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Abstract

There are various areas of industry where the remoterotoot machines significantly increas
productivity. In terms of household this is extremely imaottfor elderly and disabled people. Voice
instructions are the most natural way of communicatidwdsen employees from different hierarchical
structures. The development of contemporary hardware alijpsiich relationships to build span between
man and machine. Contact with the managed object of spakgnage makes control very efficiently.
Moving objects can be successfully controlled by voicernands having in mind that the voice contfo
assures hands free and fast communication between humaoraradled object. The present paper deals
with the remote control of moving objects. Voice control isduser managing robots, drones,

wheelchairs etc. A new stochastic classifier has betingul for this purpose. A successful classification
by a new two hidden layer Boltzmann machine has been realihedprocess of deep machine learnjng
has been studied with respect to the mean field approxinmatdfem. An improved fixed-point iteration
algorithm is used to accelerate the rate of convemyetun algorithm for training the classifier has been
written explicitly in pseudocode. Real life tests asedssed.
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NOMENCLATURES

v 2-valent cepstral coefficient tensor of all frames repntisg a fixed wor

v; Cepstral coefficient vector of a fixed frame

v Cepstral coefficient

o 2-valent binary tensor of hidden units

hi(j) Hidden unit (binary vector)

u Vector of binary labels

P Distribution

)p Expectation over the distributiah

D Likelihooc

H 3-valent binary tensor containing both hidden layers

m Number of visible units (frames)

Sk Number of units in thk-th hidden layer

n Numberof the words in the bas

t Number of training pairs

o; Standard deviation of the input umit

Wi, Wi Weight matrices

w, W 4-valent real-valued weight tensors or corresponding rectangular bieeight
matrices

gi(j(f) Weight vectors

(7,u) A training pair

4 Set of training pairs

a Offsets

b,c¥,d Biases

0] Setof all biases, offsets and weights of the ne network

sigm Logistic function

Sigm Multivariate sigmoid

N Multivariate Gaussian

A Learning rate

n Number of necessary iterations for satisfying the stdproon
Numberof unknowns in the mean field approximation prol

1 Introduction

Euclidean norm of a matrix

The remote control is one of the most contemporary appesao exert influence on moving objects. It has
been successfully combined with voice commands in the laatlde There are a lot of applications of voice
control in the real life, for examples controlling of robot§, [drones, wheelchairs [2], home appliances
[3,4] etc. The number of home systems with voice corgrgrowing continuously. Voice banking [5] will
become a hit in the not too distant future. We should alsoiomenavigating systems, voice identification
systems and telecommunications. The major advantage of wogrol systems is hands-free
communication with managed objects. Contemporary voice cadstrelated to the probabilistic theory of
deep machine learning.

Every voice control system needs a speech recognitmsiul®. Generally speaking an automatic speech
recognition tool consists of a voice activity detectorllvkmown as VAD filter, signal preprocessing
techniques and classifier. There are plenty of classibn methods. The wavelet method, the dynamic time
warping and various neural networks have been successfelllyfas classification during the last decades.
The efficiency of the speech recognition systems strorgpgids on the choice of classifier.
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The first paper on Deep Boltzmann Machine (DBM) was publdishg Salakhutdinov and Hinton [6].
Results for multilayer Boltzmann machines can be found-h0J6 The term DBM was introduced for the
very first time by Salakhutdinov and Hinton [6]. They ob¢gira DBM with two hidden and one visible
layers of binary units. Montavon and Miuller [8] considesiraplified DBM with binary visible and hidden
units. The authors present the energy function of the DBM function of centered states. They conclude
that the centering procedure essentially facilitatesrdiring of DBM. The idea with the centering trick is
extended by Wang et al. [11] for Gaussian-binary deegBalitn machines. Deep Boltzmann machines as a
feed-forward hierarchy is presented by Montavon et al. B2khutdinov and Larochelle [13] developed a
three layer DBM introducing very effective inference proced@ho et al. [7] considered DBM with
hidden layers on the basis of the enhanced gradient and peealfedring. Zhou et al. [14] developed a deep
neural network on the basismwfstacked RBMs. A layer-by-layer pretraining phasesisd by Salakhutdinov
and Hinton [10] in their efficient learning procedure for gl@»ltzmann machines. From applied point of
view the DMB is of significal practical importance. A DBBlused by Suk et al. [15] to process multimodal
information from magnetic resonance imaging and diagnosing Alenaimlisease.

The main goal of the present paper is to improve théhastic model of voice control system obtained by
llarionov et al. [16] designing a new deep classifier. The dalen layer multiconnected classification
Boltzmann machine is a natural extension of the RBM invatibin [16].

Further, the paper is organized as follows. A principbevéhart of voice control of a moving object is
described in Section 2. A new DBM is obtained in Sectionlothmic aspects of the two hidden layer
multiconnected Boltzmann machine is analyzed in the sani®rse¥arious numerical experiments are
discussed in Section 4. Section 5 contains some concluding eemark

2 Stochastic Approach for Controlling a Moving Object

A detail scheme of the voice control of a moving objecprissented on Fig. 1. The user says a voice
command. The signal preprocessing includes Herz to mel cowmeof the input signal and feature
extraction. So many unpredictable noises can be found i@ ameironment. That is why we need a Wiener
filter for noise reduction. The voice activity detectiakef indicates the voice part of the signal. Speech
recognition systems are not working properly in the case \ahgsick ground speaker talk simultaneously
with the user who pronounce voice commands. The authors testsyaimmercial systems without success
in the case when background noise contains speech. The preshisralso inappropriate in this case.

USER Voice Signal Noise
il Command Preprocessing Reduction
W - Semantic
L VAD ] (?rd + Classitier e “}U“
Separation Analysis
L irarslatar TCP/IP Data Web Server of the
ki Transter Controlled Object

|

b Command Execution

Fig. 1. Principal scheme of voice control of a moving object

The input command is separated into its constituent wordsh Bard is presented as a set of cepstral
coefficient vectors (frames). The elements of all #anibelong tf0,1]. The role of the classifier is to
recognize the input command. The deep machine learning iscrefatthis part of the signal processing.
There are a lot of stochastic classifiers. We conaenton a two hidden layer multiconnected Boltzmann
machine. A semantic analysis is used to improve the retmgnior more details see [16]. After specifying
the command, it is translated into the language of the ngowbject. Drones, robots and spy tanks are
controlled by programming languages similar to BASIGr iRstance EZ-Builder became very popular for
managing robots. The translated command is sent to ¢heserver of the controlled object. It follows an
execution of the command.
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3 Multiconnected Deep Boltzmann Machine

We assume that all hidden layers are connected excludirgohial connections within a fixed layer.
Boltzmann machines with horizontal connections within a fileer are said to be general Boltzmann
machines as given by Salakhutdinov and Hinton [6]. The DBMsstigated in [6-8,11,13] are applied for
image recognition. All considered models have a common feallney only have connections between
adjacent layers. We introduce a completely differenpr@gch. The proposed multiconnected deep
Boltzmann machine has four layers, as shown in Fig. 2viEitde layerv consists of real-valued vectors of

cepstral coefficients and it is connected with the top m'dagerﬁ(l). The hidden IayerE(l) and 77
consist of binary vectors and both layers are conneutédeach other. Additionally, we have a layewith
labels. The output layer consists of binary units and it is connected with botiudnm layers. Actually the
proposed model is a natural generalization of the classiicRBM obtained by llarionov et al. [16].

Input units (real
valued vectors)

The first hidden
layer (binary
vectors)

The second
hidden layer
(binary vectors)

Binary output
units

Fig. 2. The multiconnected deep Boltzmann machine
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Let
v={(v,w)li=12,..,t},

be a set of training pairs. A supervised learning is agphpli¢he present investigation. Each training weyrds
related to a binary label,. Our purpose is to maximize the logarithmic likelihood,

L(®) = =Xt logp(V,w;), 0€O.

The contrastive divergence method for training Boltzmarathimes attains significant popularity after
Hinton [17] had been published way back in 2002. Most of the euttesigning DBMs use the fixed-point
iteration for deriving the mean field approximation [7]his procedure is essentially improved by I.
Goodfellow et al. [18].
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We apply the contrastive divergence algorithm with meau figlproximation to obtain the probability of
each hidden neuron in all hidden layers to be active. Tighitie multiconnected DBM, we found the
following difficulties: The mean-field fixed-point systeof equations has not a solution for random initial
guesses for the weight matrices, the fixed point it@ratonverges very slowly when the weight matrices are
not normalized. We avoid these difficulties using normalinéihl guesses for the weight matrices.

Our algorithm for training the two hidden layer multicontieeicBoltzmann machine is presented in pseudo
code to obtain a clear exposition of our idea. Befomgisgawe center the offsets with respect to the trginin
data. All elements of the visible layer belong to thterial [0,1] as it is done in by llarionov et al. [16he
output units satisfy,

n
u; = 1.
i=1
Algorithm1

% Contrastive divergence algorithmfor training the

% cl assification nulticonnected Boltzmann machi ne.

0

% Initialization

create offsets

center offsets

% The initial approximations for all of the visible and % output units
are set randomnly.

—[0
create hl[ ], i=12 randomy

create ul®, 7 randony

create all elenments of biases and offsets randomy in
[0, 1]
create normalized and positive definite weight matrices
create nornalized weight vectors
% Positive phase
O/ = = = m e m e e e e e e e e e e e e e e e e e e e memee— s
forall (v,u) €V do
% The i ndex i shows the current nunmber of the training pair.
begi n
% The nean field approxi mation
% The value K indicates the nunber of iterations.
for k=0to K—1 do
begi n
% The first hidden |ayer
for j=11to s; do
% The index j shows the number of the current
% hidden unit in the first hidden |ayer.

begi n
T
k+1 . 1 v wij ~ [k 1
hgj li= Sigm (Ej( b+ = Lgiu + Zfil Wij_gi] + Xy Q}i)ui)
end j

% The second hi dden | ayer

for j=11t0 s, do

% The index j shows the number of the current
% hi dden unit in the second hidden |ayer.
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begin
T
R = sigm (o + 532, (RIY) Wy + S UPw )
end j
end k
end forall
% Approxi mate values for all units in each hidden |ayer

% are obtained by K iterations.

—~ —[k] —[k
A= (kR )

% Negati ve phase

forall (p,u) €V do
% The index i indicates the current nunber of the training pair.
begi n
% The positive phase results are used as initial guesses
E[O] =u; 5[0] =
for k=0to K—1 do
begi n
for j=11to s; do
% The i ndex j shows the number of the current
% hi dden unit in the first hidden |ayer.
begi n

[k+1] L3]S e G
hy; "P(ﬁu |77 Jhy ol ])

end j
for j=1to s, do
% The index j indicates the number of the current
% hi dden unit in the second hidden |ayer.

begin

ﬁg’;+1]~P (ﬁg;] |E£k+1]’2[k])

end j

for j=1to m do

% The i ndex j shows the number of the current
% vi sible unit.
begin

2][1<+1]~P (E}k]|ﬁgk+1])
end j

for j=1to n do
% The index j indicates the nunmber of the current
% out put unit.
begin
[k+1] [k gy [Re+1
U ~P(”j |H[ ’ ])
end j
end k
end forall
% Approxi mate val ues for each unit of each hidden | ayer % are obtained by
means of K iterations.
o~ —[k] —[k
= (hgl'hg]); 5i=7M; 7=yl
% Updat e
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for 6 € ® do
begi n

. 3 L(— = 0 Lis o o
9.—9—A<£E(U,H,g)—£E(v,H,u))
end 6
end of Algorithm1l

For the negative phase we used the following conditionaltlisions:
p (Ei
2 Sk
P(uj|H) = sigm | d; + z Zﬁgk)gi(}{) )
k=1i=1
@ m UTW S2 n
@ Ty
v,h ,g) = Sigm £]§1) + 2_17'”+ ZWUEZ) + Zgﬁ)ui ,
=1 ' i=1 i=1

S1 n

—(1) T

R ) = sigm{ 6+ ) (67) 9+ ) 0w )
i=1 i=1

S1

—(1)

h )ZN gi+éi+o-izwijh§'1)‘o-izl )
j=1

(1)
p (@ ¢

()
P (n

We essentially improve the rate of convergence of the fpadt iterations applying a new block iteration
method of Gauss-Seidel type as in the positive and in thetine phase, see Algorithm 1. Similar approach
is used by Gutiérrez et al. [19] solving nonlinear eiguatin the complex plane. Applying the new method
we use,

u][k+1]~P(u][k] |H[k+1])

instead of
[k+1] k]| gy [k
u; ~P(uj |H[ ])
for instance. To classify an unlabeled inputve solve the problem.

k = argmaxp(v,u;)
i=12,..n

Then the inpub is recognized as the woty, if p(v,u;,) > §

If p(w,uy) < %we conclude that the inputhas not a corresponding word in the data base. Successfully

recognized data are stored for additional training of tB&DAdditionally we use a semantic analysis to
improve the quality of recognition as it is done by llarioebal. [16].

4 Numerical Tests

In designing a neural network, we apply deep machine learfirig.process is realized on the basis of the
mean field approximation problem in [7,9,20-22]. The roléhef mean field approximation is to establish
which neurons in the hidden layers are active. Developmisufficient conditions for existence and
uniqueness of the exact solution of the mean field approxamatroblem is a crucial point designing
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DBMs. Numerical tests indicate that there is a ct#gsroblems without solutions. A rigorous proof of this
phenomenon could be made but it is beyond our considerati@nlath of solution leads to improper
working of the corresponding neural network. Any diveitgaean field approximation procedure generates
confusions in the process of deep machine learning. The bgstovevoid this difficulty is to work with
normalized weight matrices. Note that there is a highter & convergence with a smaller norms of the
weight matrices. Usually the initial guesses for the hiddets ame chosen randomly. This is a tradition
designing neural networks. That is why it is very imaottto establish convergence in the case of random
initial guesses. This is another difficulty training a DBMioreover a monotone decreasing of the error norm
is strongly desirable. On the other hand it is very importa obtain fast convergence of the approximate
solutions and the number of necessary iterations to sdlisfgtop criterion should be independent of the
number of unknowns. The training of the DBMs depends on thmsof the weight matrices. All authors in
[7,9,20-22] use the method of successive approximatwmmedlize the fixed-point iteration. We extended
the 4-valent weight tensol# andW to square block matrices adding zero blocks where #dgssary. The
obtained block weight matrices are written by the samersetlfi” andW are normalized the number of
necessary iterationgfor satisfying the stop criterion is independent of thelper of unknowns, Fig. 3. We
established low rate of convergence in the cases wharthes of the weight matrices is bigger than four.
In this case not only that the numbgis not proportional to the number of unknowns, but it grows
unlimitedly whenv tends to infinity, see Fig. 4. The inequalities: |[W|| < ||W|| and4 < |W|| « W]
generate much worse results. Comparing the method of ssiweeapproximations, Figs. 3 and 4, and the
block iteration method proposed by the authors Figs. 5 and 6,taldigs that the new method essentially
reduces the number of necessary iterations for satisfyingttye criterion. The block iteration method
remains stable even in the case wh#n|| = |W|| = 7, Fig. 5. The parameterdirectly affects on the
necessary time for training the DBM. Additionally, we fidua lot of cases when the method of successive
approximations is divergent especially in the cas#-obnditioned weight matrices.

Ui

o

1000 2000 3000 4000 5000 6000 2
Fig. 3. The method of successive approximations. Relations between the number of unknowns and the
number of necessary iterationsfor satisfyingthe stop criterion. The following legend isused: Thin line
Wi = ||W|| =1, dashed line ||W|| = ||W|| = 2, thick line ||W|| = ||W|| =3.98.

Let us denote the model for controlling moving objects obthinghe present paper B4 and the model
obtained by llarionov et al. in [16] by,. We compare both models on the same experimental dataltbase
was proved in [16] that the success of recognition stronglerdip on the number of hidden units.
Moreover, an optimal number of hidden units in regard toctassification success was obtained. For the
modelM;, this number varies between 200 and 250. To obtain the i&suke with the modell,, we need
approximately 70 hidden units located in two layers. [Bier means that there is a serious reduction of the
number of hidden units. The time for training the DBM depesdshe norm of the weight matriclds and

W, see Figs. 3-6. We do not use random initial guesses favetight matrices. All computational tests are
made by positive definite and normalized initial guessesifoand¥. In this case, the mod#, is much
more reliable tha, .
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3

Fig. 4. The method of successive appr oximations. Relations between the number of unknownsand the
number of necessary iterationsfor satisfying the stop criterion. The following legend isused: thin line
IwW|| = ||W]|| = 7, dashed line [W|| = ||W|| = 13, thick line [W]| = ||W| = 19

n

w

1000 2000 3000 4000 5000 6000 ¥

Fig. 5. The block iteration method proposed by the authors. Relations between the number of
unknowns and the number of necessary iterationsfor satisfying the stop criterion.
Denotations: 1. [|[W|| = |W]| = 1, 2. W] = |W|| = 2,
3w = ||W| =3.98,4. w| = ||W| =7

n
4000}

3000f
2000¢

1000¢ i

1000 2000 3000 4000 5000 6000

b 4

Fig. 6. The block iteration method proposed by the authors. Relations between the number of
unknowns and the number of necessary iterationsfor satisfying the stop criterion
Denotations: dashed line ||W|| = |W|| = 13, solid line [W]| = ||| = 19
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5 Conclusion

A stochastic model with original classifier for contiy moving objects is investigated. A new DBM for
classifying speech commands is obtained. A detailed algoritthimtraining the two hidden layer
multiconnected Boltzmann machine has been presented. The ptesbassc model is compared with the
corresponding shallow version obtained by llarionov et al. [16h wéspect to the experimental voice
command data base. The implementation indicates thadriemt restrictions on the weight matrices are
necessary. A random choice of the initial guesses fow#ight matrices could adversely affect the process
of convergence of the mean field approximations. The best wdg work with positive definite and
normalized weight matrices. In this case the present medabre reliable than the corresponding model
with shallow classifier and it needs less number of hiddets.uSiome computational tests with ill-
conditioned weight matrices failed since the mean field aypegion algorithm is divergent. Smaller norms
of the weight matrix generates higher rate of convergeditauthors designing DBMs applied the method
of successive approximations to establish the stateuwbnsg in hidden layers to be active. It is well-known
that the method generates low rate of convergence espenidie case when the norm of the Jacobian of
the system is close to one. The iterative method of Gaeidgel3ype proposed by the authors essentially
reduce the number of necessary iterations for satisfyingttpecriterion. The idea is attractive because it is
easy for implementation. The necessary time for tngisi DBM can be decreased more if the mean field
approximation problem is solved by methods with higher ratew¥ergence.
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