− ε)q]

1
q ≤ 2q

1
q ε

1
q .

(The last inequality follows since (1− ε)q > 1− qε, for q > 1).

Prototypes for our result are the following:

θn =
1

(n+ 1)b
, λn =

1

(n+ 1)a
and αn =

1

(n+ 1)γ
n ≥ 1,

where

γ > 0, γ < b <
a

r
, a+ b <

1

r
, b <

1

K
; where K > 0 is as defined in lemma 2.5, r = max{p, q}.

For example, without loss of generality, if we set r = p, then takng

a :=
1

(p+ 1)
; b := min

{ 1

2K
,

1

2p(p+ 1)

}
,

conditions (i) to (iv) are satisfied.

Remark 3.2. (see e.g., Alber [29], p.36) The analytical representations of duality mappings are
known in a number of Banach spaces. For instance, in the spaces lp, Lp(G) and W p

m(G), p ∈ (1,∞),
p−1 + q−1 = 1, respectively,

Jx = ||x||2−plp y ∈ lq, y = (|x1|p−2x1, |x2|p−2x2, ...), x = (x1, x2, ...),

Jx = ||x||2−pLp |x(s)|p−2x(s) ∈ Lq(G), s ∈ G,
and

Jx = ||x||2−p
W
p
m

∑
|α|≤m

(−1)|α|Dα(|Dαx(s)|p−2Dαx(s)) ∈W q
−m(G),m > 0, s ∈ G.

13
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4 Conclusion

Theorem 3.2 complements Theorem 1.3 to provide iterative methods for the approximation of
solutions of the Hammerstein equation u+KFu = 0 in more general spaces when the operators K
and F are bounded maximal monotone-type operators.
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