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Abstract 
 

Software Defect Prediction is the process of forecasting the defect count during various phases of 
software development life cycle. Defect prediction is vital to successful software project execution since 
the output is used to proactively plan defect prevention activities. During initial phases of software 
development life cycle, prediction is quite challenging due to the presence of uncertainty in input 
parameters, which constitute major component of estimated effort. Multiple attempts have been made by 
researchers in past to design an appropriate defect prediction model but so far none has found widespread 
adoption in software industry. In this communication, Adaptive Neuro-fuzzy Inference system (ANFIS) 
approach has been proposed for designing a defect prediction model. In order to achieve complexity 
reduction and to increase model adoption, an easy-to-use graphical user interface is designed. The 
proposed ANFIS based model makes use of organization’s historical projects’ data for building the 
model. The model provides a defect range (minimum, maximum) as a prediction output. The 
effectiveness and superiority of proposed ANFIS model is demonstrated through analysis of results 
achieved. 
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1 Introduction 
 
In view of the well-known fact of our being more and more dependent on the software-based technology, 
there is a growing demand for developing reliable, affordable and faster software systems. This fact is 
setting higher expectations for the organizations to improve the overall product quality. In IT industry, 
defects detected in software are most commonly considered as one of the major metrics for quality of 
deliverables. A higher residual defect leakage could not only result in budget overrun but can also result in 
impacting the overall customer satisfaction index. During the signing of large engagement contracts, more 
and more customers are enforcing financial penalty clauses to counter damages due to residual defect 
leakage from supplier end. Hence planning for defect prevention is considered vital for the organization. It is 
always beneficial to focus on preventing defects in software development life cycle rather than expending 
effort in fixing defects found by end users while software has gone live in production.  
 

In view of the increasing complexity in systems, it is almost impossible to deliver software with zero 
production defects. The occurrence of defects is considered almost inevitable and is the one of the 
significant contributors to rise in overall project costs due to defect fixing effort. In order to prevent defects 
from occurrence and to detect the leakage in the initial phases, most organizations plan to implement defect 
prediction model. The Capability Maturity Model Integration (CMMI) is a globally-adopted capability 
improvement framework that advocates use of appropriate defect prediction model as one of the high 
maturity practices for process improvement under Quantitative Project Management process area at Level 4.  
In order to achieve CMMI level 5 certification, organizations need to showcase the benefits achieved by 
implementing quantitative techniques like statistical process control charts and defect prediction model                  
[1,2]. Defect count prediction enables project manager (PM) to take data driven decisions. Based on 
outcome of model, IT organizations can perform contingency planning for areas that need necessary 
attention and investment [3]. Prevention activities may include setting up multiple review channels, usage of 
automation tools and performing process audits.  
 

In the recent past, there has been an increased usage of computational intelligence (Cl) technologies such as 
fuzzy logic, neural networks, and ANFIS, to solve issues in the field of software engineering. The Cl 
technologies have been found to be particularly successful in solving problems such as effort and defect 
prediction that arise as a result of measurement which is not precise and inaccurate [4,5]. In this 
communication, ANFIS approach has been proposed for designing a defect prediction model for software 
enhancement projects. 
 

Next section describes about software enhancement methodology. 
 
1.1 Software enhancement methodology 
 
Enhancement life cycle methodology aims at achieving improvements to existing software in terms of 
functionality / technologies. The enhancement methodology is most suited to the situations in which there 
are constantly changing customer requirements, involving partially or fully completed projects. The changes 
may involve functionality or technology upgrade. Once the software is delivered; the maintenance and 
enhancement of application software consume a major portion of the total life cycle resources that includes 
cost of the system [6,7]. Most legacy software systems do not have well documented requirements, which 
pose a great challenge for project manager to plan for software enhancement to existing product. Most of the 
times, the person who would make changes to code is different from the person who initially authored the 
code. In such cases, defect prevention through defect prediction becomes all the more vital. It has been 
suggested that the ongoing maintenance of legacy software is becoming more difficult year by year since 
software updates gradually changes the original architecture of the applications [8].   
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It has also been observed that most research work done in past regarding software defect prediction is 
focused on development projects, instead of software enhancements or software maintenance projects [9].  
To address this issue, a defect prediction model for software enhancement projects is being proposed, 
justifying the investigations reported through this communication. In this communication, three distinct 
phases (Requirement Gathering, Construction and Testing) of projects regarding software enhancement life 
cycle are considered for designing the model. In view of the fact that effort and duration for analysis phase 
and design phase play a minimal role, the defect prediction for these phases is not taken into consideration.  
 

In the next section, ANFIS overview is provided followed by literature review, section IV discusses 
proposed framework followed by results discussion and conclusion. 

 

2 Adaptive Neuro Fuzzy Inference System (ANFIS) 
 
In the last few decades, study in the field related to artificial neural networks and fuzzy inference systems 
has been a major area of consideration, especially in the areas involving specific type of uncertain 
knowledge. Fuzzy logic based systems have the ability to represent, and to draw inferences regarding 
comprehensive linguistic knowledge, though vague yet understandable to human experts [10]. Nevertheless, 
fuzzy systems lack ability to obtain and tune the rules automatically. While, neural networks based systems 
are known to be adaptive and can be easily trained and tuned from provided data set. Fuzzy systems and 
neural-networks are known to be complementary paradigms for addressing such complex problems; hence, 
it is natural to combine these technologies to create hybrid systems [11].   
 

An adaptive Neuro-fuzzy inference system (ANFIS) technique integrates both neural networks and fuzzy 
logic principles in a single framework. ANFIS makes use of training algorithm supported by NN 
architectures [12,13]. This technique got developed in the early 1990s and makes use of Takagi–Sugeno 
fuzzy model which is known to be more compact and computationally efficient than Mamdani model. In this 
approach, ANFIS inference system corresponds to a set of fuzzy IF–THEN rules that have learning 
capability with appropriate membership functions to generate the result as stipulated input output pairs 
[14,15].  
 
In a Sugeno model, a typical fuzzy rule is described as: 
 �� � �� �� � ��	 
 �� �� � ��� � = �(�, 
)                                                                               (1)  
 
In equation (1), A and B are fuzzy sets in the antecedent, and � is a crisp function mapping the ordered pair (�, �) to �  the consequent. The function � is a polynomial function which describes the model output within 
fuzzy region specified by the antecedent of the rule. 
 
In Fig. 1, a two-input first-order Sugeno Fuzzy Model with two rules is shown with corresponding ANFIS 
Architecture presented in Fig. 2. 
 
Rule 1: if � �� �1 and 
 � �� �1, then (�1 = �1� + �1� +  1)                                                                             (2) 

 
Rule 2: if � �� �2 and 
 � �� �2 , then(�2 = �2� + �2� +  2)                                                                               (3) 
 
The five layers of ANFIS architecture are explained in Table 1 (Jang, 1993). 
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Table 1. Description of layers in ANFIS architecture 
 
Layer 1 Every node � in this layer is an adaptive node with a node function 

 "#$ = %&'(�)                                                                                                                           (4) 
 
Where x is the input to node i and Ai is a linguistic label associated with this node. In other 
words, "#$ is the membership grade of a Ai and it specifies the degree to which the given 
input x satisfies the quantifier Ai . Here the membership function for A  can be any 
appropriate parameterized membership function: 
 

%&'(�) =  $
$()*+,-'.' /01

2'                                                                                                            (5) 

 

%&'(�) =   exp 6− 89:;'
<' =>?                                                                                                   (6) 

 
Where {A�, B�, C�} is the parameter set referred as premise parameters. 
 

Layer 2 In this layer every node is a fixed node whose output is the product of all the incoming 
signals. 
 "#> = E# = %&'(�) × %G'(�)  , � = 1, 2                                                                                  (7) 

 
Here, output of each node represents the firing strength of a fuzzy rule. 
 

Layer 3 In this layer every node is a fixed node labeled N. The ith node calculates the ratio of the ith 
rule's firing strength to the sum of all rules' firing strengths, output is known as normalized 
firing strengths: 
 

"#H = EI# =  J'
JK(J0  , � = 1, 2                                                                                                   (8) 

 
Layer 4 Every node � in this layer is a square node with a node function: 

 "#L = EI#�# =  EMNNN (�#� +  �#� +  #  ) ,   � = 1, 2                                                                     (9) 
 
Where  EI# is a normalized firing strength from layer 3 , and {�#  , �# ,  #} is the parameter set 
of this node. Parameters in this layer are referred to as consequent parameters. 

Layer 5 The single node in this layer is a fixed node labeled ∑, which computes the overall output as 
the summation of all incoming signals: 
 

"#O = PQR ASS PTU�TU =  ∑ EI#�## =     ∑ J'W''
∑ J''                                                                       (10) 

 
The task of the learning algorithm for this architecture is to tune all the modifiable parameters, namely {A#  B# C#  } and {�# �#  #  } to make the ANFIS output match the training data. When the premise parameters A#  B#   and C#  of the membership function are fixed, the output of the ANFIS model can be written as: 
 

�   =    XK
XK( X0  f$  +  X0

XK( X0  f>                                                                                                         (11) 

 �   =     wI$f$  +  wI > f>                                                                                                                      (12) 
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� =   (EI$ �)�$ +  (EI$ �)�$ + (EI$ ) $ +  (EI> �)�>  +  (EI> �)�> +  (EI> ) >                                (13) 
 
Next section describes the related literature review. 
 

 
Fig. 1. A two-input first-order Sugeno Fuzzy model with two rules [14] 

 

 
 

Fig. 2. Equivalent ANFIS architecture [14] 
 

3 Related Literature Review 
 
Few of the areas where ANFIS approach, which is used for this investigation, has been successfully used: 
 

• Prediction of software maintenance effort of commercial software systems has been evaluated 
using various techniques and results of ANFIS were observed to be the best [16]. 

• ANFIS has been used for predicting the reliability of the software using attributes such as size of 
software, number of failures and Total time [17].   

• ANFIS has been used for Tamil speech word recognition system [18]. 
• A method based on ANFIS has been used to evaluate the software reliability. The model makes use 

of the reliability data of one software project as an input data, and use the prediction of reliability as 
output data [19].  

• Neuro-fuzzy technique has been used for estimating software development time. The results 
showed that Neuro-fuzzy system is much better than fuzzy logic and neural network, when used 
separately [20].  

• ANFIS based technique has been implemented for predicting software effort. The same was 
compared with neural network based technique and was found to be performing better [21].  

• A comparative analysis using ANFIS was done to predict level of impact of faults in NASA’s 
public domain defect dataset coded in Perl programming language. The accuracy value of trained 
Neuro-fuzzy system was found to be 93.33% [22]. 
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• ANFIS has been successfully applied for predicting software change-prone classes in the early 
phases of software development [23]. 

• ANFIS has been used for estimating software effort. Comparison of various membership functions 
was done and the results showed the trapezoidal membership function was better compared to other 
kind of membership functions [24]. 

 
In the next section proposed framework is discussed. 
 

4 The Proposed Framework 
 
ANFIS is a hybrid AI technique, which combines best features of fuzzy logic and parallel processing neural 
networks. Since ANFIS possesses fast convergence and has more accuracy than back propagation neural 
network, it is considered to be a universal estimator [25]. The experiments reported here involve data sets 
taken from 50 real projects from a large software organization. Out of this dataset, 40 projects are used for 
training the model and the rest 10 projects data is used for validating/testing the trained model in MATLAB 
environment. Considering the fact that the degree to which historical data is similar to future data determines 
the degree to which the model predicts the future events; the data has been segregated appropriately. Table 2 
provides information regarding the structure of the adaptive Neuro-fuzzy based inference system. 
 

Table 2. Configuration settings for ANFIS based modeling 
 

S. no. Parameters Description 
1 Training Samples 40 samples of 4 elements (4 X 40)                                                

[Production, Review, Rework & Prevention] 
2 Target Samples 40 samples of 1 element (1 X 40) [Defect] 
3 FIS (Fuzzy Inference System) Method Grid Partitioning 
4 Number of Membership Function, MF 3, 3, 3, 3 (for each of the four inputs) 
5 MF Type Gaussian, Linear 
6 Number of rules 81 
7 Training Optimization Method Hybrid 
8 Average Testing error at epoch 3 0.28771 (Requirement) 

2.2389 (Construction) 
1.9647 (Testing) 

9 Defuzzification Wtaver, (Weighted Average) 
 
ANFIS makes use of a hybrid learning algorithm for parameter identification of Sugeno type FIS. Sugeno 
model is computationally efficient, works well with linear optimization and adaptive techniques. It has 
guaranteed continuity of the output surface and is well suited to mathematical analysis [26]. 
  
Fig. 3 provides ANFIS structure for the Requirement Gathering phase of software enhancement projects.  
The structure would be the same for other two phases of enhancement life cycle. The branches shown in the 
ANFIS architecture are color coded, which characterize the fuzzy rules used.  
 
The anfis functionality in Fuzzy Logic Toolbox accomplishes the membership function parameter 
adjustment. This adjustment allows fuzzy systems to learn from the data being modeled. ANFIS uses two 
datasets, one for training and the other for testing. In our case, first dataset of 40 projects is used for training 
and other dataset of 10 projects is used for testing the trained model. Both datasets are from the historical 
projects, which were completed at the organization. Considering the stability of system and minimum 
training error, the number of epochs for training purpose is set to 3. Each of the three SDLC phases, four 
inputs (viz. Production effort, Review effort, Rework effort and Prevention effort) has Gaussian membership 
function with 3 membership function for each input.  



 
Fig. 3. ANFIS structure for requirement gathering phase with 

 
The fuzzy inference system is shown in Figs. 4 and 5 depicts membership function for Production effort, 
which is one of the input parameter. 
 

Fig. 5. Membership 
 
Gaussian combination membership function is represented as: 
 � =  [AT��2\�(�, ]��[1

 
The Gaussian function depends on two parameters sig and c as given by:
 

�(�; _, C) =  R, (+,-)0
0`0                                          

 
The function gauss2mf is a combination of tw
sig1 and c1, determines the shape of the left
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structure for requirement gathering phase with four inputs 

The fuzzy inference system is shown in Figs. 4 and 5 depicts membership function for Production effort, 

 
Fig. 4. Fuzzy inference system 

 

 
 

Membership functions for inputs (Production effort) 

Gaussian combination membership function is represented as:  

1 C1 ��[2 C2a)                                                         

s on two parameters sig and c as given by: 

                                                                                                           

is a combination of two of these two parameters. The first function, specified by 
, determines the shape of the left-most curve. The second function specified by 
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The fuzzy inference system is shown in Figs. 4 and 5 depicts membership function for Production effort, 

 

 (14) 

                         (15) 

o of these two parameters. The first function, specified by 
most curve. The second function specified by sig2 and c2 
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determines the shape of the right-most curve. Whenever C1 b  C2 , the gauss2mf function reaches a 
maximum value of 1. Otherwise, the maximum value is less than one. The Gaussian function has been used 
for specifying the fuzzy sets due to their smoothness and concise notation property and having the advantage 
of being smooth and nonzero at all points. 
 

The parameters are listed in the order: 
 ]��[1, C1, ��[2, C2a                                                                                                    (16) 
 
The model is validated by using remaining 10 data sets. For the purpose of validation, the training error 
(refer Fig. 6) is defined as the difference between the training data output value and the output of the fuzzy 
inference. The average testing error achieved at epoch 3 is 0.28771 for Requirement Gathering phase, 
2.2389 for Construction phase and 1.9647 for Testing phase. The lower values of testing error show better 
quality of prediction. The key point to observe here is that by emulating the fuzzy rules in neural network 
architecture, the network can now be trained with standard back propagation methods in response to training 
patterns. This means that the shape of the membership functions and the strength of the connection for the 
rules can be adjusted and learned. When the training is completed, the neural network can simply be 
converted back to fuzzy rules, if desired [27]. 
 

 
Fig. 6. Training error for three phases 

 

4.1 Graphical user interface development 
 
The execution of the defect prediction model could become a deterrent if the operation is complex and is not 
end-user friendly. In this communication, to facilitate the operation, Matlab toolbox is used to design and 
develop a graphical user interface to input the data. The tool uses only two windows, the first for identifying 
the SDLC phase for which prediction is required and the second to input the planned effort for activities. 
Output of the defect predictions is displayed in a separate window (refer Fig. 7).  
 

 
 

Fig. 7. Defect prediction system UI 



The functioning of GUI is as follows: 
 

• For any new software enhancement project, the end user will provide the inputs
inputs include planned efforts in person days for that specific SDLC phase. Apart from production 
effort, the planned review effort, planned prevention effort and the planned rework effort are also 
required as a feed to the model. 

• Model would process the inputs and predict the defect count for that particular SDLC phase.  The 
model would provide the defect count range , that includes minimum and maximum number of 
predicted defects.   

 
The defect forecast for other two phases is done using 
 

5 Comparison of Results 
 
The performance of the defect prediction model for software enhancement projects is validated by 
comparing the trend of the outputs; one obtained through ANFIS based model and the other being the a
output. The defect trend chart (refer Fig. 8) shows that, in most cases, actual defects follows the ANFIS 
prediction trend.  
 

 
Fig. 8. Comparative trend of defects predicted by ANFIS Vs 
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The functioning of GUI is as follows:  

For any new software enhancement project, the end user will provide the inputs to the GUI. The 
inputs include planned efforts in person days for that specific SDLC phase. Apart from production 
effort, the planned review effort, planned prevention effort and the planned rework effort are also 
required as a feed to the model.  

ould process the inputs and predict the defect count for that particular SDLC phase.  The 
model would provide the defect count range , that includes minimum and maximum number of 

The defect forecast for other two phases is done using the same steps as listed above. 

5 Comparison of Results  

The performance of the defect prediction model for software enhancement projects is validated by 
comparing the trend of the outputs; one obtained through ANFIS based model and the other being the a
output. The defect trend chart (refer Fig. 8) shows that, in most cases, actual defects follows the ANFIS 

Comparative trend of defects predicted by ANFIS Vs actual defects 
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inputs include planned efforts in person days for that specific SDLC phase. Apart from production 
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ould process the inputs and predict the defect count for that particular SDLC phase.  The 
model would provide the defect count range , that includes minimum and maximum number of 

The performance of the defect prediction model for software enhancement projects is validated by 
comparing the trend of the outputs; one obtained through ANFIS based model and the other being the actual 
output. The defect trend chart (refer Fig. 8) shows that, in most cases, actual defects follows the ANFIS 
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The overall accuracy of ANFIS based defect prediction model is calculated based on the count of predicted 
defects and actual defects. The overall accuracy on the validation data of 10 projects is 91.8% while the 
overall accuracy considering 50 data sets comes around 88% (refer Fig. 9).  The accuracy of validation data 
sets of 10 projects during requirement gathering and construction phase is 93.4% which is comparable to 
93.33% accuracy achieved on NASA’s MDP (Metric Data Program) data repository [22]. 
 

 
 

Fig. 9. Model accuracy calculation 
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6 Conclusions 
 
The study was conducted to illustrate the potential effectiveness of ANFIS approach in respect of software 
defect prediction on data sets from software enhancement projects. The accuracy of validation with data sets 
from 10 projects during requirement gathering and construction phase is 93.4%. The results from 
experiments indicate that the proposed ANFIS based model has better defect prediction capability. The 
conclusions are based on investigations of software enhancement projects regarding a large software 
organization. In order to adapt the proposed prediction model to suit other software development 
methodologies like ERP, Agile, Production Support, etc, further effort is required.  
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