

British Journal of Mathematics & Computer Science

19(2): 1-12, 2016; Article no.BJMCS.29644

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: vipulvashisht@gmail.com;

Defect Prediction Framework Using Adaptive Neuro-Fuzzy
Inference System (ANFIS) for Software Enhancement Projects

Vipul Vashisht1*, Manohar Lal1 and G. S. Sureshchandar2

1SOCIS, IGNOU, New Delhi, India.

2ASQ India Pvt Ltd., Chennai, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author VV conceived and designed the work
and wrote the first draft of the manuscript. Authors ML and GSS helped perform the analysis of study with

constructive discussions. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/29644
Editor(s):

(1) Dariusz Jacek Jakóbczak, Chair of Computer Science and Management in this Department, Technical University of Koszalin,
Poland.

(2) Tian-Xiao He, Department of Mathematics and Computer Science, Illinois Wesleyan University, USA.
Reviewers:

(1) Adeel H. Suhail, Baghdad Oil Training Institute (BOTI), Iraq.
(2) Shaik Nafeez Umar, ANGRAU, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/16582

Received: 22nd September 2016
Accepted: 13th October 2016

Published: 17th October 2016

Abstract

Software Defect Prediction is the process of forecasting the defect count during various phases of
software development life cycle. Defect prediction is vital to successful software project execution since
the output is used to proactively plan defect prevention activities. During initial phases of software
development life cycle, prediction is quite challenging due to the presence of uncertainty in input
parameters, which constitute major component of estimated effort. Multiple attempts have been made by
researchers in past to design an appropriate defect prediction model but so far none has found widespread
adoption in software industry. In this communication, Adaptive Neuro-fuzzy Inference system (ANFIS)
approach has been proposed for designing a defect prediction model. In order to achieve complexity
reduction and to increase model adoption, an easy-to-use graphical user interface is designed. The
proposed ANFIS based model makes use of organization’s historical projects’ data for building the
model. The model provides a defect range (minimum, maximum) as a prediction output. The
effectiveness and superiority of proposed ANFIS model is demonstrated through analysis of results
achieved.

Original Research Article

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

2

Keywords: Software defect; software defect prediction model, neural network (NN); quality management;
fuzzy logic; adaptive Neuro-fuzzy inference system (ANFIS).

1 Introduction

In view of the well-known fact of our being more and more dependent on the software-based technology,
there is a growing demand for developing reliable, affordable and faster software systems. This fact is
setting higher expectations for the organizations to improve the overall product quality. In IT industry,
defects detected in software are most commonly considered as one of the major metrics for quality of
deliverables. A higher residual defect leakage could not only result in budget overrun but can also result in
impacting the overall customer satisfaction index. During the signing of large engagement contracts, more
and more customers are enforcing financial penalty clauses to counter damages due to residual defect
leakage from supplier end. Hence planning for defect prevention is considered vital for the organization. It is
always beneficial to focus on preventing defects in software development life cycle rather than expending
effort in fixing defects found by end users while software has gone live in production.

In view of the increasing complexity in systems, it is almost impossible to deliver software with zero
production defects. The occurrence of defects is considered almost inevitable and is the one of the
significant contributors to rise in overall project costs due to defect fixing effort. In order to prevent defects
from occurrence and to detect the leakage in the initial phases, most organizations plan to implement defect
prediction model. The Capability Maturity Model Integration (CMMI) is a globally-adopted capability
improvement framework that advocates use of appropriate defect prediction model as one of the high
maturity practices for process improvement under Quantitative Project Management process area at Level 4.
In order to achieve CMMI level 5 certification, organizations need to showcase the benefits achieved by
implementing quantitative techniques like statistical process control charts and defect prediction model
[1,2]. Defect count prediction enables project manager (PM) to take data driven decisions. Based on
outcome of model, IT organizations can perform contingency planning for areas that need necessary
attention and investment [3]. Prevention activities may include setting up multiple review channels, usage of
automation tools and performing process audits.

In the recent past, there has been an increased usage of computational intelligence (Cl) technologies such as
fuzzy logic, neural networks, and ANFIS, to solve issues in the field of software engineering. The Cl
technologies have been found to be particularly successful in solving problems such as effort and defect
prediction that arise as a result of measurement which is not precise and inaccurate [4,5]. In this
communication, ANFIS approach has been proposed for designing a defect prediction model for software
enhancement projects.

Next section describes about software enhancement methodology.

1.1 Software enhancement methodology

Enhancement life cycle methodology aims at achieving improvements to existing software in terms of
functionality / technologies. The enhancement methodology is most suited to the situations in which there
are constantly changing customer requirements, involving partially or fully completed projects. The changes
may involve functionality or technology upgrade. Once the software is delivered; the maintenance and
enhancement of application software consume a major portion of the total life cycle resources that includes
cost of the system [6,7]. Most legacy software systems do not have well documented requirements, which
pose a great challenge for project manager to plan for software enhancement to existing product. Most of the
times, the person who would make changes to code is different from the person who initially authored the
code. In such cases, defect prevention through defect prediction becomes all the more vital. It has been
suggested that the ongoing maintenance of legacy software is becoming more difficult year by year since
software updates gradually changes the original architecture of the applications [8].

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

3

It has also been observed that most research work done in past regarding software defect prediction is
focused on development projects, instead of software enhancements or software maintenance projects [9].
To address this issue, a defect prediction model for software enhancement projects is being proposed,
justifying the investigations reported through this communication. In this communication, three distinct
phases (Requirement Gathering, Construction and Testing) of projects regarding software enhancement life
cycle are considered for designing the model. In view of the fact that effort and duration for analysis phase
and design phase play a minimal role, the defect prediction for these phases is not taken into consideration.

In the next section, ANFIS overview is provided followed by literature review, section IV discusses
proposed framework followed by results discussion and conclusion.

2 Adaptive Neuro Fuzzy Inference System (ANFIS)

In the last few decades, study in the field related to artificial neural networks and fuzzy inference systems
has been a major area of consideration, especially in the areas involving specific type of uncertain
knowledge. Fuzzy logic based systems have the ability to represent, and to draw inferences regarding
comprehensive linguistic knowledge, though vague yet understandable to human experts [10]. Nevertheless,
fuzzy systems lack ability to obtain and tune the rules automatically. While, neural networks based systems
are known to be adaptive and can be easily trained and tuned from provided data set. Fuzzy systems and
neural-networks are known to be complementary paradigms for addressing such complex problems; hence,
it is natural to combine these technologies to create hybrid systems [11].

An adaptive Neuro-fuzzy inference system (ANFIS) technique integrates both neural networks and fuzzy
logic principles in a single framework. ANFIS makes use of training algorithm supported by NN
architectures [12,13]. This technique got developed in the early 1990s and makes use of Takagi–Sugeno
fuzzy model which is known to be more compact and computationally efficient than Mamdani model. In this
approach, ANFIS inference system corresponds to a set of fuzzy IF–THEN rules that have learning
capability with appropriate membership functions to generate the result as stipulated input output pairs
[14,15].

In a Sugeno model, a typical fuzzy rule is described as:
 �� � �� �� � ��	
 �� �� � ��� � = �(�,
) (1)

In equation (1), A and B are fuzzy sets in the antecedent, and � is a crisp function mapping the ordered pair (�, �) to � the consequent. The function � is a polynomial function which describes the model output within
fuzzy region specified by the antecedent of the rule.

In Fig. 1, a two-input first-order Sugeno Fuzzy Model with two rules is shown with corresponding ANFIS
Architecture presented in Fig. 2.

Rule 1: if � �� �1 and
 � �� �1, then (�1 = �1� + �1� + 1) (2)

Rule 2: if � �� �2 and
 � �� �2 , then(�2 = �2� + �2� + 2) (3)

The five layers of ANFIS architecture are explained in Table 1 (Jang, 1993).

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

4

Table 1. Description of layers in ANFIS architecture

Layer 1 Every node � in this layer is an adaptive node with a node function

 "#$ = %&'(�) (4)

Where x is the input to node i and Ai is a linguistic label associated with this node. In other
words, "#$ is the membership grade of a Ai and it specifies the degree to which the given
input x satisfies the quantifier Ai . Here the membership function for A can be any
appropriate parameterized membership function:

%&'(�) = $
$()*+,-'.' /01

2' (5)

%&'(�) = exp 6− 89:;'
<' =>? (6)

Where {A�, B�, C�} is the parameter set referred as premise parameters.

Layer 2 In this layer every node is a fixed node whose output is the product of all the incoming
signals.
 "#> = E# = %&'(�) × %G'(�) , � = 1, 2 (7)

Here, output of each node represents the firing strength of a fuzzy rule.

Layer 3 In this layer every node is a fixed node labeled N. The ith node calculates the ratio of the ith
rule's firing strength to the sum of all rules' firing strengths, output is known as normalized
firing strengths:

"#H = EI# = J'
JK(J0 , � = 1, 2 (8)

Layer 4 Every node � in this layer is a square node with a node function:

 "#L = EI#�# = EMNNN (�#� + �#� + #) , � = 1, 2 (9)

Where EI# is a normalized firing strength from layer 3 , and {�# , �# , #} is the parameter set
of this node. Parameters in this layer are referred to as consequent parameters.

Layer 5 The single node in this layer is a fixed node labeled ∑, which computes the overall output as
the summation of all incoming signals:

"#O = PQR ASS PTU�TU = ∑ EI#�## = ∑ J'W''
∑ J'' (10)

The task of the learning algorithm for this architecture is to tune all the modifiable parameters, namely {A# B# C# } and {�# �# # } to make the ANFIS output match the training data. When the premise parameters A# B# and C# of the membership function are fixed, the output of the ANFIS model can be written as:

� = XK
XK(X0 f$ + X0

XK(X0 f> (11)

 � = wIf + wI > f> (12)

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

5

� = (EI$ �)�$ + (EI$ �)�$ + (EI$) $ + (EI> �)�> + (EI> �)�> + (EI>) > (13)

Next section describes the related literature review.

Fig. 1. A two-input first-order Sugeno Fuzzy model with two rules [14]

Fig. 2. Equivalent ANFIS architecture [14]

3 Related Literature Review

Few of the areas where ANFIS approach, which is used for this investigation, has been successfully used:

• Prediction of software maintenance effort of commercial software systems has been evaluated
using various techniques and results of ANFIS were observed to be the best [16].

• ANFIS has been used for predicting the reliability of the software using attributes such as size of
software, number of failures and Total time [17].

• ANFIS has been used for Tamil speech word recognition system [18].
• A method based on ANFIS has been used to evaluate the software reliability. The model makes use

of the reliability data of one software project as an input data, and use the prediction of reliability as
output data [19].

• Neuro-fuzzy technique has been used for estimating software development time. The results
showed that Neuro-fuzzy system is much better than fuzzy logic and neural network, when used
separately [20].

• ANFIS based technique has been implemented for predicting software effort. The same was
compared with neural network based technique and was found to be performing better [21].

• A comparative analysis using ANFIS was done to predict level of impact of faults in NASA’s
public domain defect dataset coded in Perl programming language. The accuracy value of trained
Neuro-fuzzy system was found to be 93.33% [22].

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

6

• ANFIS has been successfully applied for predicting software change-prone classes in the early
phases of software development [23].

• ANFIS has been used for estimating software effort. Comparison of various membership functions
was done and the results showed the trapezoidal membership function was better compared to other
kind of membership functions [24].

In the next section proposed framework is discussed.

4 The Proposed Framework

ANFIS is a hybrid AI technique, which combines best features of fuzzy logic and parallel processing neural
networks. Since ANFIS possesses fast convergence and has more accuracy than back propagation neural
network, it is considered to be a universal estimator [25]. The experiments reported here involve data sets
taken from 50 real projects from a large software organization. Out of this dataset, 40 projects are used for
training the model and the rest 10 projects data is used for validating/testing the trained model in MATLAB
environment. Considering the fact that the degree to which historical data is similar to future data determines
the degree to which the model predicts the future events; the data has been segregated appropriately. Table 2
provides information regarding the structure of the adaptive Neuro-fuzzy based inference system.

Table 2. Configuration settings for ANFIS based modeling

S. no. Parameters Description
1 Training Samples 40 samples of 4 elements (4 X 40)

[Production, Review, Rework & Prevention]
2 Target Samples 40 samples of 1 element (1 X 40) [Defect]
3 FIS (Fuzzy Inference System) Method Grid Partitioning
4 Number of Membership Function, MF 3, 3, 3, 3 (for each of the four inputs)
5 MF Type Gaussian, Linear
6 Number of rules 81
7 Training Optimization Method Hybrid
8 Average Testing error at epoch 3 0.28771 (Requirement)

2.2389 (Construction)
1.9647 (Testing)

9 Defuzzification Wtaver, (Weighted Average)

ANFIS makes use of a hybrid learning algorithm for parameter identification of Sugeno type FIS. Sugeno
model is computationally efficient, works well with linear optimization and adaptive techniques. It has
guaranteed continuity of the output surface and is well suited to mathematical analysis [26].

Fig. 3 provides ANFIS structure for the Requirement Gathering phase of software enhancement projects.
The structure would be the same for other two phases of enhancement life cycle. The branches shown in the
ANFIS architecture are color coded, which characterize the fuzzy rules used.

The anfis functionality in Fuzzy Logic Toolbox accomplishes the membership function parameter
adjustment. This adjustment allows fuzzy systems to learn from the data being modeled. ANFIS uses two
datasets, one for training and the other for testing. In our case, first dataset of 40 projects is used for training
and other dataset of 10 projects is used for testing the trained model. Both datasets are from the historical
projects, which were completed at the organization. Considering the stability of system and minimum
training error, the number of epochs for training purpose is set to 3. Each of the three SDLC phases, four
inputs (viz. Production effort, Review effort, Rework effort and Prevention effort) has Gaussian membership
function with 3 membership function for each input.

Fig. 3. ANFIS structure for requirement gathering phase with

The fuzzy inference system is shown in Figs. 4 and 5 depicts membership function for Production effort,
which is one of the input parameter.

Fig. 5. Membership

Gaussian combination membership function is represented as:
 � = [AT��2\�(�,]��[1

The Gaussian function depends on two parameters sig and c as given by:

�(�; _, C) = R, (+,-)0
0`0

The function gauss2mf is a combination of tw
sig1 and c1, determines the shape of the left

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS

structure for requirement gathering phase with four inputs

The fuzzy inference system is shown in Figs. 4 and 5 depicts membership function for Production effort,

Fig. 4. Fuzzy inference system

Membership functions for inputs (Production effort)

Gaussian combination membership function is represented as:

1 C1 ��[2 C2a)

s on two parameters sig and c as given by:

is a combination of two of these two parameters. The first function, specified by
, determines the shape of the left-most curve. The second function specified by

; Article no.BJMCS.29644

7

The fuzzy inference system is shown in Figs. 4 and 5 depicts membership function for Production effort,

 (14)

 (15)

o of these two parameters. The first function, specified by
most curve. The second function specified by sig2 and c2

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

8

determines the shape of the right-most curve. Whenever C1 b C2 , the gauss2mf function reaches a
maximum value of 1. Otherwise, the maximum value is less than one. The Gaussian function has been used
for specifying the fuzzy sets due to their smoothness and concise notation property and having the advantage
of being smooth and nonzero at all points.

The parameters are listed in the order:
]��[1, C1, ��[2, C2a (16)

The model is validated by using remaining 10 data sets. For the purpose of validation, the training error
(refer Fig. 6) is defined as the difference between the training data output value and the output of the fuzzy
inference. The average testing error achieved at epoch 3 is 0.28771 for Requirement Gathering phase,
2.2389 for Construction phase and 1.9647 for Testing phase. The lower values of testing error show better
quality of prediction. The key point to observe here is that by emulating the fuzzy rules in neural network
architecture, the network can now be trained with standard back propagation methods in response to training
patterns. This means that the shape of the membership functions and the strength of the connection for the
rules can be adjusted and learned. When the training is completed, the neural network can simply be
converted back to fuzzy rules, if desired [27].

Fig. 6. Training error for three phases

4.1 Graphical user interface development

The execution of the defect prediction model could become a deterrent if the operation is complex and is not
end-user friendly. In this communication, to facilitate the operation, Matlab toolbox is used to design and
develop a graphical user interface to input the data. The tool uses only two windows, the first for identifying
the SDLC phase for which prediction is required and the second to input the planned effort for activities.
Output of the defect predictions is displayed in a separate window (refer Fig. 7).

Fig. 7. Defect prediction system UI

The functioning of GUI is as follows:

• For any new software enhancement project, the end user will provide the inputs
inputs include planned efforts in person days for that specific SDLC phase. Apart from production
effort, the planned review effort, planned prevention effort and the planned rework effort are also
required as a feed to the model.

• Model would process the inputs and predict the defect count for that particular SDLC phase. The
model would provide the defect count range , that includes minimum and maximum number of
predicted defects.

The defect forecast for other two phases is done using

5 Comparison of Results

The performance of the defect prediction model for software enhancement projects is validated by
comparing the trend of the outputs; one obtained through ANFIS based model and the other being the a
output. The defect trend chart (refer Fig. 8) shows that, in most cases, actual defects follows the ANFIS
prediction trend.

Fig. 8. Comparative trend of defects predicted by ANFIS Vs

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS

The functioning of GUI is as follows:

For any new software enhancement project, the end user will provide the inputs to the GUI. The
inputs include planned efforts in person days for that specific SDLC phase. Apart from production
effort, the planned review effort, planned prevention effort and the planned rework effort are also
required as a feed to the model.

ould process the inputs and predict the defect count for that particular SDLC phase. The
model would provide the defect count range , that includes minimum and maximum number of

The defect forecast for other two phases is done using the same steps as listed above.

5 Comparison of Results

The performance of the defect prediction model for software enhancement projects is validated by
comparing the trend of the outputs; one obtained through ANFIS based model and the other being the a
output. The defect trend chart (refer Fig. 8) shows that, in most cases, actual defects follows the ANFIS

Comparative trend of defects predicted by ANFIS Vs actual defects

; Article no.BJMCS.29644

9

to the GUI. The
inputs include planned efforts in person days for that specific SDLC phase. Apart from production
effort, the planned review effort, planned prevention effort and the planned rework effort are also

ould process the inputs and predict the defect count for that particular SDLC phase. The
model would provide the defect count range , that includes minimum and maximum number of

The performance of the defect prediction model for software enhancement projects is validated by
comparing the trend of the outputs; one obtained through ANFIS based model and the other being the actual
output. The defect trend chart (refer Fig. 8) shows that, in most cases, actual defects follows the ANFIS

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

10

The overall accuracy of ANFIS based defect prediction model is calculated based on the count of predicted
defects and actual defects. The overall accuracy on the validation data of 10 projects is 91.8% while the
overall accuracy considering 50 data sets comes around 88% (refer Fig. 9). The accuracy of validation data
sets of 10 projects during requirement gathering and construction phase is 93.4% which is comparable to
93.33% accuracy achieved on NASA’s MDP (Metric Data Program) data repository [22].

Fig. 9. Model accuracy calculation

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

11

6 Conclusions

The study was conducted to illustrate the potential effectiveness of ANFIS approach in respect of software
defect prediction on data sets from software enhancement projects. The accuracy of validation with data sets
from 10 projects during requirement gathering and construction phase is 93.4%. The results from
experiments indicate that the proposed ANFIS based model has better defect prediction capability. The
conclusions are based on investigations of software enhancement projects regarding a large software
organization. In order to adapt the proposed prediction model to suit other software development
methodologies like ERP, Agile, Production Support, etc, further effort is required.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Tamura S. Integrating CMMI and TSP/PSP: Using TSP data to create process performance models

(No. CMU/SEI-2009-TN-033). Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst; 2009.

[2] Vashisht VV. Enhancing software process management through control charts. Journal of Software
Engineering and Applications. 2014;7(2):87.

[3] McDonald M, Musson R, Smith R. The practical guide to defect prevention. Microsoft Press; 2007.

[4] Boetticher GD. Applying machine learners to GUI specifications in formulating early life cycle

project estimations. In Software Engineering with Computational Intelligence. Springer US. 2003;1-
16.

[5] Khoshgoftaar TM, ed. Software engineering with computational intelligence. Springer Science &

Business Media. 2012;731.

[6] Lientz BP, Swanson EB, Tompkins GE. Characteristics of application software maintenance.

Communications of the ACM. 1978;21(6):466-471.

[7] Canning G. The maintenance “iceberg”. EDP Analyzer. 1972;10(10):1–14.

[8] Jones C. The economics of software maintenance in the twenty first century, 2006. Performance

Engineering to Enhance the Maintenance; 2006.

[9] Pigoski TM. Practical software maintenance: Best practices for managing your software investment.

John Wiley & Sons, Inc; 1996.

[10] Sridhar M, Gill NS. Imperfection of domain knowledge and its formalization in context of design of

robust software systems. Journal of Software Engineering and Applications. 2015;8(9):489.

[11] Aldair A, Wang W. FPGA based adaptive Neuro fuzzy inference controller for full vehicle nonlinear

active suspension systems. International Journal of Artificial Intelligence & Applications (IJAIA).
2010;1(4):1-15.

[12] Nauck D. September. Neuro-fuzzy systems: Review and prospects. In Proceedings of Fifth European

Congress on Intelligent Techniques and Soft Computing (EUFIT’97). 1997;1044-1053.

[13] Del Campo I, Echanobe J, Bosque G, Tarela JM. Efficient hardware/software implementation of an

adaptive Neuro-fuzzy system. Fuzzy Systems, IEEE Transactions. 2008;16(3):761-778.

Vashisht et al.; BJMCS, 19(2): 1-12, 2016; Article no.BJMCS.29644

12

[14] Jang JSR. ANFIS: Adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics,
IEEE Transactions. 1993;23(3):665-685.

[15] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control.

Systems, Man and Cybernetics, IEEE Transactions. 1985;1:116-132.

[16] Kaur DA, Kaur K, Malhotra DR. Soft computing approaches for prediction of software maintenance

effort. International Journal of Computer Applications. 2010;1(16).

[17] Bhardwaj S, Sinha A. An improved computational software reliability model using ANFIS. IJCA.

2015;114(16):7–9.

[18] Rojathai S, Venkatesulu M. Investigation of ANFIS and FFBNN recognition methods performance in

Tamil speech word recognition. International Journal of Software Innovation (IJSI). 2014;2(2):43-53.

[19] Yuan D, Zhang C. Evaluation strategy for software reliability based on ANFIS. In Electronics,

Communications and Control (ICECC), 2011 International Conference. IEEE. 2011;3738-3741.

[20] Marza V, Teshnehlab M. Estimating development time and effort of software projects by using a

Neuro_Fuzzy approach. INTECH Open Access Publisher; 2009.

[21] Mewada KM, Sinhal A, Verma B. Adaptive Neuro-Fuzzy Inference System (ANFIS) based software

evaluation. IJCSI International Journal of Computer Science. 2013;10(1):244-250.

[22] Ardil E. A soft computing approach for modeling of severity of faults in software systems.

International Journal of Physical Sciences. 2010;5(2):74-85.

[23] Peer A, Malhotra R. Application of adaptive Neuro-fuzzy inference system for predicting software

change proneness. In Advances in Computing, Communications and Informatics (ICACCI), 2013
International Conference. IEEE. 2013;2026-2031.

[24] Praynlin E, Latha P. Estimating development effort of software projects using ANFIS. In IJCA

Proceedings on International Conference in Recent trends in Computational Methods,
Communication and Controls (ICON3C 2012). Foundation of Computer Science (FCS). 2012;5.

[25] Jang JSR, Sun CT, Mizutani E. Neuro-fuzzy and soft computing: A computational approach to

learning and machine intelligence; 1997.

[26] The mathworks. Neuro-Adaptive Learning and ANFIS.

Available:http://in.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html

[27] Badiru AB, Cheung J. Fuzzy engineering expert systems with neural network applications. John
Wiley & Sons. 2002;11.

__
© 2016 Vashisht et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/16582

